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Abstract. Barycentric algebras have seen widespread application in the
modeling of convex sets, semilattices, and quantum mechanics. Recently,
they were developed further to encompass Boolean logic and if-then-else
algebras. This paper discusses an application of barycentric algebras to
systems biology. Here, they provide a calculus for the conversion from
simplified Boolean models of gene transcription to fuzzy models that give
a more realistic tracking of the biochemistry. Indeed, it appears that logic
gates experimentally observed in cells actually follow the barycentric
algebra format.

1 Introduction

Barycentric algebras (as defined in §2.3 below) are universal algebras used for
modeling convex sets, semilattices, geometry, hierarchical statistical mechanics,
and quantum mechanics [5,6,12,13,14,15,16,17,18]. Recently [17], they have been
developed further (as abstract barycentric algebras) by use of the LΠ-algebras of
fuzzy logic [3,10,11], incorporating B-sets [2,20,21] and if-then-else algebras [8,9].
The aim of the current paper is to show how the calculus of barycentric algebras
may be used in systems biology, to provide a virtually automatic translation from
simplified Boolean models of gene expression to continuous, fuzzy logic models
that give a much more realistic picture of the biochemical processes involved.
Experimentally observed logic gates in cells do not follow the pattern directly
suggested by standard Boolean models, but their features concur exactly with
the models obtained using the barycentric algebra approach [19, Fig. 3b].

The bulk of the paper comprises two parts. Section 2 gives a direct account of
the algebra required. For readers who may be unfamiliar with universal algebra,
§2.2 discusses concatenations of binary operations. The two key incarnations of
abstract barycentric algebras, namely classic “fuzzy” barycentric algebras and
their crisp Boolean counterparts, are described in §2.3.

Section 3 then focusses on the systems biology. For readers unfamiliar with
molecular biology, §3.1 gives a brief account of the way cells use transcription
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factors to respond to signals and regulate gene expression. Subsequent para-
graphs formulate the crisp and fuzzy models of gene regulation in the language
of barycentric algebras. Once this formulation is established, Eqn. (12) provides
the automatic conversion from Boolean models to fuzzy models. In §3.4, the
conversion process is illustrated by the example of the and gate. The final para-
graph explains how fuzzy logic gates that have been observed experimentally in
cells actually follow the barycentric algebra format.

2 Algebra

2.1 Operations on Real Numbers and Binary Digits

Although the algebra of real numbers is traditionally performed in terms of field
operations such as the addition p+q and product pq of real numbers p and q, the
algebra discussed in this paper requires different operations, which specialize to
more familiar Boolean operations on the subset {0, 1} of the reals. In fact, this
specialization will also work in any field. In particular, it works if the set {0, 1}
of binary digits is interpreted as the two-element (Galois) field GF(2) or field of
integers modulo 2.

For a real number p, define the complementation p′ = 1 − p specializing
to the Boolean ¬p or not p on the set {0.1} of binary digits. Note that the
complementation is involutive: p′′ = p . For real numbers p and q, define the
product

p · q = pq (1)

specializing to the Boolean ∧ or and on {0, 1}. Define the dual product

p ◦ q = p + q − pq (2)

specializing to the Boolean ∨ or or on {0, 1}. Note that the dual product may
be defined in terms of the product and complementation using de Morgan’s law
p ◦ q = (p′q′)′ or (p ◦ q)′ = p′q′. Define the implication

p → q = if (p = 0) then 1 else q/p (3)

specializing to the Boolean implication p → q = (¬p) ∨ q on {0, 1}. Note that
the implication (3) is always defined in any field, while the division q/p is not
defined for p = 0.

2.2 Binary Operations

If x and y are elements of a real vector space, and p is a real number, it is
convenient to define

xy p = x(1 − p) + yp = xp′ + yp , (4)

so that p is understood as a binary operation combining the arguments x and y.
Schematically, the binary operation may be understood as a circuit element or
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“black box” combining the inputs x and y to produce the output xy p. For a second
real number q and vector z, one may concatenate circuit elements to yield

xy p z q = (xp′ + yp)zq = xp′q′ + ypq′ + zq . (5)

Alternatively one may concatenate the circuit elements to yield

x yz p q = x(yp′ + zp)q = xq′ + yp′q + zpq . (6)

Note that the parsing of the left hand sides of (5) and (6) is unique, even without
the insertion of any brackets. This is one of the many advantages of the algebraic
notation (4) for binary operations.

If p is an element of the closed real unit interval I = [0, 1] = {p | 0 ≤ p ≤ 1} ,
then the operation (4) makes sense when the inputs x and y lie in some convex
set C, for example some interval on the real line.

If p is a binary digit 0 or 1, the operation (4) makes sense when the inputs x
and y are elements of some arbitrary set S, with

xy p = if (p = 1) then y else x .

Recalling that the truth value [[P ]] of a proposition P is 0 if P is false, and 1 if
P is true, one obtains

xy [[P ]] = if P then y else x . (7)

Given an arbitrary set S, consider the convex set C of all finite probability
distributions on S, identifying each element x of S with the distribution putting
weight 1 on x. For elements x and y of S, and p in I, the operation (4) produces
the distribution selecting y with probability p and x with probability p′.

2.3 Barycentric Algebras and If-Then-Else Algebras

An abstract barycentric algebra is defined as a set A that is equipped with binary
operations xy p satisfying idempotence xx p = x for x in A, skew-commutativity

xy p = yx p′ (8)

for x, y in A, and skew-associativity xy p z q = x yz
(
p ◦ q → q

)
p ◦ q for x, y, z

in A. There are two classical interpretations:

– Taking the operators p, q from the open real unit interval

I◦ =]0, 1[= {p | 0 < p < 1}
yields a barycentric algebra [14,15,16].

– Taking Boolean operators p, q — elements of a Boolean ring such as GF(2)
or its powers — yields B-sets [2,20], including certain types of if-then-else
algebras [8,20].

Within abstract barycentric algebras, concatenations of the type (6) serve to
implement the “and” product (1) as



Barycentric Algebras and Gene Expression 23

xxy p q = xy p · q , (9)

while concatenations of the type (5) implement the dual “or” product (2) as
xy p y q = xy p ◦ q . Of course, skew-commutativity gives a direct implementation
of the complement.

3 Systems Biology

3.1 Transcription Factors

Cells survive and develop by producing proteins in response to various signals
that they receive. We describe a simplified model that will be adequate for
the purposes of this paper. For fuller details, see [1,7]. A specific protein Y is
produced by the expression of a corresponding part of the cell’s DNA, namely
the gene that encodes for protein Y . The gene is first transcribed to messenger
RNA (mRNA). The mRNA is then translated into the required protein. The
transcription process, synthesis of the mRNA, is facilitated by the enzyme RNA
polymerase (RNAp). The enzyme binds itself to a regulatory region of the DNA,
adjacent to the gene, known as the promoter site.

Signals that are of importance to a cell may be physical, such as a change in
temperature, or chemical, such as the presence of a nutrient like glucose. Received
signals switch proteins known as transcription factors from a dormant to an active
state. Active transcription factors attach themselves to the promoter site, where
they change the binding probability of the RNAp. If a transcription factor is an ac-
tivator, it will increase the binding probability of the RNAp, thereby increasing the
rate of transcription and protein production. Other transcription factors, known
as repressors, have the opposite effect of inhibiting the expression of certain genes.

3.2 Crisp Logic

Fig. 1 displays sample dependencies of the transcription rate for production of
a protein on the relative concentration x/k of an activator X . In the absence of
the activator, the transcription rate assumes a residual base level v0, in this case
0.1. (Often, a value of v0 = 0 is appropriate.) If the activator is present in high
concentrations, the transcription rate assumes a maximal expression level v1, in
this case 1.0.

The step function displays a crisp logical dependence of the transcription
rate on the dimensionless ratio x/k between the actual concentration x of the
activator X , and a critical threshold concentration level k. The transcription
rate may be written as

v0v1

[[
1 >

k

x

]]
(10)

in the Boolean notation of (7). If the transcription factor X were a repressor
rather than an activator, the corresponding transcription rate would appear in
any of the forms

v0v1

[[
1 >

k

x

]]′
= v1v0

[[
1 >

k

x

]]
= v0v1

[[
1 >

x

k

]]
(11)
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Fig. 1. Dependence of transcription rate on activator X

that are equivalent by virtue of the skew-commutativity (8) that implements
complementation. (The last form neglects the improbable equality x = k.)

3.3 Fuzzy Logic

Because of its convenience, crisp logic has been used widely for the construction
of network models in systems biology [4,22]. However, the curved graph of Fig. 1
displays a more realistic description of the dependence of transcription rates
on the relative concentrations of transcription factors. One of the main theses
of this paper is the way that the formalism of abstract barycentric algebras
allows one to convert easily from the crisp functions of §3.2 to more realistic
fuzzy functions. The crisp activator dependence (10) is replaced by the classic
barycentric-algebraic expression

v0v1

[
1 +

(
k

x

)n ]−1

— a so-called hill function in the terminology of [1] — interpreted in the closed
interval [v0, v1], a convex set. Fig. 1 illustrates the case n = 4. For n = 1 (and
v0 = 0), the hill function implements Michaelis-Menten kinetics [1, A.7]. The case
n > 1 corresponds to cooperative reactions. The crisp repressor dependencies (11)
are replaced by either of the equivalent forms

v1v0

[
1 +

(
k

x

)n ]−1

= v0v1

[
1 +

(x

k

)n ]−1

.

From these expressions, it is clear that the passage from crisp to fuzzy logic is
formally achieved by the replacement

[[1 > λ]] −→ [1 + λn]−1
. (12)
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Fig. 2. Fuzzy and gate

Here, the dimensionless quantity λ is taken as k/x for activators and x/k for
repressors. The conversion process is illustrated in the following paragraph.

3.4 Logic Gates

Transcription rates may depend on logical combinations of different transcription
factors. For example, the dependence

v0v1

[[
1 >

k

x

]]
·
[[

1 >
l

y

]]
(13)

requires high concentrations of each of two transcription factors X and Y . The
concentration x of X must exceed the critical threshold k; the concentration y
of Y must exceed the critical threshold l. Using (9), the crisp logical expression
(13) may be rewritten as the concatenation

v0 v0v1

[[
1 >

k

x

]] [[
1 >

l

y

]]

which then translates to

v0 v0v1

[
1 +

(
k

x

)n ]−1 [
1 +

(
l

y

)n ]−1

(14)

under the replacement (12). With the previously used parameter values v0 = 0.1,
v1 = 1, k = 1, n = 4, along with l = 1, this fuzzy and gate is displayed in Fig. 2.

3.5 Some Experimental Observations

The fuzzy and gate presented in (14) has the format v0 v0v1 p q of (9). Here,
the concatenated barycentric algebra operations have arguments (corresponding
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Fig. 3. Modified fuzzy and gate

to transcription rates) that are repeated exactly. Exact repeats of this kind are
improbable in biology. At first glance, it might appear that this would argue
against the barycentric algebra approach. However, it turns out that real fuzzy
and gates as observed experimentally [19, Fig. 3b] actually have the format
v0 v01v1 p q of (6) with distinct transcription rates v0 < v01 < v1, as illustrated in
Fig. 3 using an intermediate expression level v01 = 0.55. It thus emerges that the
barycentric algebra formulation gives a natural framework for the dependence
of expression levels on transcription factor concentrations.
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