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Abstract. Recent developments in logic programming are based on
bilattices (algebras with two separate lattice structures). This paper
provides characterizations and structural descriptions for bilattices
using the algebraic concepts of superproduct and hyperidentity. The
main structural description subsumes the many variants that have
appeared in the literature.

1. Introduction

Bilattices, algebras with two separate lattice structures, are used for
the algebraization of systems of inference in artificial intelligence and logic
programming. The two lattice orderings of a bilattice are viewed as respec-
tively representing the relative degree of truth and knowledge of possible
events. Bilattices were first introduced by M. Ginsberg and M. Fitting in
1989-90 (see [2] – [4]) as a general framework for a variety of applications
such as truth maintenance systems, default inference and logic program-
ming. Their structure and applications were investigated further by these
and other authors. (See e.g. [1], [7], [8], [23], [26].) Although the main
common feature of these algebras is that they have two separate lattice
structures defined on the same set, different authors consider different con-
nections between the two lattice structures. Moreover, bilattices used in
applications are often assumed to satisfy some additional finiteness condi-
tions, to possess bounds for both lattices, or to incorporate some type of
unary operation representing negation of truth values. Occasionally, alge-
bras with more than two lattice structures are encountered, for example in
[6] where a third lattice ordering represents a degree of precision.
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In this paper, we consider a bilattice as an algebra with just two separate
lattice structures. Using the algebraic concepts of superproduct and hyper-
identity, which are succinctly introduced in Sections 2 and 3, we present
a general structure theorem for the bilattices of logic programming (The-
orem 4.3) that subsumes the many variants that have appeared in the
literature. The concluding Section 5 discusses some variants of the basic
construction, considering the possibilities of adding constants, adding dif-
ferent types of unary “negation,” or of extending the number of lattices
defined on the underlying set.

2. Superproducts

A type is a function τ : Ω → T with T ⊆ N. Elements ω of the domain
Ω of τ are called operators. An algebra (A, τ) or A of type τ is a set A
equipped with an operation

ω : Aωτ → A; (a1, . . . , aωτ ) 7→ a1 . . . aωτω

for each operator ω in Ω. If n = ωτ , the operator ω is described as being
n-ary. These definitions are just a slightly more precise version of the usual
definitions of universal algebra (compare [27, IV§1.1]).

An arithmetic type T is a subset of N. A T -algebra or algebra of arith-
metic type T is an algebra (A, τ) with τ(Ω) ⊆ T . Given two algebras
(A, τ : Ω → T ) and (B, σ : Ψ → T ) of the same arithmetic type T , a
bihomomorphism f : A → B consists of a pair

f = (f0 : A → B, f1 : Ω → Ψ)

of functions with f1σ = τ , such that

∀ω ∈ Ω , ∀ a1, . . . , aωτ ∈ A , (a1f0) . . . (aωτf0)(ωf1) = (a1 . . . aωτω)f0 .

Alternatively, given f1 : Ω → Ψ with f1σ = τ , one may define the pullback
of (B, σ) along f1 as the algebra (B, τ) of type τ with

b1 . . . bωτω := b1 . . . bωτ (ωf1)

for bi ∈ B and ω ∈ Ω. The pair (f0, f1) is then seen to be a bihomomor-
phism if and only if f0 is a homomorphism from the algebra (A, τ) to the
pullback (B, τ) of (B, σ) along f1.

For a given arithmetic type T , let T consist of two classes: the class of
all T -algebras and the class of all bihomomorphisms between them. One
readily checks that T forms a large category, under the usual compositions
of the components of bihomomorphisms, with these classes as the respective
object class Ob(T ) and morphism class Mor(T ). For example, the identity
at a T -algebra (A, τ : Ω → T ) is the pair 1(A,τ) = (1A, 1Ω).

Theorem 2.1. For each arithmetical type T , the category T possesses ar-
bitrary products.
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Proof. Consider an indexing function I → Ob(T ); i 7→ (Ai, τi : Ωi → T ).
Define A =

∏
i∈I Ai as the usual product in the category of sets, with

corresponding projections πi
0 : A → Ai for each i in I. Define a type

τ : Ω → T by setting τ−1{n} =
∏

i∈I τ−1
i {n} for each element n of T . For

each element i of I, and for each element n of T , consider the projection
πi,n

1 : τ−1{n} → τ−1
i {n}. Let πi

1 : Ω → Ωi be the coproduct
∑

n∈T πi,n
1 in

the category of sets of the functions πi,n
1 : τ−1{n} → τ−1

i {n}. An algebra

(1) (A, τ)

of arithmetical type T is then specified uniquely by the requirement that
for each n in T , each n-ary operator ω from Ω makes the projection

πi
0 : (A, {ω} → {n}) → (Ai, {ωπi,n

1 } → {n})
a homomorphism of algebras with a single n-ary operation for each i in I.
It follows that for each i in I, there is a bihomomorphism

(2) πi = (πi
0, π

i
1) : (A, τ) → (Ai, τi) .

Moreover, given a T -algebra (B, σ : Ψ → T ) and bihomomorphisms f i =
(f i

0, f
i
1) : (B, σ) → (Ai, τi) for each i in I, a bihomomorphism

f = (f0, f1) : (B, σ) → (A, τ)

with fπi = f i for each i in I is uniquely specified by the requirements
f0π

i
0 = f i

0 and f1π
i
1 = f i

1 for each i in I. Thus the object (1), equipped
with the projections (2), is the product of the (Ai, τi) in the category T . ¤

Corollary 2.2. The T -algebra ({0}, 1T : T → T ) is a terminal object of
T .

Proof. Set I = ∅ in the proof of Theorem 2.1. Each τ−1{n} for n ∈ T ,
as an empty product in the category of sets, may be implemented by the
singleton {n}, so that τ becomes the identity function 1T : T → T . ¤

Definition 2.3. For an arithmetical type T , the product of two objects
A1 and A2 in the category T is called the superproduct A1 ./ A2 of the
T -algebras A1 and A2. More generally, products of objects Ai in T are
described as superproducts of the algebras Ai.

Example 2.4. Suppose that two algebras A1 and A2 both have binary
operations ω1 and ω2. Then the superproduct A1 ./ A2 has four binary
operations (ω1, ω1), (ω1, ω2), (ω2, ω1), (ω2, ω2). Writing the original opera-
tions with infix notation xyωi = x×i y, one has

(x1, x2)(y1, y2)(ωi, ωj) = (x1 ×i y1, x2 ×j y2)

in the superproduct A1 ./ A2 for i, j ∈ {1, 2}.
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Example 2.5. Suppose that Ai for i ∈ I are algebras of the same type, each
possessing just one n-ary operation for some n in T . Then the superproduct
of the Ai reduces to their usual product.

We conclude this section with some observations that may be skipped
by readers who are unfamiliar with the concepts of category theory (as
detailed in [27], for example).

Theorem 2.6. There is a forgetful functor G from the category T to the
product S of the category Set of sets with the slice category Set/T . This
forgetful functor has a left adjoint F sending an S-object (X, τ : Ω → T ) to
the free τ -algebra over the set X.

Proof. For a T -algebra (A, σ) and an S-morphism

(f0, f1) : (X, τ) → (A, σ)G ,

pull the algebra (A, σ) back along f1 to a τ -algebra (A, τ). Let f0 be the
unique extension of f0 : X → A to a τ -algebra homomorphism from the
free τ -algebra over the set X to the τ -algebra (A, τ). Then the unique
extension of (f0, f1) to a bihomomorphism is the pair (f0, f1). ¤

Remark 2.7. The proof of Theorem 2.1 just notes that the forgetful func-
tor G of Theorem 2.6 creates products. Thus the underlying set of a super-
product of algebras is the product (in Set) of their underlying sets, while
the type of the superproduct is given by the product in the slice category
Set/T of the respective types of the factor algebras.

3. Hyperidentities

Let T be an arithmetic type. Define

P = {x1, x2, . . . }
and

Pt = {Xt
1, X

t
2 . . . }

for each t in T . Then set PT =
⋃

t∈T Pt, and define the projection

π : PT → T ; Xt
i 7→ t .

Inside the free monoid (P ∪ PT )∗ (the set of all words in the alphabet
P ∪ PT under the binary operation of concatenation, with the empty word
as identity), define a subset PT inductively by the rules:

(1) P ⊆ PT ;
(2) ∀ t ∈ T , ∀Xt

i ∈ Pt , p1, . . . , pt ∈ PT ⇒ p1 . . . ptXt
i ∈ PT .

An algebra (PT, π) of arithmetic type T is then obtained by defining the
operation

Xt
i : PT t → PT ; (p1, . . . , pt) 7→ p1 . . . ptXt

i
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for each operator Xt
i in PT . A hyperidentity of arithmetic type T is defined

to be a pair (p, q) (more informally written p = q) of elements of PT . An
algebra (A, τ) of arithmetic type T is said to satisfy the hyperidentity p = q
if pf0 = qf0 in A for each bihomomorphism (f0, f1) from (PT, π) to (A, τ)
([9], [10], [14], [15], [28]). Less formally, lower case letters are used for the
elements of P , and upper-case letters for the operators from PT . Binary
operations are usually written with infix notation, while unary operations
are written as superscripts. The key example for this paper is given by the
following [12] [18].

Theorem 3.1. Each lattice satisfies the hyperidentities:
(i) xX x = x ;
(ii) xX y = y X x ;
(iii) xX (y X z) = (x X y)X z ;
(iv) ((xX y)Y z)X (y Y z) = (xX y) Y z .

Conversely, each hyperidentity satisfied by any lattice is a consequence of
the hyperidentities (i) – (iv).

Remark 3.2. (For category theorists.) In the language of Theorem 2.6,
the algebra (PT, π) is the image of the pair (P, π) under the left adjoint
functor F : S → T . In turn, one may interpret the pair (P, π) as the natural
number object of the topos S.

4. Bilattices

An algebra (B,∧,∨, ·, +) with four binary (infix) operations is called a
bilattice if both the reducts B1 = (B,∧,∨) and B2 = (B, ·, +) are lattices.
A bilattice is bounded if both its reducts B1 and B2 are bounded lattices.
A bilattice is called interlaced (see [2]) if each of the four basic operations
preserves both the ordering relations: ≤1 in the lattice B1 and ≤2 in the
lattice B2. Each lattice (L,∧,∨) determines two interlaced bilattices:

L+ = (L,∧,∨,∧,∨)

and
L− = (L,∨,∧,∧,∨).

Note that the condition of being interlaced is equivalent to the satisfaction
of the following identities for each pair of operations ×1,×2 in the set
{∧,∨, ·,+}:
(3) ((x×1 y)×2 z)×1 (y ×2 z) = (x×1 y)×2 z.

These identities are always satisfied in each lattice, and in each stammered
semilattice (a set with two equal semilattice operations). They were first
noted by Padmanabhan ([17]–[20]), who showed that they define the regu-
larization of the variety of lattices, the variety of so-called quasi-lattices or
Padmanabhan bisemilattices. (See [22], [24] or [25, Ch. 4] for the definition
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and basic properties of the regularization of a variety.) In [26], bilattices
satisfying the above identities were called Padmanabhan bilattices or briefly
P-bilattices. In particular, the class of interlaced bilattices is a variety. (In
fact, as was shown in [26]. not all these identities are necessary to define
the variety of interlaced bilattices.) It is easy to see that the identities (3)
may be replaced by the single hyperidentity (iv) of Theorem 3.1, so the
variety IBL of interlaced bilattices may be defined as the class of bilattices
satisfying this hyperidentity. Indeed, we may summarize as follows.

Theorem 4.1. A bilattice is interlaced iff it satisfies the hyperidentities
satisfied in the variety of lattices.

Theorem 4.1 extends to some subvarieties of the variety IBL. First recall
that a bilattice is distributive (and hence is interlaced) if it satisfies both
distributive identities for each pair of basic operations. It is modular if it
satisfies the hyperidentity

(xY (y X z))X (y Y z) = (xX (y Y z))Y (y X z) .

Proposition 4.2. Let B be an interlaced bilattice.
(a) B is distributive iff it satisfies the hyperidentities satisfied in the

variety of distributive lattices.
(b) B is modular iff it satisfies the hyperidentities satisfied in the variety

of modular lattices.

Proof. This follows directly by results of [11] and [13], where it was shown
that the hyperidentities satisfied in the variety of distributive lattices are
consequences of the hyperidentities of Theorem 3.1 and

xX (y Y z) = (xX y) Y (x X z) ,

while the hyperidentities satisfied in the variety of modular lattices are
consequences of the hyperidentities of Theorem 3.1 and

(xY (y X z))X (y Y z) = (xX (y Y z))Y (y X z) .

¤

The paper [26] contains a representation theorem for bounded interlaced
bilattices with the unary negation introduced by Ginsberg. This theorem
was first discovered in the case of distributive bounded bilattices by Gins-
berg and Fitting. For the case of bounded interlaced bilattices, it was then
rediscovered in different forms in [1], [8], and [23]. We now provide a gen-
eral version of the representation theorem considering arbitrary interlaced
bilattices. The new theorem subsumes all the previous forms, and offers
the additional advantage of providing an equational basis for the variety
IBL.
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Let (L1,∧1,∨1) and (L2,∧2,∨2) be lattices. Let B be the superproduct
of the lattices L1 and L2. Specifically, consider B = (L1 × L2,∧,∨, ·, +)
with basic operations defined by

∧ = (∧1,∨2), ∨ = (∨1,∧2), · = (∧1,∧2), + = (∨1,∨2).

The reducts B1 and B2 of B are lattices. In fact B1
∼= L1 × Ld

2, where Ld
2

is the dual of L2 and B2
∼= L1 × L2. Moreover, as in [26, Prop. 2.2], each

reduct of B with one basic operation from B1 and one basic operation from
B2 belongs to the regularization L̄ of the variety L of lattices. Thus it is a
quasi-lattice, satisfying all the Padmanabhan identities. It follows that B
is an interlaced bilattice.

We will show that each interlaced bilattice can be obtained in this way.
The proof differs from the proofs of the theorems mentioned above, since
we do not assume that the bilattice is bounded. However, the idea of the
proof is very close to the idea of the proof in [26], so we will omit many of
the details that are similar to that proof.

Theorem 4.3. An algebra (B,∧,∨, ·,+) is an interlaced bilattice iff it is
isomorphic to the superproduct L1 ./ L2 of two lattices L1 and L2.

Proof. We already know that a superproduct of two lattices is an interlaced
bilattice. We will sketch the proof of the converse implication. Assume that
the bilattice B is interlaced. Then each of the quasi-lattice reducts (B,×, ◦)
with × ∈ {∧,∨} and ◦ ∈ {·,+} belongs to L̄, and hence is a PÃlonka sum
of lattices. In fact we have four decompositions of these reducts of B into
PÃlonka sums of lattices. Denote the PÃlonka sum of lattices (Li,×, ◦) over a
stammered semilattice (I,× = ◦) by the symbol

∑
i∈I(Li,×, ◦). Then we

obtain the following PÃlonka sums:

(4)
∑

i∈I

(Bi,∧, +) over (I,∧ = +),

(5)
∑

i∈I′
(B′

i, ·,∨) over (I ′, · = ∨),

(6)
∑

j∈J

(Aj ,∧, ·) over (J,∧ = ·),

(7)
∑

j∈J ′
(A′j , +,∨) over (J ′, + = ∨).

Each of these decompositions determines a congruence relation of the
corresponding quasi-lattice with the lattice summands as congruence classes.
Call these congruences σ1, σ2, σ3 and σ4 respectively. From the proof of [20,
Th. 2.1] it follows that the congruences σi are in fact the bilattice congru-
ences, so that the lattice summands are subbilattices of B. In particular,
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each is a sublattice of B1 and a sublattice of B2. However, as observed
in [5], if a quadrisemilattice (an algebra with four semilattice operations)
satisfying the Padmanabhan identities has two lattice (basic) reducts, then
the sets of basic operations of these two lattices must either be disjoint or
coincide. It follows for example that in each lattice Bi we have ∧ = · and
∨ = +. The same holds for each lattice B′

i. As Bi and B′
i are maximal

subalgebras of B that are sublattices of B1 and of B2, it follows that the
sets I and I ′ coincide, forming dual semilattices, and for each i ∈ I, we also
have Bi = B′

i. Moreover, the lattices (Bi,∧, +) and (B′
i·,∨) are isomor-

phic to (Bi,∧,∨) = (Bi, ·,+). Similarly, one may show that Aj = A′j , that
J = J ′, that in Aj , one has ∧ = + and ∨ = ·, and that the lattices (Aj ,∧, ·)
and (A′j , +,∨) are isomorphic to (Aj ,+, ·), the latter being isomorphic to
(Aj ,∧,∨).

The final step of the proof is to show that for each i ∈ I and j ∈ J , the
intersection Ai ∩ Bj has precisely one element. This is routine. It follows
that the congruences σ1 = σ2 and σ3 = σ4 form a pair of factor congruences
of the bilattice B, and hence the bilattice B is the superproduct of the
lattices I and J . ¤

5. Extending the type

Consider bounded lattices as algebras with two binary and two nullary
operations. If L1 is a lattice bounded by 01 and 11, while L2 is a lattice
bounded by 02 and 12, then their superproduct L1 ./ L2 has four nullary
operations

⊥1 = (01, 12) ,>1 = (11, 02) ,⊥2 = (01, 02) ,>2 = (11, 12) .

Note however that the identities defining the bounds of a lattice are no
longer hyperidentities. This raises the following questions.

Problem 5.1. Is the class of bounded bilattices defined by hyperidentities?
Is the class of bilattices defined by all the hyperidentities satisfied in the
class of bounded bilattices?

The proof of Theorem 4.3 may easily be adjusted to show that it also
holds in the case of bounded lattices. However all the previous versions of
this theorem gave more direct proofs (with or without use of the structure
theorem for quasi-lattices), making essential use of the existence of the
nullary operations. In fact, in the bounded case, the components of the
superproduct obtained in the decomposition of a bounded bilattice may
be defined more directly as being isomorphic to the intervals [02, 11] of L1

(isomorphic to [02, 11] of L2) and [02, 01] of L2 (dually isomorphic to [01, 02]
of L1).
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The Ginsberg negation may easily be defined in the superpower L ./ L,
where L is a bounded lattice, by

(x, y)′ = (y, x).

However, the bounded bilattice with negation obtained in this fashion can-
not be described as a superproduct of two bounded lattices with unary
operations. Nevertheless, Theorem 4.3 also holds in this case, and in fact
the first version proved for interlaced bilattices in [26] dealt with exactly
this situation.

One may define other types of negation in a bilattice that better fit to
the approach considered in this paper. However, their interpretation in
various applications is not yet clear. Let us consider one example. Define
a bilattice B with one unary operation ′ to be Boolean if it is non-empty,
distributive, and satisfies the hyperidentities

xCC = x

and
xX (y X yC)C = x .

Instead of the latter hyperidentity we can consider four corresponding iden-
tities:

x ∧1 (y ∧1 y′)′ = x ,

x ∨1 (y ∨1 y′)′ = x ,

x ∧2 (y ∧2 y′)′ = x ,

x ∨2 (y ∨2 y′)′ = x .

These identities show that B is in fact bounded, with bounds defined by

>1 = (y ∧1 y′)′, >2 = (y ∧2 y′)′, ⊥1 = (y ∨1 y′)′, ⊥2 = (y ∨2 y′)′.

This, together with the first (hyper)identity, shows that

>1 = y ∨1 y′, >2 = y ∨2 y′, ⊥1 = y ∧1 y′, ⊥2 = y ∧2 y′.

Hence the operation ′ is a complement in both (bounded distributive) lat-
tices B1 and B2, which implies that both these lattices are in fact Boolean
algebras. It is an open question which other types of unary operations
considered in distributive lattices would also give bilattices with unary op-
erations defined by hyperidentities. Boolean bilattices can be characterized
in similar fashion to bilattices. In particular, we have the following (com-
pare [16]).

Proposition 5.2. A non-empty bilattice is Boolean iff it satisfies the hy-
peridentities satisfied in the variety of Boolean algebras.

Theorem 5.3. An algebra (B,∧,∨, ·, +,′ ) is a Boolean bilattice if and only
if it is isomorphic to the superproduct L1 ./ L2 of two Boolean algebras L1

and L2.
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We omit the proofs, since they are similar to the proofs of Proposition 4.2
and Theorem 4.3. We only note that the proof of Theorem 5.3 requires a
definition of the operation ′ different from that implicit in the definition of
a PÃlonka sum (see [13]).

The concept of an interlaced bilattice may easily be extended to the case
of (bounded or unbounded) n-lattices, having n different lattice structures,
and satisfying all possible Padmanabhan identities. Note that such algebras
form a subvariety of the variety of 2n-semilattices as defined in [5] (2n-
quasilattices in the terminology of [20] and [21].) An analysis of the proof
of Theorem 4.3 shows that the number of lattices involved is not essential for
the proof, giving the possibility of proving a similar representation theorem
for n-lattices. Note also that trilattices, algebras with three separate lattice
structures, were already used to model systems with three lattice orderings
in [6].

We conclude with the following.

Problem 5.4. Which varieties of algebras admit a representation similar
to the representation for bilattices given by Theorem 4.3?
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