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Abstract. This paper is intended as a first step toward a general
Sylow theory for quasigroups and Latin squares. A subset of a
quasigroup lies in a non-overlapping orbit if its respective trans-
lates under the elements of the left multiplication group remain
disjoint. In the group case, each non-overlapping orbit contains a
subgroup, and Sylow’s Theorem guarantees non-overlapping orbits
on subsets whose order is a prime-power divisor of the group order.
For the general quasigroup case, the paper investigates the relation-
ship between non-overlapping orbits and structural properties of a
quasigroup. Divisors of the order of a finite quasigroup are classi-
fied by the behavior of non-overlapping orbits. In a dual direction,
Sylow properties of a subquasigroup P of a finite left quasigroup Q
may be defined directly in terms of the homogeneous space P\Q,
and also in terms of the behavior of the isomorphism type [P\Q]
within the so-called Burnside order, a labeled order structure on
the full set of all isomorphism types of irreducible permutation
representations.

This is a preprint version. Please cite the published version as:
J.D.H. Smith, Sylow theory for quasigroups, J. Combin. Designs 23
(2015), 115–133.

1. Introduction

The goal of the present paper is to initiate a study of Sylow theory
for general quasigroups and Latin squares, going beyond some recent
developments for Moufang loops (compare [4] – [8], [10], [24]). It is
to be expected that this theory will become much more diverse and
ramified than its group-theoretical prototype.

Two approaches are adopted in the paper. The starting point for the
first is the permutation representation proof of Sylow’s theorems for fi-
nite groups ([11, §I.7] [16, 17] [22, §10.8] [25]), examining the behavior
of subsets of a given size under left multiplication by group elements.
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The orbit of a given subset is described as non-overlapping if its mem-
bers are disjoint; otherwise, the orbit is said to be overlapping. Each
subgroup lies in a non-overlapping orbit, and each non-overlapping or-
bit contains a subgroup (compare Proposition 5.1). For subsets whose
order is a prime-power divisor of the group order, non-overlapping or-
bits are guaranteed to exist (in a number that is congruent to 1 modulo
the prime in question). For general finite quasigroups, the much more
richly varied behavior of overlapping and non-overlapping orbits on
subsets of different sizes becomes the main concern. One may charac-
terize this direction as a bottom-up approach to Sylow theory.

The second, top-down approach, primarily addresses issues related
to analogues of the conjugacy, maximality, or number of Sylow sub-
groups of groups within the context of the permutation representation
theory of (left) quasigroups. The fundamental concept of that theory
is the notion of a homogeneous space P\Q for a subquasigroup P of a
(left) quasigroup Q, defined as the set of orbits of the relative left mul-
tiplication group of P in Q as it acts on the set Q. The subquasigroup
P is right Lagrangean if these orbits all have the same length. The
(left) quasigroup Q acts on the space P\Q in stochastic fashion, with
Markov matrices instead of permutation matrices. The Burnside order
of Q keeps track of the isomorphism types of these stochastic actions,
and forms the framework for the top-down approach.

Despite some ostensibly algebraic language, the current theory is
really involved with the combinatorial structure of Latin squares, as the
multiplication tables of finite quasigroups. In that light, the bottom-up
approach to Sylow theory may be seen to play a role that is dual to
the top-down approach. For example, consider a subquasigroup P of a
finite quasigroup Q, and the bordered multiplication table of Q. If P
lies in a non-overlapping orbit, then the part of the multiplication table
consisting of columns labeled by elements of P has a special property:
any two of its rows have either the same or completely disjoint sets
of elements. Dually, if P is right Lagrangean, then the part of the
multiplication table consisting of rows labeled by elements of P has
the corresponding property: any two of its columns have either the
same or completely disjoint sets of elements.

Readers are referred to [21] and [23] for quasigroup-theoretic and
general algebraic concepts and conventions that are not otherwise ex-
plicitly clarified here.
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2. Plan of the paper

After introductory sections recalling some basic concepts and nota-
tion, the definition of overlapping and non-overlapping orbits in the
quasigroup context is presented in Section 5. Congruence classes, such
as normal subquasigroups, lie in non-overlapping orbits. Theorem 5.5
establishes a converse for commutative quasigroups, where subsets that
are not congruence classes are shown to lie in overlapping orbits. (The
existence of proper, non-trivial subgroups of finite simple groups shows
that the assumption of commutativity is essential.) In general quasi-
groups, non-overlapping orbits do not necessarily contain subquasi-
groups. Theorem 7.1 provides sufficient conditions under which one
may expect to find a subquasigroup in a non-overlapping orbit. A
geometrical application of some of these results appears in Section 6.

Definition 8.1 presents the basic classification of divisors of the or-
der of a finite quasigroup by progressively stronger types, in terms of
the existence of non-overlapping orbits, the presence of subquasigroups
within them, and the Lagrangean behavior of those subquasigroups.
Note that Lagrangean properties are understood here in the stronger
sense provided by quasigroup permutation representation theory: a
subquasigroup is (right) Lagrangean if its relative left multiplication
group acts semitransitively (compare [21, §4.5] and Section 4 below).
A divisor d has type J if non-overlapping orbits on subsets of size d ex-
ist. It has type I if at least one of those non-overlapping orbits contains
a subquasigroup, and type H if each of the non-overlapping orbits con-
tains a subquasigroup. It has type G (“group type”) if the subquasi-
groups in non-overlapping orbits are Lagrangean. Examples 8.3–8.7
separate the types. Theorem 8.8 shows that if d has type G, then each
non-overlapping orbit contains a unique subquasigroup.

Section 9 establishes a connection between the current theory and the
Sylow theory developed by Gagola III, Grishkov, Zavaritsine et al. for
finite Moufang loops. In the Paige loops PSL1,3(q) (also denoted P (q),
M(q), or SLL(q)) for prime powers q (the finite, non-associative simple
Moufang loops), certain primes p (dividing q2 + 1) are “bad” from the
point of view of Sylow theory, in that there are no non-trivial p-subloops
of PSL1,3(q), even though these primes are divisors of |PSL1,3(q)|. For
example, 5 is a “bad” prime for the smallest Paige loop PSL1,3(2) of
order 120. A general result about diassociative loops (Theorem 9.2)
classifies these bad primes as not belonging to the weakest type J of
Definition 8.1.

The second, top-down approach of the paper works in the broader
context of left quasigroups. The class of left quasigroups, generalizing
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quasigroups, ranges from groups at one extreme to sets (with projec-
tions) at the other. Section 4 describes the homogeneous space P\Q
associated with a sub-(left)-quasigroup P of a left quasigroup Q. If Q
is finite and p is a (rational) prime, then P is a Sylow p-subquasigroup
if |P | is a power of p, |P\Q| is coprime to Q, and |P | · |P\Q| = |Q|
(Definition 10.1). This definition just extends the usual group-theory
concept, although it is more stringent than a definition that has been
used previously for Moufang loops ([4] – [8], [10]), since the Paige
loop of order 120 has no Sylow 2-subloops in the present sense (Corol-
lary 10.5). Sylow p-subquasigroups are studied in Sections 10 and 11.
Proposition 10.6 establishes the basic relationship with the preceding
“bottom-up” Sylow theory. Section 11 then examines cyclic subgroups
of diassociative loops, which are especially well-behaved. Theorem 11.4
shows that in a diassociative loop, the number of cyclic subgroups that
are maximal p-subgroups for a prime p is congruent to 1 modulo p. As
noted in Example 11.5, this result matches the known number 28 of
Sylow 3-subgroups in the Paige loop of order 120.

A new, elementary survey of the permutation representation theory
of (left) quasigroups is presented in Section 12. The presentation avoids
mention of the coalgebras that are needed for deeper questions, and also
uses Q as a more appropriate ground field for the current discussion
(compare [21, Ch. 5]). Associated with each finite left quasigroup Q
is a labeled, ordered set of isomorphism types [P\Q] of homogeneous
spaces P\Q, known as the Burnside order (Section 13). For a finite
group, the Burnside order is the poset of conjugacy classes of sub-
groups. Within the Burnside order, Definition 13.3 defines a Sylow
p-type for a prime p. If P is a Sylow p-subquasigroup, then [P\Q]
is a Sylow p-type (Proposition 13.5). The converse holds if Q is a
quasigroup (Proposition 13.7), but may fail in a proper left quasigroup
(Example 13.8). The conjugacy and maximality of Sylow subgroups of
finite groups are then captured by the respective concepts of Sylowian
and strongly Sylowian prime numbers for a finite left quasigroup Q
(Definition 13.9). If Q is a group, all primes are strongly Sylowian.
The prime 3 is strongly Sylowian for the Paige loop of order 120 (Ex-
ample 13.10). Finally, a general prime p is strongly Sylowian for a
non-trivial projection quasigroup Q if p - |Q| (Proposition 13.11).

3. Left, right, and two-sided quasigroups

Quasigroups, left quasigroups, and right quasigroups may be de-
fined combinatorially or equationally. Combinatorially, all three form
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a structure (Q, ·), embodying a set Q equipped with a binary mul-
tiplication operation denoted by · or simple juxtaposition of the two
arguments. Then the opposite Qop is the set Q taken with the opera-
tion

Q×Q→ Q; (x, y) 7→ y · x .
The structure (Q, ·) is a (two-sided) quasigroup if specification of any
two of x, y, z in the equation

(3.1) x · y = z

determines the third uniquely. In a left quasigroup, specification of x
and z in (3.1) determines y uniquely. Then (Q, ·) is a right quasigroup
if its opposite is a left quasigroup. In other words, specification of y
and z in (3.1) determines x uniquely.

Equationally, a quasigroup (Q, ·, /, \) is a set Q equipped with three
binary operations of multiplication, right division / and left division \,
satisfying the identities:

(SL) x · (x\z) = z ; (SR) z = (z/x) · x :
(IL) x\(x · z) = z ; (IR) z = (z · x)/x .

These identities correspond to the existence and uniqueness of the
solutions of (3.1). For example, (SL) says that x\z is a solution y
to (3.1) for given x and z. On the other hand, given solutions y1

and y2, so that x · y1 = z = x · y2, the identity (IL) shows that
y1 = x\(x · y1) = x\(x · y2) = y2, so any solution is unique.

A group forms a quasigroup, with x\z = x−1z and z/y = zy−1.
Any set Q forms a left quasigroup (Q, ·, \), with the right projection
operations x · y = x\y = y, or a right quasigroup (Q, ·, /), with the left
projection operations x · y = x/y = x.

The body of the multiplication table of a two-sided quasigroup forms
a Latin square, with each element appearing just once in each column
and each row. In the multiplication table of a left quasigroup, each
element appears just once in each row. Dually, in the multiplication
table of a right quasigroup, each element appears just once in each col-
umn. These combinatorial conditions are conveniently symbolized by
the respective multiplication tables on the set {0, 1} of bits or residues
modulo 2, given by the quasigroup of addition modulo 2, the left quasi-
group with the right projection operation, and the right quasigroup
with the left projection operation:

· 0 1
0 0 1
1 1 0

,
· 0 1
0 0 1
1 0 1

,
· 0 1
0 0 0
1 1 1

.
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A subset P of a quasigroup (Q, ·, /, \) is a subquasigroup if it is closed
under the multiplication and the two divisions. When considering sub-
sets of a left quasigroup that are closed under the multiplication and
left division operations, the term subquasigroup will again be used, in
place of the cumbersome “sub-left-quasigroup.” Thus the nonempty
subquasigroups of a group are precisely the subgroups, while each sub-
set of a right projection left quasigroup is a subquasigroup.

4. Lagrangean subquasigroups

For each element x of a set Q with a multiplication operation, con-
sider the right multiplication

R(x) : Q→ Q; y 7→ y · x
and left multiplication

L(x) : Q→ Q; y 7→ x · y .
On a quasigroup, the right and left multiplications are elements of the
group Q! of bijections from the set Q to itself. For example, the iden-
tity (SL) says that each L(x) surjects, while (IL) gives the injectivity
of L(x). On a left quasigroup, the left multiplications are bijections.
Dually, the right multiplications on a right quasigroup are bijective.

The left multiplication group of a (left) quasigroup Q is the subgroup

LMltQ = 〈L(q) | q ∈ Q〉Q!

of Q! generated by the left multiplications. The (two-sided) multipli-
cation group of a quasigroup Q is defined as the subgroup

MltQ = 〈L(q), R(q) | q ∈ Q〉Q!

of Q! generated by all the left and right multiplications. If Q is com-
mutative, then LMltQ = MltQ.

For a subquasigroup P of a (left) quasigroup Q, the relative left
multiplication group of P in Q is the subgroup LMltQ(P ) of LMltQ
generated by LQ(P ) = {L(p) : Q→ Q | p ∈ P}. If Q is a group and P
is nonempty, then the set of orbits of LMltQP on Q is the set

(4.1) P\Q = {Px | x ∈ Q }
of cosets of P .

Let P be a subquasigroup of a finite (left) quasigroup Q. Let P\Q
denote the set of orbits of the permutation group LMltQP on the set
Q. This set is known as a homogeneous space. If Q is a group, the
notation is consistent with (4.1). In the group case, LMltQP always
acts semitransitively on Q, in the sense that each orbit has size |P |. In
the general (left) quasigroup case, the subquasigroup P is said to be
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(right) Lagrangean in Q if LMltQP acts semitransitively on Q (compare
[21, §4.5]). Dually, a subquasigroup P of a (right) quasigroup Q is
said to be left Lagrangean in Q if P is right Lagrangean in Qop. A
subquasigroup P of a quasigroup Q is Lagrangean in Q if it is both
right and left Lagrangean.

Lagrange’s Theorem implies that each subgroup of a finite group is
right Lagrangean. In any left quasigroup Q, the relative left multiplica-
tion group of the empty subquasigroup ∅ is trivial. Since the orbits are
all singletons, ∅ is right Lagrangean. Similarly, in a right projection
quasigroup, each subquasigroup (each subset) is right Lagrangean.

5. Non-overlapping orbits

Let Q be a quasigroup. For each natural number r ≤ |Q|, the left
multiplication group LMltQ of Q acts on the set

(
Q
r

)
of subsets of

Q of size r. An orbit of this action is said to be overlapping if it
contains pairs of elements which are not disjoint. Otherwise, the orbit
is described as non-overlapping. If Q is finite, then a non-overlapping
orbit will only appear if r is a divisor of |Q|, since the equal-sized sets
in such an orbit partition Q. The following two propositions exhibit
the occurrence of non-overlapping orbits.

Proposition 5.1. Let Q be a finite group.

(a) If P is a subgroup of Q, then P lies in a non-overlapping orbit.
(b) Each non-overlapping orbit of Q contains a subgroup of Q.

Proof. (a): The orbit of P is the set {xP | x ∈ Q} of left cosets of P .

(b): Let P be that member of a non-overlapping orbit which contains
the identity element 1 of Q. The set-wise stabilizer (LMltQ)P of P
is {L(x) | x ∈ Q and xP = P}. Now for x in Q, the relation xP =
P implies x = x1 ∈ P , so the group isomorphism L : Q → LMltQ
restricts to a group isomorphism L : P → (LMltQ)P , and in particular
P is a subgroup of Q. �

Proposition 5.2. Let V be a congruence on a finite quasigroup Q.
Then the set of V -classes constitutes a non-overlapping orbit.

Proof. Let S be a congruence class of V , with elements s and s′. Then
for each element x of Q, the relations x V x and s V s′ imply xs V xs′,
so SL(x) is again a congruence class of V . It follows that the orbit of
S is the set of congruence classes of V . Since these classes are disjoint,
the orbit of S is non-overlapping. �

Corollary 5.3. Let P be a subquasigroup of a finite quasigroup Q. If
P is normal, then it lies in a non-overlapping orbit.
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Corollary 5.4. Let P be a subquasigroup of a finite quasigroup Q, with
0 < |P | = |Q|/2. Then P lies in a non-overlapping orbit.

The following theorem exhibits overlapping orbits involving subsets
of certain quasigroups Q whose size may be a divisor of |Q|.

Theorem 5.5. Let Q be a finite commutative quasigroup. Let P be
a subset of Q that is not a congruence class in Q. Then P lies in an
overlapping orbit.

Proof. Let e be an element of P . If P was a congruence class, then it
would be preserved by the stabilizer

(LMltQ)e = 〈L(x/e)L(y)L(yx/e)−1 | x, y ∈ Q〉Q!

of the element e in the (left) multiplication group of Q. Moreover, for
elements a, b, c of Q, whenever (a/e)b = c and two of a, b, c were in P ,
then the third would also lie in P . (Compare [13],[21, Cor. 2.6 and
Ch. 3, Exer. 10].) Since P is not a congruence class, however, at least
one of the following four cases applies.

Case (a): There are elements b, c of P such that (a/e)b = c with
a = eL(c/b) /∈ P . Then the element c = bL(c/b) lies in the intersection
of the distinct subsets P and PL(c/b), so the orbit of P is overlapping.

Case (b): There are elements a, c of P such that (a/e)b = c with
b = cL(a/e)−1 /∈ P . Then the element e = aL(a/e)−1 lies in the
intersection of the distinct subsets P and PL(a/e)−1, so the orbit of P
is overlapping.

Case (c): There are elements a, b of P such that (a/e)b /∈ P . Then the
element a = eL(a/e) lies in the intersection of the distinct subsets P
and PL(a/e), so the orbit of P is overlapping.

Case (d): There are elements x, y of Q with PL(x/e)L(y)L(yx/e)−1 6=
P . Then the element e lies in the intersection of the distinct subsets P
and PL(x/e)L(y)L(yx/e)−1, so the orbit of P is overlapping. �

Remark 5.6. The commutativity assumption is needed in Theorem 5.5.
Suppose that Q is a finite simple (non-commutative) group. Then by
Proposition 5.1(a), any proper, non-trivial subgroup P of Q lies in a
non-overlapping orbit, even though P is not a congruence class in Q.

Corollary 5.7. Let Q be a finite commutative quasigroup. Let P be a
subquasigroup of Q that is not normal. Then P lies in an overlapping
orbit.
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Corollaries 5.3 and 5.7 identify the structural significance of sub-
quasigroups of commutative quasigroups that lie in non-overlapping
orbits.

Corollary 5.8. Let P be a subquasigroup of a finite commutative quasi-
group Q. Then P lies in a non-overlapping orbit iff it is a normal
subquasigroup of Q.

6. Some affine geometry

Let n and d be positive integers, with n odd. Consider the power
Q = (Z/n)d with the commutative, idempotent multiplication

(6.1) x · y = 2−1(x+ y) .

Now (Q, ·, /, \) is a quasigroup, with divisions

y/x = x\y = 2y − x .
Since (Q, ·) is entropic, each subquasigroup is normal [21, §3.10, Ex. 1].
Furthermore, a subset S of Q is a (normal) subquasigroup of Q if and
only if it is an affine subspace of the affine geometry AG(d,Z/n) of
dimension d over Z/n (compare [19, Cor. 6.6.9], for example). By
Corollary 5.3 and Theorem 5.5, this means that S is an affine subspace
if and only if it lies in a non-overlapping orbit.

Within the quasigroup (Q, ·) with multiplication (6.1), one has

(6.2) L(x) : Q→ Q; y 7→ 2−1y + 2−1x .

In particular, the doubling map

L(0)−1 : Q→ Q; y 7→ 2y

and the translation

L(0)−1L(2x) : Q→ Q; y 7→ y + x

by each element x of Q lie in LMltQ. Indeed, LMltQ is generated
by the doubling and the full set of translations, since by (6.2), the
left multiplication L(x) by an element x of Q is the composition of
the inverse of the doubling with the translation by 2−1x. In summary,
one obtains the following combinatorial-geometrical consequence of the
results of the previous section.

Theorem 6.1. Let n and d be positive integers, with n odd. In the
affine geometry AG(d,Z/n) of dimension d over the ring Z/n of integers
modulo n, let Γ be the group of affine transformations generated by the
doubling and translations. Let S be a set of points in the geometry.
Then S is an affine subspace if and only if S ∩ Sγ is never a proper,
non-empty subset of S for any affine transformation γ in Γ.
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7. Subquasigroups in non-overlapping orbits

Proposition 5.1(b) showed that in a finite, non-trivial associative
quasigroup Q, each non-overlapping orbit contains a subquasigroup.
The following theorem adapts that result to general quasigroups with
idempotent elements.

Theorem 7.1. Let e be an idempotent element of a finite quasigroup
Q. Suppose that a subset P of Q satisfies the following conditions:

(a) e ∈ P ;
(b) P lies in a non-overlapping orbit of Q;
(c) P lies in a non-overlapping orbit of Qop.

Then P is a subquasigroup of Q.

Proof. Since Q = {eR(q) | q ∈ Q}, there is a subset S of Q with
P = {eR(s) | s ∈ S} and |S| = |P |. Note that P = SL(e), so
S = PL(e)−1 lies in the non-overlapping orbit of P in Q. Furthermore,
eR(e) = e ∈ P , so e ∈ S and S = P . Thus P = PL(e)−1: For a given
element p2 of P , there is an element p3 of P with p2 = p3L(e)−1 = e\p3.

Now p3 = eR(e\p3) ∈ PR(e\p3)∩P . Since PR(e\p3) lies in the non-
overlapping orbit of P in Qop, the equality P = PR(e\p3) = PR(p2)
holds. Thus for given elements p1 and p2 of P , one has p1p2 ∈ PR(p2) =
P . Since Q is finite, it follows that P is a subquasigroup of Q. �

Corollary 7.2. Let e be an idempotent element of a finite quasigroup
Q. Suppose that a subset P of Q satisfies the following conditions:

(a) e ∈ P ;
(b) P lies in a non-overlapping orbit of Q;
(c) P is invariant under an isomorphism of Q with Qop.

Then P is a subquasigroup of Q.

Proof. An isomorphism of quasigroups induces an isomorphism of their
left multiplication groups, and a similarity of the respective actions of
these left multiplication groups on sets of subsets of given order. �

Corollary 7.3. Suppose that e is an idempotent element of a finite,
commutative quasigroup Q.

(a) If a subset P of Q contains e, and lies in a non-overlapping
orbit of Q, then it is a subquasigroup of Q.

(b) Each non-overlapping orbit of Q contains a normal subquasi-
group of Q.

Proof. (a): Since Q is commutative, each non-overlapping orbit of Q is
also a non-overlapping orbit of Qop.
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(b): In a non-overlapping orbit of Q, let P be the member that contains
the idempotent element e of Q. By (a), P is a subquasigroup of Q.
Corollary 5.8 then shows that P is a normal subquasigroup of Q. �

In Theorem 7.1 and Corollary 7.2, the respective conditions (c) are
essential.

Example 7.4. Consider the quasigroup Q with multiplication table

(7.1)

Q 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 3 2 1 0
3 2 3 0 1

and idempotent element 0. Although the subset P = {0, 2} satisfies
the conditions (a) and (b) of Theorem 7.1 and Corollary 7.2, it is not
a subquasigroup.

The necessity of condition (a) in Theorem 7.1 is demonstrated by
the following.

Example 7.5. Let Q be the set of integers modulo 6, equipped with
the commutative quasigroup product x◦y = 4−x−y. Then yL◦(x) =
y(−1)+(4−x), so LMltQ is the split extension of (Z/6,+) with {±1}.
The unique non-overlapping orbit

{
{0, 3}, {1, 4}, {2, 5}

}
on subsets of

size 2 does not contain a subquasigroup.

8. Classifying divisors

Non-overlapping orbits provide the basis for a classification of the
divisors of the order of a non-trivial finite quasigroup.

Definition 8.1. Let d be a positive integer, and let Q be a quasigroup
whose (finite) order is a multiple of d. Consider the action of LMltQ
on the set

(
Q
d

)
of subsets of Q of size d. For the quasigroup Q, the

integer d is said to have . . .

• . . . type J if at least one non-overlapping orbit exists;
• . . . type I if the action has at least one non-overlapping orbit

which contains a subquasigroup of Q;
• . . . type H if the action has non-overlapping orbits, each of which

contains a subquasigroup of Q;
• . . . type G if it has type H, and if each subquasigroup in a non-

overlapping orbit is (right) Lagrangean.
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Remark 8.2 (Informal mnemonics for the types of Definition 8.1). If
Q is a Group, then each prime power dividing |Q| has type G (cf. [22,
Prop. 10.51]). For type H, it is required that eacH non-overlapping
orbit contain a subquasigroup. For type I, it is sufficient for I (Roman
numeral!) non-overlapping orbit to contain a subquasigroup. Alter-
natively, 1 has type I for Q if and only if Q contains an Idempotent
element (compare Example 8.4 below). For type J, one Just requires a
non-overlapping orbit.

A series of examples serves to separate the types of Definition 8.1.

Example 8.3 (Divisors not of type J). For a simple commutative
quasigroup Q, Corollary 7.3(b) shows that no proper divisor of the
order |Q| may have type J for Q. As a concrete instance, one may
consider the quasigroup Q with multiplication table

(8.1)

Q 0 1 2 3
0 0 2 3 1
1 2 0 1 3
2 3 1 0 2
3 1 3 2 0

and idempotent element 0. Since the stabilizer of 0 in the multiplication
group of Q includes the 3-cycle L(0) = (1 2 3), the multiplication
group action is doubly transitive. While this certainly ensures that Q
is simple, it also shows directly that 2 does not have type J for Q, since
MltQ = LMltQ acts transitively on

(
Q
2

)
.

Example 8.4 (A divisor of type J, but not I). The integer 1 has type
J for any finite quasigroup Q. It has type I if and only if Q contains
an idempotent element.

Example 8.5 (A divisor of type I, but not H). Consider the quasigroup
Q of (7.1). The non-overlapping orbit

{
{0, 1}, {2, 3}

}
contains the

subquasigroup {0, 1}, while the non-overlapping orbits
{
{0, 2}, {1, 3}

}
and

{
{0, 3}, {1, 2}

}
contain no subquasigroup. Thus 2 has type I, but

not type H.

Example 8.6 (A divisor of type H, but not G). Consider the quasi-
group Q = (Z/3,−) of integers modulo 3 under subtraction, with
unique idempotent element 0. As noted in Example 8.4, 1 has type
I for Q. It also has type H, since there is a unique (non-overlapping)
orbit. However, since LMltQ{0} has orbits {0} and {1, 2} on Q, the
subquasigroup {0} is not (right) Lagrangean, so 1 does not have type
G.
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Example 8.7 (Divisors of type G). Proposition 5.1 shows that if Q
is a group with subgroup P , then |P | has type G for Q. For non-
associative examples, consider a subquasigroup P of a quasigroup Q,
with 0 < |P | = |Q|/2. Note that P is a congruence class of the kernel
of a surjective homomorphism from Q to a 2-element group. Then |P |
has type G for Q (compare Corollary 5.4 and [21, §4.6, Exer. 3]).

There are structural implications to the existence of divisors of type
G for a given quasigroup Q.

Theorem 8.8. Suppose that Q is a finite quasigroup of order dm, and
that d has type G for Q. Then in the action of LMltQ on

(
Q
d

)
, each

non-overlapping orbit contains a unique subquasigroup of Q.

Proof. Since d has type G, each non-overlapping orbit contains a right
Lagrangean subquasigroup P . Let the orbit of P under the action of
LMltQ on

(
Q
d

)
be {Pλi | 1 ≤ i ≤ m}, with each λi in LMltQ and

λ1 = 1.
Suppose that Pλh is a subquasigroup, for some index 1 < h ≤ m.

Consider an element y of Pλh. Then x · y = y for x = y/y in Pλh. On
the other hand, since P is right Lagrangean, (Pλh)LMltQP = Pλh, so
{yL(p) | p ∈ P} = Pλh. Now y ∈ Pλh, so there is an element p of P
with p · y = y. Then p = y/y ∈ P ∩ Pλh contradicts the fact that the
orbit of P is non-overlapping. �

Note that the statement of the following corollary (which may also
be proved directly) makes no mention of Sylow theory.

Corollary 8.9. Suppose that a finite quasigroup Q has more than one
singleton subquasigroup. Then none of those singleton subquasigroups
is (either right or left) Lagrangean.

Proof. Consider an idempotent element x of Q. If the singleton sub-
quasigroup {x} was right Lagrangean, the integer 1 would have type G
for Q. Theorem 8.8 would then imply that x was the only idempotent
element of Q. Applying the same argument to the opposite of Q shows
that {x} cannot be left Lagrangean either. �

9. Diassociative loops

Recall that a loop is a quasigroup Q with an (identity) element 1
such that 1x = x = x1 for all x in Q. A loop is diassociative if for each
pair x, y of elements of Q, the subloop 〈x, y〉 of Q generated by x and
y is associative. A loop Q is said to be a (left) Bol loop if

(9.1) L(x)L(y)L(x) = L(x · yx)
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for all elements x and y of Q. Right Bol loops are defined dually. A loop
is a Moufang loop if and only if it is both a left and a right Bol loop.
Moufang’s Theorem states that each Moufang loop is diassociative [3,
§VII.4].

The goal of this brief section is to exhibit divisors that are not of
type J for certain diassociative loops, and in particular for simple,
nonassociative Moufang loops.

Lemma 9.1. Let Q be a diassociative loop.

(a) Each element x of Q has an inverse x−1 with L(x−1) = L(x)−1.
(b) The inversion map

(9.2) Q→ Qop;x 7→ x−1

is an isomorphism of Q with Qop.

Proof. (a): Each element x of Q has an inverse x−1 in the group 〈1, x〉.
Then for each element y of Q, one has x−1(xy) = y = x (x−1y) in the
group 〈x, y〉.
(b): For elements x and y of Q, the equation (xy)−1 = y−1x−1 holds in
the subgroup 〈x, y〉 of Q generated by x and y, so the inversion (9.2) is
a homomorphism. Furthermore, (x−1)−1 = x, so the inversion, being
involutory, is bijective. �

Theorem 9.2. Let Q be a finite, diassociative loop. For a divisor d of
|Q|, suppose that there is no subloop of order d. Then d does not have
type J for Q.

Proof. Consider an orbit of the action of LMlt(Q) on
(
Q
d

)
. It must be

shown that the orbit is overlapping. Let P be a member of the orbit
that contains the identity element 1 of the loop Q.

If P 6= P−1, say x−1 /∈ P for an element x of P , then

x−1 = 1L(x)−1 ∈ PL(x)−1 6= P

but
1 = xL(x)−1 ∈ P ∩ PL(x)−1 ,

so the orbit of P is overlapping.
Otherwise, P is invariant under the inversion isomorphism (9.2) of

Q with Qop. Since there are no subloops of order d, Corollary 7.2 then
implies that the orbit of P is overlapping. �

Let q be a non-trivial prime power. The set of elements of norm
1 in the split octonion algebra over the q-element field forms a di-
associative loop under multiplication, and the quotient of that loop
by the central scalar subloop {±1} forms a simple, non-associative
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Moufang loop known as the Paige loop PSL1,3(q) (compare [4, 18], [21,
§1.7]). Suppose that p is an odd prime divisor of q2 + 1. Note that p
is congruent to 1 modulo 4 (and conversely, for each such p, there is
a prime power q for which q2 + 1 is a multiple of p) [4, Lemma 2.1].
Then p is also a divisor of |PSL1,3(q)| = q3(q4 − 1)/gcd{q + 1, 2}.

Corollary 9.3. Let p be an odd prime number that divides q2 + 1 for a
prime power q. Then in the Paige loop PSL1,3(q), no non-trivial power
of p dividing |PSL1,3(q)| has type J.

Proof. The Paige loop PSL1,3(q) has no subloop whose order is a non-
trivial power of p [4, Cor. 2.5]. �

10. Sylow subquasigroups

As a starting point for the top-down approach to Sylow theory, ho-
mogeneous spaces are used to formulate the definition of a (left) Sylow
subquasigroup of a left quasigroup. (Dually, one may define right Sylow
subquasigroups of right quasigroups.)

Definition 10.1. Let Q be a finite left quasigroup, and let p be a prime
number. A subset P of Q is said to be a (left) Sylow p-subquasigroup
of Q if

(a) P is a subquasigroup of Q;
(b) |P | is a power of p;
(c) |P\Q| is coprime to p;
(d) |P | · |P\Q| = |Q|.

Remark 10.2. Earlier approaches to the extension of Sylow theory for
groups (compare [4] – [8], [10], [24]) have disregarded the permutation-
theoretical aspect, essentially using |Q|/|P | as a substitute for |P\Q|
in Definition 10.1, and rendering condition (d) redundant.

Example 10.3. Let P be a subquasigroup of a finite left quasigroup
Q.

(a) If P is empty, then Definition 10.1(b) means that P cannot be
a Sylow p-subquasigroup for any prime p.

(b) If Q is a group, and P is non-empty, then P is a Sylow p-
subgroup of Q if and only if P is a Sylow p-subquasigroup of
Q.

(c) Let Q be a projection left quasigroup, with |P | > 1. Then
since |P\Q| = |Q|, Definition 10.1(d) implies that P cannot be
a Sylow p-subquasigroup for any prime p.
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(d) Let Q be a projection left quasigroup, with |P | = 1. Then by
Definition 10.1(c), P is a Sylow p-subquasigroup of Q if and
only if p is not a divisor of |Q| = |P\Q|.

The following proposition relates Definition 10.1 to the permutation-
theoretic concept of a right Lagrangean subquasigroup.

Proposition 10.4. Let Q be a quasigroup of order pr ·m, for a prime
number p with m coprime to p. Let P be a subquasigroup of order pr.
Then the following conditions are equivalent:

(a) P is a Sylow p-subquasigroup of Q;
(b) |P\Q| = |Q|/|P |;
(c) P is right Lagrangean in Q.

Proof. The equivalence of (b) and (c) is well known [21, Exercise 4.9].
Condition (b) of the proposition is a restatement of Definition 10.1(d)
when P is nonempty, and also implies that |P\Q| = m is coprime to
p — condition (c) of Definition 10.1 — under the assumptions of the
proposition. �

Corollary 10.5. There are no Sylow 2-subquasigroups in the Paige
loop PSL1,3(2) of order 120.

Proof. The loop PSL1,3(2) of order 120 = 23 · 15 does contain subloops
of order 8, which are elementary abelian groups. However, a GAP [9]
calculation performed by K.W. Johnson shows that these subloops are
not Lagrangean. �

The following proposition establishes the basic relationship between
Definition 10.1 and the classification of the divisors of the order of a
finite quasigroup given in Definition 8.1.

Proposition 10.6. Let Q be a quasigroup of order pr ·m, for a prime
number p with m coprime to p. Suppose that the divisor pr of |Q| has
type G in the classification of Definition 8.1. Then Q contains at least
one Sylow p-subquasigroup.

Proof. Since the divisor pr has type G, the action of LMltQ on the
set
(
Q
pr

)
of pr-element subsets of Q has non-overlapping orbits, each of

which contains a right Lagrangean subquasigroup P of Q. Then by
Proposition 10.4, P is a Sylow p-subquasigroup of Q. �

11. Cyclic subgroups

An associative subloop P of a loop Q is often described as a subgroup
of that loop. If Q is finite, and the size |P | of the subgroup P is a power
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of a prime number p, then P is said to be a p-subgroup of Q. Each
element x of a Bol loop Q generates a cyclic subgroup of Q. Moreover,
for each element x of a left Bol loop Q, induction on |r| from (9.1)
shows that

(11.1) L(xr) = L(x)r

for each integer r [23, §I.4.2].
The following two results provide instances in which cyclic subgroups

of loops become Lagrangean. Lagrangean subloops of Bol loops were
treated earlier in [14, §7.1], [15, §5].

Proposition 11.1. Suppose that P is a cyclic subgroup of a finite left
Bol loop Q. Then P is right Lagrangean.

Proof. Let P be generated by an element x, say P = {xi | 0 ≤ i < p} for
p = |P |. Consider an element y of Q. By (11.1), one has LMltQ(P ) =
{L(x)i | 0 ≤ i < p}. Then yLMltQ(P ) = {yL(x)i | 0 ≤ i < p} and
|yLMltQ(P )| = p = |P |, so P is right Lagrangean. �

Corollary 11.2. Let P be a cyclic subgroup of a finite loop Q.

(a) If Q is a right Bol loop, then P is left Lagrangean.
(b) If Q is a Moufang loop, then P is Lagrangean.

Corollary 11.2(b) may also be derived from the following.

Proposition 11.3. Let P be a cyclic subgroup of a finite diassociative
loop Q. Then P is (both right and left) Lagrangean.

Proof. Suppose that P is generated by an element x. If P = Q, the
result is immediate. Otherwise, let y be an element of Q that does not
lie in P . Let G be the subgroup of Q generated by x and y. Then
yLMltQ(P ) = yLMltG(P ), and |yLMltG(P )| = |P | in the group G. It
follows that P is right Lagrangean. Since diassociativity is a self-dual
concept, P is also left Lagrangean. �

Cyclic subgroups of diassociative loops feature in the following count-
ing theorem, an analogue of a result of Bruck for the case of nilpotent
diassociative loops of odd prime-power order [3, Th. VI.3.2(a)].

Theorem 11.4. Let Q be a finite diassociative loop. Let p be a prime
divisor of |Q|. Suppose that P is a cyclic subgroup of Q which is a
maximal p-subgroup of Q. Then the number of cyclic subgroups of Q
of size |P | is congruent to 1 modulo p.

Proof. Let S be the set of cyclic subgroups of Q of size |P |. The group
P acts on S by conjugation —

x : P ′ 7→ P ′T (x) = P ′L(x)−1R(x)
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for x ∈ P and P ′ ∈ S — a process which takes place inside the subgroup
〈P, P ′〉 of the diassociative loop Q generated by the cyclic groups P and
P ′. If P does not fix P ′, then the length of the orbit of P ′, the index
of its proper stabilizer in the p-group P , is a multiple of p. Of course,
the orbit of P itself is a singleton. Now suppose that P were to fix an
element P ′ of S with P ′ 6= P , so that P ′ would be a normal subgroup
of 〈P, P ′〉 = PP ′. Then

|PP ′| = |PP ′/P ′| · |P ′| = |P ′/(P ∩ P ′)| · |P ′| ,
so PP ′ would be a p-subgroup of Q properly containing P , in contra-
diction to the maximality of P . Thus |S| ≡ 1 mod p. �

Example 11.5. Let Q be the Paige loop PSL1,3(2) of order 120 = 3·40.
Then Q has exactly 28 = 33 + 1 cyclic subgroups of order 3 (and no
other 3-subgroups) [24, Lemma 5.13]. By Corollary 11.2(b), each of
these cyclic subgroups is Lagrangean in Q. By Proposition 10.4, it
follows that they are Sylow 3-subloops of Q.

12. Iterated function systems

If P is a subgroup of a group Q, then the group Q has a permutation
representation on the homogeneous space (4.1) by the actions

(12.1) RP\Q(q) : P\Q→ P\Q ; Px 7→ Pxq

for elements q of Q. Now let P be a subquasigroup of a left quasigroup
Q. For each element q of the left quasigroup Q, consider the Markov
chain with transition matrix RP\Q(q) on the state space P\Q, where
the probability of transition from an orbit X to an orbit Y is given as

(12.2)
[
RP\Q(q)

]
XY

= |X ∩R(q)−1(Y )|
/
|X| .

IfQ is a group, the transition matrix RP\Q(q) is the permutation matrix
given by the permutation action (12.1). With the uniform distribution
on the left quasigroup Q, the quotient (12.2) becomes the conditional
probability of the event xq ∈ Y given x ∈ X. The set of convex
combinations of the states from P\Q forms a complete metric space,
and the actions RP\Q(q) of the left quasigroup elements q form an
iterated function system (IFS) in the sense of fractal geometry [1, 12].

Let Q be a finite set. Define a (rational) Q-IFS (X,Q) as a finite set
X together with an action map

(12.3) R : Q→ EndQ(QX); q 7→ RX(q)

from Q to the set of endomorphisms of the rational vector space QX
with basis X (identified with their matrices with respect to the ba-
sis X), such that each action matrix RX(q) is stochastic. If P is a
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subquasigroup of a finite non-empty left quasigroup Q, then the homo-
geneous space P\Q is a Q-IFS with the action map specified by (12.2).
A morphism or (Q-)homomorphism

(12.4) φ : (X,Q)→ (Y,Q)

from a Q-IFS (X,Q) to a Q-IFS (Y,Q) is a function φ : X → Y , whose
graph has incidence matrix F , such that the intertwining relation

(12.5) RX(q)F = FRY (q)

is satisfied for each element q of Q. It is readily checked that the class
of morphisms (12.4), for a fixed finite set Q, forms a concrete category
IFSQ. The following proposition serves to define homomorphic images.

Proposition 12.1. Let φ : (X,Q) → (Y,Q) be a Q-IFS homomor-
phism. Let Z = Xφ. Then the subspace QZ of QY is invariant under
the set {RY (q) | q ∈ Q} of actions in (Y,Q).

Proof. Consider an element z of Z, say z = xφ for x ∈ X, and an
element q of Q. Suppose xRX(q) =

∑
t∈X rtt for rational numbers rt.

Then (12.5) implies zRY (q) = xφRY (q) = xFRY (q) = xRX(q)F =(∑
t∈X rtt

)
F =

∑
t∈X rt(tF ) =

∑
t∈X rt(tφ) ∈ QZ. �

Definition 12.2. In the context of Proposition 12.1, the Q-IFS (Z,Q)
with action map R : Q→ EndQ(QZ); q 7→ RY (q)

∣∣
QZ

is known as:

(a) the homomorphic image of (the Q-IFS (X,Q) under) the Q-IFS
homomorphism φ : (X,Q)→ (Y,Q), and as

(b) a sub-Q-IFS of the Q-IFS (Y,Q).

Group permutation representations appear in the IFS context as
follows [21, Prop. 5.1].

Proposition 12.3. Let Q be a finite group.

(a) The category of finite Q-sets forms the full subcategory of IFSQ

consisting of those objects for which the action map (12.3) is a
monoid homomorphism.

(b) A Q-IFS (X,Q) is a Q-set if and only if it is isomorphic to a
Q-set (Y,Q) in IFSQ.

Now let Q be a finite left quasigroup. Recall that for each subquasi-
group P of Q, the homogeneous space P\Q is a Q-IFS with the action
map specified by (12.2). In particular, the regular space is ∅\Q. A
Q-IFS is said to be a basic Q-set if it is a homomorphic image of a
homogeneous space P\Q for a subquasigroup P of Q — compare Def-
inition 12.2(a). Each basic Q-set is irreducible in the sense that it has
no proper, non-empty subobjects [20, Cor. 8.2]. A Q-IFS is said to be
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a (finite) Q-set if it is a finite sum of basic Q-sets. A finite Q-set (Z,Q)
is said to be a Q-subset or sub-Q-set of a finite Q-set (Y,Q) if (Z,Q)
is a sub-Q-IFS of (Y,Q) — compare Definition 12.2(b). The category
Q

fin
of finite Q-sets is the full subcategory of IFSQ induced on the

class of finite Q-sets. (Note that the alternative definitions here agree
with the earlier definitions of [20, 21] — compare [21, Th. 5.4].)

13. Burnside orders

For a finite Q-set X, let [X] denote its isomorphism type within the
category Q

fin
. Let B be the set of so-called basic types, the isomor-

phism types of basic Q-sets. In particular, the regular type is [∅\Q].
Let J be the full subcategory of Q

fin
induced on the class of basic

Q-sets. Define a new category J̃ on the object class J
0

of J by setting

∣∣J̃(X, Y )
∣∣ =

{
1 if Q

fin
(X, Y ) 6= ∅;

0 otherwise.

Then J̃ is a pre-ordered class. It induces an order structure (B,v) on
the set B (compare [23, I, Ex. 1.3H]) given explicitly by

(13.1) [X] v [Y ] ⇔ Q
fin

(X, Y ) 6= ∅ .

(Antisymmetry follows from the fact that basic Q-sets are irreducible.)

Definition 13.1. The partially ordered set (B,v) of (13.1) is called
the Burnside order of the left quasigroup Q.

Example 13.2. Let Q be a group. By Proposition 12.3, the left quasi-
group actions of Q coincide with the (right) group actions of Q. The
set B of basic types [P\Q] may be identified as the set of conjugacy
classes PQ of subgroups P of Q. Then the Burnside order of Q is given
by

PQ
1 v PQ

2 ⇔ ∃ q ∈ Q . P q
1 ⊆ P2 ,

i.e., by containment of subgroups within the conjugacy classes. The
partial order v is written as ⊆Q in the notation of [2].

The Burnside order provides a framework for certain aspects of Sylow
theory. Let Q be a finite left quasigroup. Since Q-set isomorphisms
are set isomorphisms, the function

h : B → N; [X] 7→ |X|
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is well-defined. Note that the regular type is the only basic type b with
bh = |Q|. Consider the function

k : B → 2N; b 7→
{
|P |

∣∣ b = [P\Q] for a subquasigroup P of Q
}
.

Definition 13.3. Let Q be a finite left quasigroup. Then the structure
(B,v, h, k) is known as the labeled Burnside order of Q.

Definition 13.4. Let Q be a finite left quasigroup, and let p be a
prime number. A basic type s of Q is said to be a Sylow p-type of Q if

(a) sh is coprime to p, and
(b) ∃ r ∈ N . pr ∈ sk and |Q| = sh · pr.

Isomorphism types of homogeneous spaces of Sylow p-subquasigroups
are certainly Sylow p-types:

Proposition 13.5. Let P be a Sylow p-subquasigroup of a finite left
quasigroup Q for a prime number p. Then the basic type [P\Q] is a
Sylow p-type of Q.

Proof. Suppose that |P | = pr. Then [P\Q]h = |P\Q| is coprime to p,
and pr ∈ [P\Q]k with |Q| = [P\Q]h · pr. �

Corollary 13.6. Let Q be a finite, non-empty set, considered as a
projection left quasigroup. Let p be a prime that does not divide |Q|.
Then the regular type is a Sylow p-type.

Proof. Let S be a singleton subset of Q. Since LMltQS is trivial, the
basic type [S\Q] is regular. As in Example 10.3(d), S is a Sylow p-
subquasigroup of Q. Proposition 13.5 then shows that [S\Q] is a Sylow
p-type. �

For non-empty subquasigroups of finite quasigroups, the converse of
Proposition 13.5 holds.

Proposition 13.7. Let P be a non-empty subquasigroup of a finite
quasigroup Q. If the basic type [P\Q] is a Sylow p-type of Q for a
prime number p, then P is a Sylow p-subquasigroup Q.

Proof. Condition (a) of Definition 10.1 is immediate. The coprimality
of |P\Q| = [P\Q]h to p yields condition (c). By Definition 13.4(b),
there is a subquasigroup P ′ of Q, of p-power order pr, with [P ′\Q] =
[P\Q] and |Q| = |P\Q| · pr. In particular, Proposition 10.4 shows
that P ′ is right Lagrangean in Q. Since [P ′\Q] = [P\Q] and P is
non-empty, it follows that P is also right Lagrangean in Q. Thus
|P | = |Q|/|P\Q| = pr, yielding the remaining conditions (b) and (d)
of Definition 10.1. �
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For non-empty subquasigroups of finite left quasigroups, the converse
of Proposition 13.5 may fail.

Example 13.8. Let Q be a 2-element set, with a singleton subset S.
Consider Q as a projection left quasigroup. Let p = 3 and P = Q.
The triviality of the group LMltQ implies that ∅\Q = P\Q. By
Corollary 13.6, P\Q is a Sylow 3-type of Q. However, as noted in
Example 10.3(c), P is not a Sylow 3-subquasigroup of Q.

The following two definitions are designed to capture the respective
conjugacy and maximality of Sylow subgroups of finite groups within
the left quasigroup context.

Definition 13.9. Let Q be a finite left quasigroup. A prime number
p is said to be:

(a) Sylowian for Q if Q has a unique Sylow p-type;
(b) strongly Sylowian for Q if it is Sylowian, say with unique Sylow

p-type s, and if for each basic type b with sh|bh, one has b v s.

By Sylow’s Theorem [22, Th. 10.56], each prime is strongly Sylowian
for each finite group (compare Example 13.2).

Example 13.10. The prime number 3 is strongly Sylowian for the
Paige loop PSL1,3(2) of order 120.

Proposition 13.11. Let Q be a finite set, considered as a projection
left quasigroup. Let p be a prime that does not divide |Q|. Then p is
strongly Sylowian for Q.

Proof. By Corollary 13.6, the regular type is a Sylow p-type. Now
if s is a Sylow p-type, Definition 13.4(b) shows that s = [S\Q] with
|S| = 1, and since LMltQS is trivial, it follows that s is the regular
type. Thus p is Sylowian. Finally, if b is a basic type with sh|bh, then
|Q| = sh ≤ bh ≤ |Q| implies bh = |Q|, so b = s. Thus p is strongly
Sylowian. �
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