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Abstract. In this paper, triality refers to the S3-symmetry of the
language of quasigroups, which is related to, but distinct from, the
notion of triality as the S3-symmetry of the Dynkin diagram D4.
The paper investigates a homogeneous method for rendering the
linearization of quasigroups (over a commutative ring) naturally
invariant under the action of the triality group, on the basis of an
appropriate algebra generated by three invertible, non-commuting
coefficient variables that is isomorphic to the group algebra of the
free group on two generators. The algebra has a natural quotient
given by setting the square of each generating variable to be −1.
The quotient is an algebra of quaternions over the underlying ring,
in a way reminiscent of how symmetric groups appear as quotients
of braid groups on declaring the generators to be involutions. The
corresponding quasigroups (which are described as quaternionic)
are characterized by three equivalent pairs of quasigroup identities,
permuted by the triality symmetry. The three pairs of identities are
logically independent of each other. Totally symmetric quasigroups
(such as Steiner triple systems) are quaternionic.

1. Introduction

1.1. Background and motivation. An algebra (A,F ) in the sense
of general or universal algebra is usually taken as a set A equipped
with a set F of (basic) operations

(1.1) f : A× . . .× A→ A

mapping to A from a finite Cartesian power of A. The power taken
is described as the arity of the operation. The algebra is said to be
(S-)linear if A is a module over a commutative, unital ring S (and by
default, an abelian group, so with S = Z), while each basic operation
(1.1) (of arity r) takes the linearized form

(1.2) f : A⊕ . . .⊕ A→ A; (x1, . . . , xr) 7→ x1X
f
1 + . . .+ xrX

f
r
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with endomorphisms Xf
1 , . . . , X

f
r of the S-module A that are described

as coefficients. In slightly more sophisticated terms, a linear algebra
in this sense is a general algebra in the Cartesian symmetric monoidal
category

(
S,⊕, {0}

)
of S-modules, with the direct sum as monoidal

product and the trivial module as the identity object of the monoidal
structure (compare [7, §3.5]). It is important to bear in mind that
linearity puts special emphasis on the zero element 0 of the module A,
making { 0 } a subalgebra.

Identities that hold in general algebras imply relations among the
coefficients of the linearized forms (1.2) of operations that appear in
the identities. For example, an entropic law expressing the fact that
basic binary operations f and g are mutually homomorphic reduces to
the commutativity of the elements of {Xf

1 , X
f
2 } with the elements of

{Xg
1 , X

g
2 }.

A quasigroup is normally interpreted as a universal algebra (Q, ·, /, \)
with three basic binary operations that satisfy the identities (2.1).
Since there are no constants — no basic nullary operations — the
empty set supports a quasigroup structure (Ø, ·, /, \). It transpires
that the language of quasigroups is invariant under the natural triality
action of the symmetric group S3 permuting the 3-element set { ·, /, \ }
of basic operations (§2.2). Along with these three basic operations, it
is also useful to consider their respective opposite derived operations:
x◦ y = y ·x, x//y = y/x, and x\\y = y\x. For the study of triality and
the related question of semisymmetrization (compare [20, 23, 25]), the
most natural choices of sets of basic quasigroup operations are actually
the orbits { ·, //, \\ } or { ◦, /, \ } of the 3-element cyclic subgroup C3

of the triality group S3. Choice of the latter orbit as the basic set will
predominate in the main part of this paper.

The paper is devoted to the study of linear quasigroups, and their
triality. Since the zero element of a linear quasigroup constitutes a
singleton subquasigroup, it will be an idempotent element, satisfying
e = e · e = e/e = e\e. Murdoch’s “Second Structure Theorem” [14,
Th. 9] states that each entropic quasigroup containing an idempotent
element is linear. (Murdoch used the term “abelian” for “entropic”.)
In this context, it should be emphasized that the idempotent element
is not generally defined by the quasigroup structure. Indeed, Murdoch
provides an example to exhibit nonempty subquasigroups devoid of
idempotent elements within a linear quasigroup [14, pp. 403–4]. As a
result, it seems inappropriate to describe quasigroup representations of
this nature as “structure theorems”. Rather, they should be considered
as coordinatizations of the quasigroup about a chosen idempotent.
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In order to gain structural access to an idempotent element, we use
the concept of a pique,1 a general algebra (P, ·, /, \, e) in which (P, ·, /, \)
is a quasigroup and e is (an idempotent element selected by) a nullary
operation e : P 0 → P [21, §1.5]. Thus, we construe a linear quasigroup
(A, ·, /, \) as a linear pique (A, ·, /, \, 0). Linear piques are equivalent
to modules for the integral group algebra Z⟨R,L⟩ of the free group
⟨R,L⟩ over a two-element set {R,L }, with the quasigroup operations
x · y = xR+ yL and x/y = xR−1 − yLR−1 (§3.1). In particular, linear
representations of two-generated groups (including all the finite simple
groups [1, Th. B]) are captured by linear pique structures.

The underlying undirected graph of the Cayley graph of the free
group ⟨R,L⟩ with respect to its generators R and L (compare [24,
Fig. I.1.1], for example) is a homogeneous tree of valency 4. As such,
its vertex set, the free group, is a metric space under the usual graph
distance. However, while the distance between the coefficients R and
L of x ·y is 2, the distance between the (unsigned) coefficients R−1 and
LR−1 of x/y is 3 (3.5). The discrepancy means that the representation
of linear piques furnished by the free group algebra Z⟨R,L⟩ does not
behave well under the triality action. It is this issue which provides
the primary motivation for the current paper:

How can linear piques be represented geometrically and
algebraically in a way which is fully compatible with the
triality symmetry of the language of quasigroups?

Preliminary observations in this direction (summarized in §§3.2–3.3)
appeared in [25], inspired by consideration of the reversible automata
of Gvaramiya and Plotkin [4, 5].

1.2. Plan of the paper. Chapter 2 establishes the background for
quasigroups and their triality. Chapter 3 introduces the homogeneous
algebra HS over a commutative, unital ring S that presents the free
group algebra S⟨R,L⟩ in a form which is naturally invariant under
quasigroup triality, thereby answering the motivating question raised
above. Here, (3.6) expresses the basic quasigroup operations ◦, /, \ in
terms of the set {T1, T2, T3 } of generating invertible indeterminates of
HS. As displayed in Figure 2, this expression is equivariant under the
respective triality of the quasigroup operations and the permutation of
the algebra generators and their inverses.

Given the failure of the homogeneous tree of valency four to reflect
triality, it is natural to look for implementations of triality within the

1The name is taken from an acronym for a Pointed Idempotent QUasigroupE,

using the French spelling of “quasigroup”.
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symmetries of other geometrical structures. As an example, Section 3.5
examines the Euclidean cube from this point of view. Thus, (3.19)
exhibits the triality group S3 as a subgroup of the group S4 of rotational
symmetries of the cube in three-dimensional Euclidean space.

Over a commutative ring S, the homogeneous algebra is presented
in the compact form

HS = S ⟨Ti | 1 + TiTi−1Ti−2⟩i∈Z/3
(Remark 3.9). Chapter 4 is devoted to the quotient

HS = S ⟨Ti | 1 + TiTi−1Ti−2, 1 + T 2
i ⟩i∈Z/3

of HS obtained by imposing the additional power relations T 2
i = −1

for 1 ≤ i ≤ 3. (The relationship between HS and HS is somewhat
analogous to the relationship between a braid group and a symmetric
group, where the latter is obtained by declaring the usual braid group
generators to be involutions.) In Definition 4.1, the algebra HS is
described as a quaternion algebra over the ring S, based on the nature
of the generating matrices that appear. The connection between this
matrix definition and the presentation is made in Theorem 4.7.

Definition 4.13 identifies a linear pique as being quaternionic if its
HS-module structure descends to aHS-module structure. Theorem 4.15
characterizes quaternionic piques by three identities that are written
entirely in the language of quasigroups, without appeal to the pointed
idempotent. These three quasigroup identities are paired with their
equivalent opposite identities. The full set of six identities is permuted
by triality, as displayed in Figure 3. The final result, Theorem 4.20,
shows that the three equivalent pairs of identities are independent of
each other, even within the class of linear piques.

1.3. Notational conventions. The notation and conventions of [24]
are generally followed in the paper. In particular, diagrammatic or
algebraic notation is used by default: functions follow their arguments,
either on the line (as in n! for the factorial function) or in a superfix
(as in x2 for the squaring function).

2. Quasigroups and triality

2.1. Quasigroups. A combinatorial quasigroup (Q, ·) is a set equipped
with a binary operation · for which knowledge of any two of x, y, z from
Q in the equation x · y = z specifies the third uniquely. An equational
quasigroup (Q, ·, /, \) is a set that is equipped with three basic binary
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operations of multiplication ·, right division /, and left division \ such
that for all x, y ∈ Q, the following identities are satisfied:

(2.1)
(SL) x · (x\y) = y ; (SR) y = (y/x) · x ;
(IL) x\(x · y) = y ; (IR) y = (y · x)/x .

The product x · y is often simply written as a juxtaposition xy. In a
combinatorial quasigroup (Q, ∗), consider the left multiplication

(2.2) L∗(x) : Q→ Q; y 7→ x ∗ y
and right multiplication

(2.3) R∗(x) : Q→ Q; y 7→ y ∗ x
for x ∈ Q. If (Q, ∗) = (Q, ·), two special conventions apply: A default
convention L∗(x) = L(x), R∗(x) = R(x), and an enlargement of the
dot to L∗(x) = L•(x), R∗(x) = R•(x) for enhanced readability. These
conventions are used in the following paragraph.

The identities (IL) and (IR) give the respective injectivity of L•(x)
and R•(x), while the identities (SL), (SR) give their surjectivity. Thus
an equational quasigroup (Q, ·, /, \) yields a combinatorial quasigroup
(Q, ·). Conversely, a combinatorial quasigroup (Q, ·) will support an
equational quasigroup (Q, ·, /, \) with right division x/y = xR(y)−1 and
left division x\y = yL(x)−1. Equational quasigroups may be viewed
as Skolemizations of combinatorial quasigroups (compare [18]). For
example, the existence of the unique solution z of the equation z ·y = x
in a combinatorial quasigroup is expressed functionally as z = x/y in
the corresponding equational quasigroup.

In an equational quasigroup (Q, ·, /, \), the three equations

(2.4) x1 · x2 = x3 , x3/x2 = x1 , x1\x3 = x2

that involve the basic operations are equivalent. Now consider the
opposite operations

x ◦ y = y · x , x//y = y/x , x\\y = y\x
on Q. Then the equations (2.4) are further equivalent to the equations

x2 ◦ x1 = x3 , x2//x3 = x1 , x3\\x1 = x2 .

Thus each of the basic and opposite operations

(2.5) (Q, ·), (Q, /), (Q, \), (Q, ◦), (Q, //), (Q, \\)
furnishes a (combinatorial) quasigroup. In particular, note that the
identities (IR) in (Q, \) and (IL) in (Q,/) yield the respective identities

(2.6)
(DL) x/(y\x) = y ,
(DR) y = (x/y)\x
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in the basic quasigroup divisions. The six quasigroups (2.5) are known
as the conjugates, “parastrophes” [16] or “derived quasigroups” [9] of
(Q, ·).

2.2. Triality. The six binary operations are displayed in Figure 1.
In each box, one of the six binary operations is used to express an
equivalent version of the multiplication relation x1 ·x2 = x3 for elements
x1, x2, x3 of a quasigroup Q.

x1 · x2 = x3 ⇐⇒ x1\x3 = x2 ←→ x2//x3 = x1

↕ ⇕

x2 ◦ x1 = x3 ⇐⇒ x3\\x1 = x2 ←→ x3/x2 = x1

Figure 1. Symmetry of the quasigroup operations.

Disregarding the content of the boxes, Figure 1 may be interpreted
as the Cayley graph of the symmetric group S3 of permutations of
the index set { 1, 2, 3 } with respect to the transpositions (1 2) and
(2 3). This is the construction Γ

(
S3, { (1 2), (2 3) }

)
of [17, pp. 16–17].

In Figure 1, the respective involutive actions of these transpositions

appear as single-shafted double-headed arrows
(1 2)

←→ and double-shafted

double-headed arrows
(2 3)

⇐⇒.
The left-right duality that is represented by the left hand vertical

in Figure 1 is the symmetry S2 of the language of groups. The entire
figure represents the triality or S3-action which is the richer symmetry
of the language of quasigroups. A deeper discussion of triality may be
found in [21, §1.8], [22]. Note that this version of triality or S3-action is
related to, but distinct from, the triality or S3-action that arises from
the geometric symmetry of the Dynkin diagram D4, as it appears in
Moufang loops or algebras (compare [6, 10], say).
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3. The homogeneous algebra

3.1. Representing linear piques. Recall that a pique is a quasigroup
with a pointed idempotent element. An algebra Q is called central if

the diagonal Q̂ = {(x, x) | x ∈ Q} is a normal subalgebra (and thus
a congruence class) in the direct square Q × Q. The following result
shows that central piques have an equivalent linear structure, with 0
as the pointed idempotent. For this reason, central piques are often
described synonymously as linear piques.

Proposition 3.1. [19, §3.2],[21, Prop. 11.1] Let ⟨R,L⟩ be the free group
on the two-element set {R,L}. Then central piques are equivalent to
right modules over the group algebra Z⟨R,L⟩, with

x ◦ y = xL+ yR ,(3.1)

x/y = xR−1 − yLR−1 ,(3.2)

x\y = −xRL−1 + yL−1 ,(3.3)

e = 0(3.4)

as the respective opposite multiplication, right division, left division,
and pointed idempotent.

Corollary 3.2. In Proposition 3.1, R = L◦(0) and L = R◦(0).

Corollary 3.3. The free linear (or central) pique over a base set B
has a faithful representation as the subpique of

(
Z⟨R,L⟩B, ·, /, \, 0

)
generated by the subset B of the free right Z⟨R,L⟩-module Z⟨R,L⟩B.

Although the models of free central piques given by Corollary 3.3 are
faithful, they do have a serious disadvantage when it comes to studying
triality symmetry: the polynomials in R±1, L±1 giving the divisions are
not homogeneous. For an alternative outlook on the situation, consider
the fragment

(3.5) LR−1 R
L

L

R−1 R
1

R

L

R
R //

L

OO

L−1 RL−1

L

of the homogeneous tree of valency 4 (as in [24, §I.1.4], for example)
recording the right regular permutation representation of the free group



8 J.D.H. SMITH

⟨R,L⟩ . Here, the graph distance separating the unsigned coefficients
L,R of the multiplication (3.1) is 2. On the other hand, the graph
distance that separates the respective unsigned coefficients R−1, LR−1

of the right division (3.2) or RL−1, L−1 of the left division (3.3) are
3. Thus, in the representation of Proposition 3.1, the action of triality
does not correspond to an isometry of the homogeneous tree whose
fragment is displayed in (3.5).

3.2. The homogeneous representation. Consider a linear pique P .
Taking the operations as

x ◦ y = xT−1
1 + yT2 ,

x/y = xT−1
2 + yT3 ,

x\y = xT−1
3 + yT1

(3.6)

for x, y ∈ P , with

(3.7) T3T2T1 = T2T1T3 = T1T3T2 = −1 ,

gives a homogeneous representation of linear pique words. Here, the
invertible elements Ti are described as the coefficient (variables). The
equations (3.6) are taken from [25, (6.10)], where they arose naturally
in the context of a semisymmetrization (compare [20, 23]) and the
reversible automata of Gvaramiya and Plotkin [4, 5].

The corresponding quasigroup operations from Figure 1 are displayed
in Figure 2.

x · y =
xT2 + yT−1

1
⇐⇒ x\y =

xT−1
3 + yT1

←→ x//y =
xT3 + yT−1

2

↕ ⇕

x ◦ y =
xT−1

1 + yT2
⇐⇒ x\\y =

xT1 + yT−1
3

←→ x/y =
xT−1

2 + yT3

Figure 2. Homogeneous representation of quasigroup
operations in a central pique.
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Example 3.4. Abelian groups are represented by R = L = 1 in terms
of Proposition 3.1. Correspondingly, they are given by T1 = T2 = 1
and T3 = −1 in terms of (3.6).

In Figure 1,↔ stood for right multiplication by (1 2), while⇔ stood
for right multiplication by (2 3). Now, in Figure 2, ↔ means inverting
the coefficient variables and applying (1 2) to their suffices. Similarly,
⇔ means inverting the coefficient variables and applying (2 3) to their
suffices. These actions may be displayed explicitly as

(1 2) : T1 7→ T−1
2 , T2 7→ T−1

1 , T3 7→ T−1
3

and

(2 3) : T1 7→ T−1
1 , T2 7→ T−1

3 , T3 7→ T−1
2 .

The relations (3.7) are invariant under these actions, demonstrating
the homogeneity of the representation under the triality group S3.
In connection with (3.6) and (3.7) respectively, it is worth recording

the following observations. Within the context of the homogeneous
representation, the first provides an analogue of Corollary 3.2.

Lemma 3.5. In a linear pique (P, ·, /, \, 0) with quasigroup operations
presented by (3.6), the multiplications

T−1
1 = L•(0) = R◦(0) , T1 = L\(0) = R\\(0) ,

T−1
2 = L//(0) = R/(0) , T2 = L◦(0) = R•(0) ,

T−1
3 = L\\(0) = R\(0) , T3 = L/(0) = R//(0)

by the pointed idempotent element give interpretations of the coefficient
variables and their inverses.

Lemma 3.6. In (3.7), suppose that the Ti are invertible. Then, for any
one of the cyclic products TiTi−1Ti−2 appearing in (3.7), the equation
TiTi−1Ti−2 = −1 (with indices taken modulo 3) is equivalent to the
equation of each of the other two cyclic products with −1.

Proof. Note e.g. T3T2T1 = −1 ⇒ T3T2 = −T−1
1 ⇒ T1T3T2 = −1,

using right multiplication by T−1
1 and then left multiplication by T1. □

3.3. Faithfulness of the homogeneous representation. It will now
be shown that the free versions of the homogeneous representations
discussed in the previous section are faithful. Equating the coefficients
from the top row of Figure 2 with the coefficients from (3.1)–(3.3) yields

(3.8) T1 = L−1 , T2 = R , T3 = −LR−1 ,
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where

(3.9) T3T2T1 = −LR−1RL−1 = −1 .
By (3.8), the Ti here are invertible. By Lemma 3.6, the relation (3.9)
implies all the equations of (3.7). In other words, the homogeneous
representation furnished by the coefficient variables models the faithful
representation from §3.1. These observations may be summarized in
the following reformulation of Proposition 3.1.

Theorem 3.7. [25, Th. 7.4] Suppose that S is a commutative, unital
ring. Consider the algebra

(3.10) HS = S ⟨T1, T2, T3 | 1 + T3T2T1, 1 + T2T1T3, 1 + T1T3T2⟩
of polynomials, with coefficients taken from S, in the invertible non-
commuting variables T1, T2, T3 and their inverses, subject to relations
that annihilate the indicated polynomials.

(a) The actions

(1 2) : T1 7→ T−1
2 , T2 7→ T−1

1 , T3 7→ T−1
3

and

(2 3) : T1 7→ T−1
1 , T2 7→ T−1

3 , T3 7→ T−1
2 .

generate a group S3 of automorphisms of HS.
(b) Linear S-piques are equivalent to right HS-modules, with

x ◦ y = xT−1
1 + yT2 ,(3.11)

x/y = xT−1
2 + yT3 ,(3.12)

x\y = xT−1
3 + yT1 ,(3.13)

e = 0(3.14)

as the linear representations of the opposite multiplication, right
division, left division, and pointed idempotent respectively.

(c) The action of S3 on HS from (a) induces a triality action on
central S-piques as represented in (b).

Definition 3.8. The algebra HS of (3.10) is called the homogeneous
algebra over the ring S.

Remark 3.9. (a) It is often convenient (in §4.2 below, for example)
to use

(3.15) HS = S ⟨Ti | 1 + TiTi−1Ti−2⟩i∈Z/3
as a more compact form of the presentation (3.10) of the homogeneous
algebra. Here and elsewhere, representatives for the residue classes
constituting Z/3 are usually taken as 1, 2, 3.
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(b) Abstractly, with S = Z, (3.10) or (3.15) provide an alternative
presentation of the integral group algebra Z⟨R,L⟩ of the free group on
two generators, as it appears in Proposition 3.1.

(c) The arrow notation

(3.16) X
x∗y // Y

is useful for the situation where the quasigroup operation x∗y appears
in the HS-module structure as the linear combination xX + yY . Thus,
the operations (3.11)–(3.13) and their opposites may be presented as

(3.17) T−1
1

x◦y




T−1
2

x/y





T−1
3

x\y




T2

x·y
JJ

T3

x//y

JJ

T1

x\\y

JJ

These arrow pairs are permuted by triality. In subsequent paragraphs,
the discrete arrow pairs (3.17) will appear as features embedded in
geometries.

(d) In comparison with Proposition 3.1, it should be noted that the
integral coefficients of the monomials appearing in central quasigroup
words represented by Theorem 3.7 are all nonnegative. This simple
observation implies an alternative formulation of the index polynomials
of [13] — compare [21, §11.1, Exercise 5].

3.4. Involutive antiautomorphisms. The involution

Z⟨R,L⟩ → Z⟨R,L⟩;R 7→ R−1, L 7→ L−1

of inversion is an antiautomorphism of Z⟨R,L⟩. The relations (3.8)
transform to

(3.18) T−1
1 = L , T−1

2 = R−1 , T−1
3 = −RL−1

under the action of this antiautomorphism, while the defining relations
of (3.15) transform to

1 + T−1
i−2T

−1
i−1T

−1
i

for 1 ≤ i ≤ 3. Thus, inversion of the generators Ti for 1 ≤ i ≤ 3
induces an involutive antiautomorphism t of HS.

3.5. The Euclidean representation. With the goal of providing a
geometrical interpretation of Figure 2, and a satisfactory replacement
for (3.5), the following diagram summarizes the triality of central piques
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as a configuration in the Euclidean space spanned by unit vectors
T1, T2, T3.

(3.19) T1

x\\yttT−1
3

x\y
44

T−1
2

x/y

��
T2 x·y

##

T3

x//y

KK

T−1
1

x◦y

cc

Note the use of the arrow notation from (3.17). Making reference back
to Theorem 3.7(a), the triality group S3 acts as follows:

• The permutation (1 2) rotates the unit cube by π about the
axis through the respective midpoints of the edges T1(T1 + T3)
and T2(T2 + T3);
• The permutation (2 3) rotates the unit cube by π about the
axis through the respective midpoints of the edges T2(T2 + T1)
and T3(T3 + T1).

Thus, the triality group S3 is the stabilizer of 0(T1 + T2 + T3) in the
full rotation group S4 of the cube which permutes all four

T1(T2 + T3), T2(T3 + T1), T3(T1 + T2), 0(T1 + T2 + T3)

of its diagonals. This representation will be reinterpreted in Section 4.4
below.

4. Quaternion models

4.1. Quaternion algebras. Let S be a commutative, unital ring. For
the following definition, compare [3], [24, Exercise II.2.4S]. (Note that
the more general quaternion algebras considered in [10, §I.2.C], [12,
§III.1] for the case of a field S do not guarantee satisfaction of (4.1)
below.)
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Definition 4.1. The quaternion algebra HS over S is defined as the
subalgebra of the algebra S4

4 of 4×4-matrices over S that the matrices

I =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 , J =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , K =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


generate.

Proposition 4.2. Let S be a commutative, unital ring. Consider the
quaternion algebra HS over S.

(a) The equations I2 = J2 = K2 = −1 (writing 1 for the identity
element of the unital matrix ring S4

4), along with the equations
IJ = K, JK = I, and KI = J , hold in HS.

(b) The equations

(4.1) 1 + IJK = 1 + JKI = 1 +KIJ = 0

and

(4.2) 1 + I2 = 1 + J2 = 1 +K2 = 0

hold in HS.
(c) The linear structure of the quaternion algebra HS is the free

S-module over the set { 1, I, J,K }.
(d) The subset Q = {±1,±I,±J,±K } of the quaternion algebra

HS is closed under multiplication.
(e) If S is not of characteristic 2, the set Q forms a copy of the

quaternion group Q8.
(f) For elements t, x, y, z of S, consider the matrix

H = t · 1 + xI + yJ + zK

in HS. Then

(4.3) HT = t · 1− xI − yJ − zK ∈ HS ,

while

(4.4) HHT = t2 + x2 + y2 + z2 ,

an element of S described as the norm of H.

Definition 4.3. (a) Within the free S-moduleHS on { 1, I, J,K } given
by Proposition 4.2(c), the submodule generated by { I, J,K } is known
as the space of pure quaternions over S.

(b) The restriction of the transposition antiautomorphism of S4
4 to HS

assured by (4.3) is known as conjugation.
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Example 4.4. The usual real quaternion algebraH, a noncommutative
division ring, is HR. Here, the conjugation of Definition 4.3(b) is the
usual quaternion conjugation (cf. [2, p.17], say).

Example 4.5. The quaternion algebra HGF(2) over the two-element
field is the group algebra over Z/2 of the Klein 4-group V4. Indeed, in
this case, (4.1) and (4.2) show that the set { 1, I, J,K } is closed under
multiplication. Here, the conjugation is trivial.

Note that this interpretation of a quaternion algebra in characteristic
2 does not match the definition of a quaternion algebra over a field of
characteristic 2 given in [10, §I.2.C].

Example 4.6. As a vector space, the complex quaternion algebra HC
is four-dimensional, isomorphic to the ring C2

2 of 2×2 complex matrices.
Further details of this important example are taken up in Section 4.3
below.

4.2. The projection to the quaternion algebra. The following
theorem is motivated by consideration of Proposition 4.2.

Theorem 4.7. Let S be a unital, commutative ring. Then

(4.5) S ⟨Ti | 1 + TiTi−1Ti−2, 1 + T 2
i ⟩i∈Z/3 ,

with non-commuting invertible variables T1, T2, T3, is a presentation of
the quaternion algebra HS.

Proof. Consider the free S-module HS over the set { 1, T1, T2, T3 }, and
the relations expressed in (4.5). If 1 + T 2

i = 0, then T−1
i = −Ti for

i ∈ Z/3. Multiplying Ti+1TiTi−1 = −1 on the right by −Ti−1 yields
Ti+1Ti = Ti−1. Thus, Ti−1Ti = T−1

i−1T
−1
i = (TiTi−1)

−1 = T−1
i+1 = −Ti+1.

In other words, the assignments

R(Ti) : Ti−1 7→ −Ti+1 , Ti 7→ −1 , Ti+1 7→ Ti−1

hold. Then, referring to the ordered basis { 1 < T1 < T3 < T2 } of HS,
the respective right multiplications by T1, T3, T2 are given in matrix



HOMOGENEOUS LINEARIZATION OF QUASIGROUPS 15

form as

R(T1) =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 = I,(4.6)

R(T3) =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 = J,(4.7)

R(T2) =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 = K(4.8)

using the notation of Definition 4.1. It follows that the module HS

is closed under multiplication, and thereby implements the quaternion
algebra HS. □

Corollary 4.8. Imposition of the power relations T 2
i = −1 induces a

surjective homomorphism π : HS → HS onto the quaternion algebra,
such that the diagram

HS
π //

t
��

HS

T
��

HS π
// HS ,

involving the involution t of Section 3.4 and the restricted transposition
T of Definition 4.3(b), commutes.

4.3. The Pauli group. This section provides more detail about the
complex quaternion algebra introduced in Example 4.6, and puts the
apparent order-reversal of (4.7) and (4.8) into context.2

In quantum information theory, the Pauli group is the R-spanning
subset

(4.9) G1 = {±1,±i,±X,±iX,±Y,±iY,±Z,±iZ }

of the Hilbert space C2
2 [15, (10.81)], with Pauli matrices

(4.10) X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
2The alphabetical order of (4.10) matches the numerical order of (4.11).
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[15, §2.1.3]. The suffix 1 in G1 refers to the fact that (4.9) is the Pauli
group for a single qubit. Following the convention of Proposition 4.2(a),
the first two pairs of elements in the list (4.10) refer to scalar matrices.

Now, within the Pauli group G1, set

(4.11) T1 = iX , T2 = iY , and T3 = iZ .

The relations of (4.5) then hold within C2
2. By Theorem 4.7 and the

fact that dimC C2
2 = 4 = dimC HC, the latter equation holding by

virtue of Proposition 4.2(c), it follows that C2
2 = HC, as claimed in

Example 4.6. Since the matrices (4.11) are unitary, the conjugation on
C2

2 is implemented by taking the complex conjugate transpose †.

4.4. The quaternion representation. Over a commutative, unital
ring S, the space of pure quaternions introduced in Definition 4.3 gives
a natural representation of triality, thanks to the invertibility of the
respective pure quaternions (4.6)–(4.8) that may be identified with
T1, T3, T2:

(4.12) T2

}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}
}}

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

x·y

��

T−1
1

x◦y

VV

T−1
3 x\y

""

◦_ _ _ _ //_____

~~|
|
|
|
|

{
{

{
{

{

�
�
�
�

OO�
�
�
�

T3

ggggg
ggggg

ggggg
ggggg

ggggg
ggggg

ggg

????????????????????

x//y

zz

T1

33
33
33
33
33
33
33

x\\y

cc

T−1
2

CCCCCCCCCCCCCCCCCCC

x/y

::

The group of symmetries of an octahedron in 3-dimensional space is S4,
permuting the four pairs of opposite faces of the octahedron. In (4.12),
the faces of just one of these pairs (namely {T3T2T1, T

−1
1 T−1

2 T−1
3 }) do

not contain an edge which is associated with quasigroup operations.
The group S3 of triality thus appears as the stabilizer of this opposite
pair within the symmetry group S4 of the octahedron. The Euclidean
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representation of triality presented in Section 3.5 may now be seen as
being based on the cube which is the dual of the octahedron, for S = R.

4.5. Quaternionic structures. Let S be a commutative, unital ring.
As before, write S for the category of S-modules.

Definition 4.9. A quaternionic structure on an S-module P is given
as a homomorphism

(4.13) HS → S(P, P );H 7→
[
p 7→ pH

]
of S-algebras from the quaternion algebra HS to the endomorphism
ring of the S-module P .

For the following example, compare Example 4.4 and [11].

Example 4.10. Consider P = Hn for a positive integer n, as a real
vector space of dimension 4n. Then

H→ R(P, P ); q 7→
[
(p1, . . . , pn) 7→ (p1q, . . . , pnq)

]
endows P with a quaternionic structure.

Example 4.11. For S = Z/2, Example 4.5 interpretsHZ/2 as the group
algebra Z/2V4 of the Klein 4-group V4 = { 1, I, J,K }. Thus, a Boolean
groupW (elementary abelian group of exponent 2) forms a quaternionic
structure over Z/2 precisely when it affords a 2-modular representation
of V4. If W is finite, it forms a bisymmetric linear quantum quasigroup
[8, Th. 4.31].

Example 4.12. The 2-dimensional complex space C2 is the Hilbert
space of a 2-state quantum system — a qubit [15, §1.2]. The right
action of the matrix ring C2

2 = HC from Section 4.3 then provides a
complex quaternionic structure on C2.

4.6. Quaternionic piques.

Definition 4.13. Let S be a commutative, unital ring. A quaternionic
pique over S is defined as a quaternionic structure P over S equipped
with the pique operations

x ◦ y = xT−1
1 + yT2 = −xI + yK ,(4.14)

x/y = xT−1
2 + yT3 = −xK + yJ ,(4.15)

x\y = xT−1
3 + yT1 = −xJ + yI(4.16)

of (3.11)–(3.13), along with e = 0. More generically, a quaternionic
pique is a quaternionic pique over Z.
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Example 4.14. Consider the quaternionic structure of Example 4.12
on the qubit space C2 equipped with the computational basis

{ | 0⟩ = (1, 0), | 1⟩ = (0, 1) }

[15, §1.2]. The opposite multiplication structure of the quaternionic
pique structure is given as follows with respect to the computational
basis:

◦ |0⟩ |1⟩

|0⟩ (1− i) |1⟩ − |0⟩ − i |1⟩

|1⟩ −i |0⟩+ |1⟩ (1 + i) |0⟩
Note that neither the rows, nor the columns, are mutually orthogonal
under the Hilbert space product. However, the unnormalized quasi-
group products presented in the body of the multiplication table all
have the same norm of

√
2, since the coefficients T−1

1 = −iX and
T2 = iY of the opposite quasigroup multiplication are unitary.

Theorem 4.15. Within the class of central piques, the full set of quasi-
group equations

x = (((x ◦ y) ◦ y) ◦ y) ◦ y ,(4.17)

x = (((x/y)/y)/y)/y ,(4.18)

x = (((x\y)\y)\y)\y(4.19)

distinguishes the quaternionic piques.

Proof. Suppose that P is a central pique that satisfies the quasigroup
equations (4.17)–(4.19). Consider P as an HZ-module according to
Theorem 3.7(b). Then (3.11) implies

x ◦ y = xT−1
1 + yT2 ,(4.20)

(x ◦ y) ◦ y (4.20)
= (xT−1

1 + yT2)T
−1
1 + yT2(4.21)

= xT−2
1 + yT2(T

−1
1 + 1) , and

(((x ◦ y) ◦ y) ◦ y) ◦ y (4.21)
= ([xT−2

1 + yT2(T
−1
1 + 1)] ◦ y) ◦ y(4.22)

(4.21)
= [xT−2

1 + yT2(T
−1
1 + 1)]T−2

1 + yT2(T
−1
1 + 1)

= xT−4
1 + yT2(T

−3
1 + T−2

1 + T−1
1 + 1) .

Thus, (4.17) may be rewritten according to (4.22) in the linear form

x = xT−4
1 + yT2(T

−3
1 + T−2

1 + T−1
1 + 1) .
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More generally (or by triality), the equation

(4.23) x = xT−4
i + yTi+1(T

−3
i + T−2

i + T−1
i + 1)

holds for 1 ≤ i ≤ 3.
Recall that central quasigroups, and therefore also central piques,

form varieties in the sense of universal algebra — classes of models
of a set of identities [21, Th. 3.2]. Thus, take P as the free pique on
the set {x, y } in the variety of central piques defined by the identities
(4.17)–(4.19). Setting x = 1 and y = 0 in (4.23) shows that each Ti for
1 ≤ i ≤ 3 satisfies the equation 0 = X4 − 1 = (X2 + 1)(X + 1)(X − 1)
in Z[X]. The freeness of P excludes the possibilities Ti = ±1. Thus,
T 2
i = −1 for 1 ≤ i ≤ 3. Corollary 4.8 shows that on each central pique

P that satisfies the quasigroup equations (4.17)–(4.19), the HZ-module
structure descends to aHZ-module structure, rendering P quaternionic.

Conversely, suppose that P is a quaternionic pique. By (4.22),

(((x ◦ y) ◦ y) ◦ y) ◦ y = x+ yT2(−T−1
1 − 1 + T−1

1 + 1) = x .

The derivation of the identities (4.18) and (4.19) is similar. □

Corollary 4.16. Quaternionic piques form a variety in the sense of
universal algebra.

4.7. Quaternionic quasigroup identities. This section examines
the quasigroup equations (4.17)–(4.19) in more detail. Collectively,
along with equivalent identities to be derived in this section, they will
be described as quaternionic (quasigroup) identities, and quasigroups
that satisfy them are said to be quaternionic.

In their original form (4.17)–(4.19), the three identities appear in
terms of the set { ◦, /, \ } of three operations which form an orbit under
the subgroup C3 of the triality group S3 (compare §2.2). However, since
an equational quasigroup is usually given as (Q, ·, /, \), it is helpful to
consider the quaternionic identities in terms of these operations.

Proposition 4.17. The quaternionic quasigroup identities belong to
the three equivalence classes

x = y · (y · (y · (y · x))) ⇔ y\(y\(y\(y\x))) = x ;(4.24)

x = (((x · y) · y) · y) · y ⇔ (((x/y)/y)/y)/y = x ;(4.25)

x = (((x\y)\y)\y)\y) ⇔ y/(y/(y/(y/x))) = x ;(4.26)

when written in terms of the basic operations ·, /, \ on a quasigroup.

Proof. Use the notation of (2.2) and (2.3). For (4.24), we have the
equivalence of x = xL•(y)

4 with xL•(y)
−4 = x. For (4.25), we have the

equivalence of x = xR•(y)
4 with xR•(y)

−4 = x.
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Now, the quasigroup identities (2.6) express the inverse relationship
R\(x)

−1 = L/(x). The equivalence of x = xR\(y)
4 with xR\(y)

−4 = x
then establishes (4.26). □

Figure 3. Triality of the quaternionic quasigroup identities.

xR•(y)
4 = x ⇐⇒ xR\(y)

4 = x ←→ xR//(y)
4 = x

↕ ⇕

xR◦(y)
4 = x ⇐⇒ xR\\(y)

4 = x ←→ xR/(y)
4 = x

Corollary 4.18. The identities of Proposition 4.17 appear respectively
as:

x = xR◦(y)
4 ⇔ x = xR\\(y)

4 ;(4.27)

x = xR•(y)
4 ⇔ x = xR/(y)

4 ;(4.28)

x = xR\(y)
4 ⇔ x = xR//(y)

4 .(4.29)

Thus, triality action on the six quasigroup operations induces a triality
action on the quaternionic quasigroup identities.

The triality action from Corollary 4.18 is displayed in Figure 3. The
equivalent pairs constitute orbits of the left action of ⟨(2 3)⟩ on the
Cayley diagram.

Remark 4.19. Replacing the exponent 4 in Corollary 4.18 with 2
yields identities that define the variety of totally symmetric quasigroups
— compare [21, §1.6]. Indeed, the identity x = xR◦(y)

2 defines the
class of left symmetric quasigroups [21, (1.38)], and similarly the dual
identity x = xR·(y)

2 defines the class of right symmetric quasigroups
[21, (1.39)]. By [21, Proposition 1.9] and the fact that the triality group
S3 is generated by any pair of distinct transpositions, the intersection of
these two classes is the class of totally symmetric quasigroups (which,
in particular, includes the classes of Steiner triple systems and Boolean
groups). Thus, totally symmetric quasigroups are quaternionic.
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4.8. Independence of the quaternionic quasigroup identities.
In this section, it will be shown that the three equivalent pairs of
quaternionic quasigroup identities appearing as (4.24)–(4.26) in the
statement of Proposition 4.17, or as (4.27)–(4.29) in the statement of
Corollary 4.18, are independent: None of them is a consequence of
the other two. In fact, the independence will be shown to hold even
within the class of central or linear piques, and not just at the general
quasigroup level.

Theorem 4.20. Within the class of linear piques, the three equivalent
pairs of quaternionic quasigroup identities appearing as (4.24)–(4.26)
are logically independent.

Proof. Take two copies ⟨X1⟩ and ⟨X2⟩ of the cyclic group C2, so that
X2

1 = X2
2 = 1. Consider the group algebra

H = Z[i] (⟨X1⟩ ∗ ⟨X2⟩) ,
over the ring Z[i] of Gaussian integers, of the free product ⟨X1⟩ ∗ ⟨X2⟩
(compare [17, Ex. 1.5.1]). In H, take elements T1 = iX1 and T2 = iX2.
Thus, the equations

0 = 1 + T 2
1 = 1 + T 2

2

hold in H.
Now, in H, set T3 = −T1T2 = X1X2, so that

(4.30) 1 + T3T2T1 = 0 .

By the known structure of free products, say as given in [17, p.2], the
reduced words (normal forms) for elements of ⟨X1⟩ ∗ ⟨X2⟩ are w, where
w is a word in the alphabet {X1, X2 } which does not contain X1X1

or X2X2 as a subword. Each element of ⟨X1⟩ ∗ ⟨X2⟩ then has a unique
expression as a reduced word w [17, Th. I.1]. The reduced form of T 4

3

is X1X2X1X2X1X2X1X2, so T3 is not of order 4 or less.
By (4.30) and Lemma 3.6. the equations (3.7) hold. Thus, we may

use the equations (3.6) to define a linear pique structure P on the
underlying abelian group of H. By Lemma 3.5, we have

T−1
1 = R◦(0) , T2 = L◦(0) , T3 = L/(0) .

Recall T 4
1 = T 4

2 = 1, but T 4
3 ̸= 1. By Lemma 3.5 again, we have

R\(0)
4 ̸= 1 and R//(0)

4 ̸= 1. Corollary 4.18 therefore shows that while
the pairs of equivalent identities (4.27) and (4.28) are satisfied in the
linear pique P , the remaining pair (4.29) is not. Finally, application of
triality shows that each of the pairs of equivalent quaternion quasigroup
identities (4.27)–(4.29) is independent of the other two. The statement
of the theorem follows. □
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Corollary 4.21. The three equivalent pairs of quaternionic quasigroup
identities are logically independent.

Remark 4.22. Corollary 4.21 contrasts with the situation discussed
in Remark 4.19, considering the identities obtained by replacing the
exponent 4 in Corollary 4.18 with 2. In that situation, any two of the
equivalent pairs of identities imply the third.
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