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Abstract

There are very strong parallels between the properties of Mal’tsev and Jónsson-Tarski

algebras, for example in the good behaviour of centrality and in the factorisation of direct

products. Moreover, the two classes between them include the majority of algebras that

actually arise “in nature”. As a contribution to the research programme building a unified

theory capable of covering the two classes, along with other instances of good centrality and

factorisation, the paper presents a common framework for the characterisation of Mal’tsev

and Jónsson-Tarski algebras. Mal’tsev algebras are characterised by simplicial identities

in the product complex of an algebra. In the dual of a pointed variety, a simplicial object

known as the pointed complex is then constructed. The basic simplicial Mal’tsev identity in

the pointed complex characterises Jónsson-Tarski algebras. Higher-dimensional simplicial

Mal’tsev identities in the pointed complex are characteristic of a class of algebras lying

properly between Goldie and Jónsson-Tarski algebras.

1. Introduction.

A variety of universal algebras is a Mal’tsev variety if there is a derived ternary operation

P (a so-called Mal’tsev operation or Mal’tsev parallelogram) such that the identities

(1.1) P (y, y, x) = x = P (x, y, y)
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hold [Ml] [Mv] [S1]1. Members of a Mal’tsev variety are called Mal’tsev algebras. A variety

of universal algebras is a Jónsson-Tarski variety if there is a derived binary operation +

and a nullary operation (constant) selecting a subalgebra {0} such that the identities

(1.2) 0 + x = x = x + 0

hold [JT]. Members of a Jónsson-Tarski variety are called Jónsson-Tarski algebras. A

Mal’tsev variety having a nullary operation selecting a subalgebra {0} is called a Goldie

variety, and its members are called Goldie algebras [Go]. Goldie algebras become Jónsson-

Tarski algebras on defining

(1.3) x + y = P (x, 0, y).

Thus the class of Goldie algebras represents the intersection of the classes of Mal’tsev and

Jónsson-Tarski algebras. Goldie algebras include loops, and in particular groups, as well

as many kinds of algebra having group reducts (groups with operators in Emmy Noether’s

sense), such as rings, Lie algebras, Jordan algebras, etc. Equationally defined quasigroups

and Heyting algebras provide examples of Mal’tsev algebras that are not Goldie algebras.

Monoids provide examples of Jónsson-Tarski algebras that are not Goldie algebras.

Jónsson-Tarski algebras and Mal’tsev algebras share many desirable properties, in par-

ticular the good behaviour of centrality and direct products. For example, under mild

finiteness assumptions (which include non-emptiness in the case of Mal’tsev algebras), one

may cancel the factor A from an isomorphism

A×B ∼= A× C

to obtain a central isotopy ([S1], p. 70)

B ' C

1The various spellings of Mal’tsev’s name are the result of changing conventions for transliteration from
the Cyrillic to the Latin alphabet.
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(compare Theorem 3.11(ii) of [JT] and Theorem 424 of [S1], recalling that central iso-

topy reduces to isomorphism for Jónsson-Tarski algebras). Given the very close parallels

between the behaviour of Jónsson-Tarski and Mal’tsev algebras, it is natural to seek a

common framework for characterising the two classes. The purpose of this paper is to

propose such a framework, as a contribution to the development of a unified treatment of

Jónsson-Tarski and Mal’tsev algebras, along with other classes of algebras that share their

good behaviour.

Following the publication of [S1] and the extension of its methods from Mal’tsev algebras

to more general algebras having modular congruence lattices (by Hagemann, Herrmann

[HH], and many others later), the question of developing a unified theory for Mal’tsev

and Jónsson-Tarski algebras was raised by the author in an invited paper presented at the

Special Session on Lattice Theory and General Algebra during the American Mathematical

Society meeting in Boulder, Colorado in March, 1980 [S2] (cf. p.68 of [S1]). Except for two

results at the end of Gumm’s Habilitationsschrift ([Gu], Th. 11.11 and Cor. 12.3), however,

there was little response to this challenge. In retrospect, the reason has become clear.

Researchers of that period were focussed almost exclusively on the lattice of congruences

as the primary object of interest. On the other hand, although it is natural to work

with congruences in Mal’tsev algebras, the theory of Jónsson-Tarski algebras expounded

in [JT] works with subalgebras instead. There is thus an evident duality between the

two theories: subobjects in Jónsson-Tarski algebras, quotients in Mal’tsev algebras. The

formulation proposed here recognises this duality. The fundamental object associated with

a Mal’tsev algebra A is its product complex (Section 2 below, cf. (0.13.2.2) of [Du] or p.

117 of [S1]), the 0-coskeleton of the truncated complex consisting of the unique arrow from

A to the terminal object. The defining identities (1.1) for Mal’tsev algebras are formulated

in terms of this complex. In fact, the formulation yields single identities, the simplicial

Mal’tsev identities of Definition 2.3. The main task undertaken in this paper is to exhibit

the corresponding simplicial object associated with each Jónsson-Tarski algebra, the so-

called pointed complex of Section 3. This is not itself a simplicial object in a category of
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Jónsson-Tarski algebras and homomorphisms (there are too many degeneracies and too

few face operators), but it does become a simplicial object when one passes to the opposite

category (Theorem 3.1). Once the pointed complex is established, one may translate

back and forth between the theories of Mal’tsev and Jónsson-Tarski by transposing the

product and pointed complexes. Thus Theorem 4.1 shows that Jónsson-Tarski varieties

are characterised by satisfaction of the basic simplicial Mal’tsev identity in each pointed

complex. Theorems 4.3 and 4.4 show that satisfaction of the higher-dimensional Mal’tsev

identities in each pointed complex of a pointed variety is characteristic of a class of varieties

that lie properly between Jónsson-Tarski and Goldie varieties.

In general, this paper will follow the algebraic and categorical conventions of [SR]. In

particular, mappings will normally be placed to the right of their arguments, so that in

passing from text to mathematics one may continue to read from left to right, avoiding a

profusion of parentheses. On the other hand, mappings that are images of morphisms un-

der contravariant functors (such as the identity functor from a category of Jónsson-Tarski

algebras to its opposite) will usually be placed to the left of their arguments, and com-

position of such mappings will be denoted by ◦ rather than by simple juxtaposition. The

description of the product complex in Section 2 is designed to act as a quick introduction to

the calculus of simplicial objects for readers who might not be familiar with its intricacies.

2. Product complexes and Mal’tsev algebras.

Let A be a set. For each positive integer n and natural number i less than n, define the

face map εi or

(2.1) εi
n : An → An−1; (x0, . . . , xn−1) 7→ (x0, . . . , xi−1, xi+1, . . . , xn−1)

(mnemonic: εi
n for “excise xi from the n-tuple”.) Define the degeneracy δi or

(2.2) δi
n : An → An+1; (x0, . . . , xn−1) 7→ (x0, . . . , xi−1, xi, xi, xi+1, . . . , xn−1)

(mnemonic: δi
n for “duplicate xi within the n-tuple”.) The set of direct powers of A,

together with the face maps and degeneracies, forms the product complex (cf. (0.13.2.2)
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of [Du] or p. 117 of [S1]). The face maps and degeneracies satisfy the following simplicial

identities: the face identities

(2.3) εi
nεj−1

n−1 = εj
nεi

n−1

for 0 ≤ i < j < n (i.e. consecutively excise xi and xj in either order), the degeneracy

identities

(2.4) δi
nδj+1

n+1 = δj
nδi

n+1

for 0 ≤ i ≤ j ≤ n (i.e. consecutively duplicate xi and xj in either order), and the mixed

identities

(2.5) δi
nεj

n+1 = if j < i then εj
nδi−1

n−1 else if j > i + 1 then εj−1
n δi

n+1 else 1

for 0 ≤ i, j ≤ n (cf. (0.1.2) of [Du] and VII(11)–(13) of [Ma]). Note the duality between

the face identities (2.3) and the degeneracy identities (2.4), as well as the self-duality of

the mixed identities (2.5) except in the final cases j ∈ {i, i + 1}.
In terms of the product complex, the Mal’tsev parallelogram identities (1.1) reduce to

a single equation.

Proposition 2.1. A set A is a Mal’tsev algebra if and only if it is endowed with a ternary

operation P such that

(2.6) P (ε0
3, ε

2
3ε

0
2δ

0
1 , ε2

3) = ε1
3.

Proof. Applied to the general element (a0, a1, a2) of A3, the equality (2.6) of the proposition

becomes

(P (a1, a1, a0), P (a2, a1, a1)) = P ((a1, a2), (a1, a1), (a0, a1))

= P ((a0, a1, a2)ε0
3, (a0, a1, a2)ε2

3ε
0
2δ

0
1 , (a0, a1, a2)ε2

3)

= (a0, a1, a2)P (ε0
3, ε

2
3ε

0
2δ

0
1 , ε2

3)

= (a0, a1, a2)ε1
3

= (a0, a2),
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the two components of which are equivalent to (1.1). ¤

In fact, the identity of Proposition 2.1 works in all dimensions for which it is defined.

Corollary 2.2. A set A is a Mal’tsev algebra if and only if it is endowed with a ternary

operation P such that

(2.7) P (ε0, ε2ε0δ0, ε2) = ε1

at any object of the product complex for which the equation is defined.

Proof. Applied to the general element (a0, . . . , an−1) of An for n ≥ 3, the left hand side of

the equality (2.7) of the corollary becomes

(a0, a1,a2, a3, . . . , an−1)P (ε0, ε2ε0δ0, ε2)

= P ((a1, a2, a3, . . . , an−1), (a1, a1, a3, . . . , an−1), (a0, a1, a3, . . . , an−1))

= (P (a1, a1, a0), P (a2, a1, a1), P (a3, a3, a3), . . . , P (an−1, an−1, an−1)),

while the right hand side becomes

(a0, a2, a3, . . . , an−1).

These two expressions certainly agree in a Mal’tsev algebra. On the other hand, suppose

that they agree. Then the equality between their first two components yields (1.1). ¤

Definition 2.3. The equation (2.6) of Theorem 2.1 is called the (2-dimensional) simplicial

Mal’tsev identity. The equation

(2.8) P (ε0
n, ε2

nε0
n−1δ

0
n−2, ε

2
n) = ε1

n

of Corollary 2.2, for n > 3, is called the simplicial Mal’tsev identity of dimension n − 1.

Collectively, the identities (2.8) for any n > 3 are called the higher-dimensional simplicial

Mal’tsev identities.
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3. Pointed complexes.

Let C be a category. Recall that a simplicial object in C consists of an object An of C
for each positive integer n (in which case the dimension of An is defined to be the natural

number n− 1), face morphisms εi or εi
n : An−1 → An−2 for 0 ≤ i < n > 1, and degeneracy

morphisms δi or δi
n : An−1 → An for 0 ≤ i < n ≥ 1, such that the simplicial identities

are satisfied (cf. (0.1) of [Du], §VII.4 of [Ma], p. 114 of [S1]). For example, the product

complexes of Section 2 are simplicial objects in the category of sets, and in each variety

of algebras (construed as a category with homomorphisms as morphisms). In the product

complex determined by a set or algebra A, the object at dimension n, for each natural

number n, is the direct power An+1.

A variety V of algebras is said to be pointed if there is a nullary operation (constant)

selecting a subalgebra {0}. Thus {0} becomes a zero object when V is construed as a

category. For each algebra A in a pointed variety V, a simplicial object in the opposite

category Vop will be constructed, having the direct power An as the object at dimension n.

Note that the object at dimension zero is the zero object {0}. The complex, the so-called

pointed complex, will play the same role amongst Jónsson-Tarski algebras that the product

complex plays amongst Mal’tsev algebras.

For an integer n > 1 and 0 ≤ i < n, the degeneracy morphism δi
n : An−1 → An in Vop

is defined to be the projection homomorphism

(3.1) δi : An → An−1; (a0, . . . , an−1) 7→ (a0, . . . , ai−1, ai+1, . . . , an−1).

Note that these homomorphisms appear as face maps (2.1) in the product complex of

A. The degeneracy morphism δ0
1 : A0 → A1 is determined uniquely (as the constant

homomorphism from A to {0}) by the fact that A0 is the zero object of Vop. In similar

fashion, the face morphisms εi
2 : A1 → A0, for 0 ≤ i < 2, are determined uniquely as the

homomorphisms εi
2 : A0 → A1 inserting {0} into A. For an integer n > 2 and 0 < i < n−1,

the face morphism εi
n : An−1 → An−2 in Vop is defined to be the diagonal homomorphism

(3.2) εi : An−2 → An−1; (a0, . . . , an−3) 7→ (a0, . . . , ai−1, ai−1, . . . , an−3).
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Note that these homomorphisms appear as degeneracies (2.2) in the product complex of

A. The face morphism ε0
n : An−1 → An−2 in Vop is defined to be the homomorphism

(3.3) ε0 : An−2 → An−1; (a0, . . . , an−3) 7→ (0, a0, . . . , an−3).

Finally, the face morphism εn−1
n : An−1 → An−2 in Vop is defined to be the homomorphism

(3.4) εn−1 : An−2 → An−1; (a0, . . . , an−3) 7→ (a0, . . . , an−3, 0).

Theorem 3.1. If V is a pointed variety, then the pointed complex is a simplicial object

in Vop.

Proof. The simplicial identities in the pointed complex must be verified. By the dual-

ity between the face identities (2.3) and the degeneracy identities (2.4), the degeneracy

identities

(3.5) δi
n ◦ δj+1

n+1 = δj
n ◦ δi

n+1

for the pointed complex of A reduce to the face identities (2.3) for the product complex of

A. Similarly, most of the face identities

(3.6) εi
n ◦ εj−1

n−1 = εj
n ◦ εi

n−1

for the pointed complex of A (those not involving factors of the form ε0
m or εm−1

m ) reduce

to the degeneracy identities (2.4) for the product complex of A. If j = 1 in (3.6), then

necessarily i = 0, and using (3.2), (3.3) one verifies

ε0
n ◦ ε0

n−1(a0, . . . , an−3) = ε0
n(0, a0, . . . , an−3) = (0, 0, a0, . . . , an−3)

= ε1
n(0, a0, . . . , an−3) = ε1

n ◦ ε0
n−1(a0, . . . , an−3)

as required for satisfaction of (3.6) in this case. The verifications of the other exceptional

cases of (3.6) are similar.

It remains to check the mixed identities

(3.7) δi
n ◦ εj

n+1 = if j < i then εj
n ◦ δi−1

n−1 else if j > i + 1 then εj−1
n ◦ δi

n+1 else 1
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in the pointed complex. As for the face identities, most of the cases reduce to the cor-

responding identities (2.5) for the product complex. If j = n and i < n − 1, one verifies

using (3.1) and (3.4) that

δi
n ◦ εn

n+1(a0, . . . , an−2) = δi
n(a0, . . . , an−2, 0) = (a0, . . . , ai−1, ai+1, . . . , an−2, 0)

= εn−1
n (a0, . . . , ai−1, ai+1, . . . , an−2) = εn−1

n ◦ δi
n+1(a0, . . . , an−2).

For i = n− 1, one obtains

δn−1
n ◦ εn

n+1(a0, . . . , an−2) = δn−1
n (a0, . . . , an−2, 0) = (a0, . . . , an−2),

as required for satisfaction of (3.7) in this case. Treatment of the other exceptional cases

of (3.7) is similar. ¤

4. Mal’tsev identities for pointed algebras.

Following the establishment in Theorem 3.1 of the pointed complex belonging to each

algebra in a pointed variety, one may now study the satisfaction of the simplicial Mal’tsev

identities in these complexes. The first result shows that the original 2-dimensional sim-

plicial Mal’tsev identity (2.6) in pointed varieties serves to characterise Jónsson-Tarski

varieties.

Theorem 4.1. A pointed variety V is a Jónsson-Tarski variety if and only if there is a

ternary derived operation P such that the simplicial Mal’tsev identity (2.6) holds in the

pointed complex of each member A of V.

Proof. Applied to an element x of A, the simplicial Mal’tsev identity

P (ε0
3, ε

2
3 ◦ ε0

2 ◦ δ0
1 , ε2

3) = ε1
3

becomes

(P (0, 0, x), P (x, 0, 0)) = P ((0, x), (0, 0), (x, 0))

= P (ε0
3(x), ε2

3 ◦ ε0
2 ◦ δ0

1(x), ε2
3(x))

= P (ε0
3, ε

2
3 ◦ ε0

2 ◦ δ0
1 , ε2

3)(x)

= ε1
3(x) = (x, x),
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whose two components are

(4.1) P (0, 0, x) = x and P (x, 0, 0) = x.

If V is a Jónsson-Tarski variety, then (4.1) holds with

P (x, y, z) = x + (y + z).

Conversely, suppose that (4.1) holds. By analogy with (1.3), define

x + y = P (x, 0, y).

Then (4.1) reduces to the Jónsson-Tarski identities (1.2). ¤

In contrast with the direct characterisation of Jónsson-Tarski algebras given by Theorem

4.1, the issue of satisfaction of the higher-dimensional simplicial Mal’tsev identities in the

pointed complex of a member of a pointed variety is more involved. On the one hand,

these identities are sufficient, but not necessary, for the variety to be a Jónsson-Tarski

variety. On the other hand they are necessary, but not sufficient, for the variety to be a

Goldie variety.

Lemma 4.2. A derived ternary operation P of a pointed variety V satisfies each higher-

dimensional simplicial Mal’tsev identity (2.8) in the pointed complex of each algebra A of

V if and only if the identities

(4.2) P (0, 0, x) = x

and

(4.3) P (x, y, y) = x

are satisfied in V.

Proof. Applied to an element (a0, . . . , an−3) of An−2, the higher-dimensional simplicial

Mal’tsev identity

P (ε0
n, ε2

n ◦ ε0
n−1 ◦ δ0

n−2, ε
2
n) = ε1

n
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becomes

(P (0, 0, a0), P (a0, a1, a1), P (a1, a1, a1), . . . , P (an−3, an−3, an−3))

= P ((0, a0, a1, . . . , an−3), (0, a1, a1, . . . , an−3), (a0, a1, a1, . . . , an−3))

= P (ε0
n(a0, . . . , an−3), ε2

n ◦ ε0
n−1 ◦ δ0

n−2(a0, . . . , an−3), ε2
n(a0, . . . , an−3))

= P (ε0
n, ε2

n ◦ ε0
n−1 ◦ δ0

n−2, ε
2
n)(a0, . . . , an−3)

= ε1
n(a0, . . . , an−3) = (a0, a0, a1, . . . , an−3),

whose components are

(4.4) P (0, 0, a0) = a0, P (a0, a1, a1) = a0, P (ai, ai, ai) = ai for 1 ≤ i ≤ n− 3.

Note that the first two identities of (4.4) are (4.2) and (4.3). Conversely, if (4.2) and

(4.3) are satisfied, then (4.3) yields the idempotence of P which completes the list (4.4) of

identities in V. ¤

Theorem 4.3. In a pointed variety V, the existence of a ternary derived operation P

such that the higher-dimensional simplicial Mal’tsev identities (2.8) are satisfied in the

pointed complex of each member A of V is sufficient, but not necessary, for V to be a

Jónsson-Tarski variety.

Proof. If (4.2) and (4.3) hold, then (4.1) follows, so that V is a Jónsson-Tarski algebra.

Conversely, consider the variety V of commutative monoids, certainly a Jónsson-Tarski

variety. Each derived ternary operation P of V, as an element of the free V-algebra on

the three-element generating set {x, y, z}, has the normal form

ax + by + cz,

with natural numbers a, b, c, inside the free abelian group on {x, y, z}. Then (4.2) would

force c = 1, contradicting the equation b = c = 0 given by (4.3). ¤
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Theorem 4.4. In a pointed variety V, the existence of a ternary derived operation P such

that the higher-dimensional simplicial Mal’tsev identities (2.8) are satisfied in the pointed

complex of each member A of V is necessary, but not sufficient, for V to be a Goldie

variety.

Proof. If V is a Goldie variety with Mal’tsev operation P , then the identity (4.3) is just

the right hand side of (1.1), while in a pointed variety (4.2) is a consequence of the left

hand side of (1.1).

Conversely, consider the set N of natural numbers, equipped with a nullary operation

selecting 0, the binary operation + of ordinary addition, and a binary operation

xr y = if x < y then y else x− y

called pseudosubtraction. Consider the derived ternary operation

P (x, y, z) = (x + y)r z.

Then P satisfies (4.2) and (4.3), so the higher-dimensional simplicial Mal’tsev identities

(2.8) are satisfied in the pointed complex of each member A of the variety V generated by

the algebra (N, 0, +,r).

It will now be shown that V is not a Goldie variety. Consider the identical embedding of

the (monoid reduct of the) fourth power N4 of the algebra (N, 0, +,r) into the abelian group

Z4. Let V be the kernel congruence of the operation of integer subtraction, considered as

a subgroup of Z4. Then the intersection W of V with N4 is a subalgebra of (N, 0,+,r)4,

since the values of the basic operations of V are obtained either by group operations or by

projections performed on their vector of arguments. Moreover, W is a reflexive subalgebra

of (N2)2, since V is a congruence on Z2. If V were a Goldie variety, then W would be a

congruence on N2 ([S1], 143), having the diagonal N̂ as a congruence class. The algebra N

would then be central ([S1], p.43), and so there would be an isomorphism

(4.5) N→ N2/N̂ ; n 7→ (0, n)W

([S1], 414). But (4.5) does not surject, since (1, 0)W does not lie in its image. ¤
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5. Concluding remarks.

The Mal’tsev identities (1.1) are equivalent to simplicial identities in the product com-

plex (Proposition 2.1, Corollary 2.2). For a pointed variety, the Jónsson-Tarski identities

(1.2) are equivalent to the 2-dimensional simplicial Mal’tsev identity in each pointed com-

plex (Theorem 4.1). The higher-dimensional Mal’tsev identities in each pointed complex

characterise a class of pointed varieties lying properly between the classes of Jónsson-Tarski

and Goldie varieties (Theorems 4.3, 4.4).

Given the common framework for Mal’tsev and Jónsson-Tarski algebras, one may be-

gin the programme of unifying the two theories. For example, the extension theory for

Mal’tsev varieties ([S1], Ch. 6) should translate readily to Jónsson-Tarski varieties. It may

also prove fruitful to take other Mal’tsev conditions (such as those for modularity of the

congruence lattice as summarised nicely in [Ts], or those for higher-order permutability

of congruences [GP] [HM]), translate them to simplicial form, and then interpret them in

pointed complexes of pointed varieties.
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