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Abstract. The paper introduces a new class of simple comtrans algebras obtained
in the tangent space of a Grassmann manifold. It is shown that no simple algebra
of this new Grassmann type appears as a simple algebra of any of the previously
known types.
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1 Introduction

A comtrans algebra E over a unital commutative ring R is an R-module E
equipped with two trilinear ternary operations, a commutator [z.y, z] and
a translator (x,y, z), such that the commutator satisfies the left alternative
identity

2,50, 9] =0, (1.1)
the translator satisfies the Jacobi identity
(x.y,2) + (y,z,z) + (z,z,y) =0, (1.2)

and together the commutator and translator satisfy the comtrans identity
[z,y,2] = (z,y,z). (1.3)

Comtrans algebras were originally introduced [12] in answer to a problem
from differential geometry, asking for the algebraic structure in the tangent
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bundle corresponding to the coordinate n-ary loop of an (n+ 1)-web (cf.
2]). In this context, the role played by comtrans algebras is analogous to
the role played by the Lie algebra of a Lie group. The standard Lie algebra
multiplication is the binary commutator [z,y] = zy — yx of a bilinear and
associative operation (x,y) ~ ry. Similarly, the standard ternary comtrans
algebra operations are the ternary commutator

[z,y,2] = zyz — yz2 (1.4)
and translator
{(z,y,z) = zyz — yzx (1.5)
of a trilinear operation
(z,y,2) — zyz. (1.6)

Indeed, over a ring R in which 6 is a unit, any comtrans algebra arises from
the commutator (1.4) and translator (1.5) of a suitably defined trilinear
operation (1.6) (see [12]).

The present paper forms part of a research programme devoted to the
study of comtrans algebras from a purely algebraic point of view, concerned
especially with the discovery and classification of simple comtrans algebras
(1, 3, 6-11]. Currently, there are three known general types of simple com-
trans algebra:

(1) rectangular;

(2) Lie;

(3) Hermitian.
An algebra C'T(A, B) of the first type is defined by two square matrices A
and B (not necessarily of the same size) over a field R. It is obtained by
(1.4) and (1.5) from the trilinear operation

(X, ¥, 25— XAYTBZ, (1.7)

where X,Y, Z are rectangular matrices sized so that the matrix product
in (1.7) is defined. The exact criteria for the simplicity of CT(A, B) are
given in [9]. A simple comtrans algebra C'T(L) of the second (Lie) type is
obtained by setting

[2,9,2] = (2,9, 2) = [, ], 2] (18)

in a Lie algebra L. Then C'T(L) is simple if and only if L is simple (Theorem
3.2 of [9]). Simple comtrans algebras of the third type are obtained from
spaces of Hermitian and generalized Hermitian operators [1, 10, 11].

In this paper, a new type of real simple comtrans algebras is introduced.
The algebras are said to be of Grassmann type. For each positive integer
n, let O(n) be the group of orthogonal n x n matrices. Let o(n,R) be
the corresponding Lie algebra, and let O™ be the corresponding comtrans
algebra C'T'(o(n,R)). The underlying set of O™ may be taken to be the
set of skew-symmetric real n x n matrices. Let p and g be integers larger
than 1. Then the Grassmann comtrans algebra GP9 is defined to be the
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subalgebra of OP*9 consisting of those matrices X whose entries X;; are
zero if i and j are either both not greater than p, or else both greater than
p. From a geometrical point of view, the Grassmann comtrans algebra G™7
appears in the tangent space to the symmetric space O(p+q)/O(p) x O(q),
the Grassmann manifold of p-dimensional hyperplanes in RP*? (cf. Example
X1.10.3 of [5]).

The plan of the paper is as follows. Section 2 summarizes some of the
prerequisite details of the general algebraic theory of comtrans algebras,
particularly concerning the universal enveloping algebra of a comtrans alge-
bra. In Section 3, it is shown that the Grassmann comtrans algebras G719
are simple if p and g are not both equal to 2. The remainder of the paper is
devoted to the problem of showing that Grassmann comtrans algebras are
not isomorphic to other types of simple comtrans algebras. Now it is cer-
tainly clear that the Grassmann algebras are not of Hermitian type. Indeed,
the Grassmann algebras are monic in the sense that their commutators and
translators agree according to (1.8), while the algebras of Hermitian type
are not monic. In Section 4, it is shown that no simple Grassmann comtrans
algebra is of rectangular type. In Section 5, it is shown that no simple Grass-
mann comtrans algebra GP is of Lie type. The techniques used to prove
the non-isomorphisms may be of independent interest as adumbrations of a
Cartan-type structure theory for comtrans algebras.

For concepts and conventions of algebra that are not otherwise explained
here, readers are referred to [13].

2 Action of the Enveloping Algebra

The class €Ty of all comtrans algebras over a fixed ring R forms a variety
in the sense of universal algebra. This variety becomes (the class of ob-
jects of) a bicomplete category whose morphisms are the homomorphisms
between comtrans algebras (cf. Theorems IV.2.1.3 and 2.2.3 of [13]). For
a member E of €Tg, let E[X] denote the coproduct of E in €Ty with the
free €T p-algebra on a singleton {X}. For z,y in E, there are R-module
homomorphisms

K(z,y): E[X] = E[X]; 2w [2,2,¥), (2.1)

R(z,y) : E[X] — E[X]; z+ {z,z,y), (2.2)
and

L(z,y) : E[X] — E[X]; z& (y,x,2). (2.3)

The wuniversal enveloping algebra U(E) of E is the R-subalgebra of the
endomorphism ring of the R-module E[X] generated by

{K(I?, ), R(z,y), L(z,y) | =,y € E}
(see [7]). Note that the maps
(z, y) — K(z,y), (z,y) — R(z,y), (z,y) — L(z,y) (2.4)
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from E x E to U(FE) are bilinear. For a comtrans algebra F, the restrictions
to E of the maps (2.4) play a role analogous to that of the adjoint mappings

Ad(x): L - L; z+ [z,7] (2.5)

determined by elements x of a Lie algebra L. In particular, (1.8) shows that
K(z,z) = Ad(z)? (2.6)

in CT(L).

An R-submodule of a comtrans algebra E is an ideal of E if and only if it
is a U(E)-submodule. The ideals of the comtrans algebra E are the kernels
of the comtrans algebra homomorphisms with domain E (Proposition 3.1
of [9]). Thus E is simple if and only if it is irreducible as a U(F)-module.
A comtrans algebra E is said to be abelian if and only if F is a trivial
U(E)-module, i.e. if and only if its commutators and translators are all
zZero.

The following definition is modelled on the concept of the characteristic
polynomial of a Lie algebra (cf. §IIL.1 of [4]).

Definition 2.1. Let R be a field, and let E be a monic comtrans algebra
of finite dimension n over R. Let {X1,..., X, } be a set of n indeterminates
over i, and let {ey,...,e,} be a basis for E over R. Then the characteristic
polynomial of the comtrans algebra E with respect to the basis {e),..., e}
is the characteristic polynomial of the endomorphism

Ii'(4Y[€1+-"+X"F,’.T,‘,X1€1+"‘+Xn€n) (27)

of the extension of the comtrans algebra E to the field of rational functions
over the set {X,,..., X, } of indeterminates.

For finite-dimensional monic comtrans algebras over a field, the depen-
dence of the characteristic polynomial on the choice of basis is analogous to
the dependence exhibited by characteristic polynomials of Lie algebras (cf.
§IIL1 of [4]). In particular, the multiplicities of the factors of the charac-
teristic polynomial are independent of the choice of basis, and thus provide
invariants of the algebra.

3 Simplicity

For the purposes of this and subsequent sections, it is convenient to use the
notation of [3]. The main result of that paper (Theorem 7.1) decomposes
each orthogonal comtrans algebra O™ as a cascading sum of subalgebras
E",E"' ....E'. In accordance with the decomposition, define ej to be
the skew-symmetric difference E(*+1):7 — pi:(i+1) of elementary matrices. In
this notation, the “Euclidean space” E* is spanned by {e} | 1 < j < s}.
The algebra GP7 is then spanned by the basis

A={ed""|1<j<p 0<t<g) (3.1)
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The following proposition is readily verified by direct computation with the
matrices involved.

Proposition 3.1. [Inside GP, the fotlowing actions take place:
(1) K(ej,ef) negates e} for j # i and e fort # s,
(2) K(ef,€f) fors #t, 1,7'-‘_) switches e} and e?
while the othef basis elements of G™9 are anmhtlated by these maps.

Lemma 3.2. Let p,q be a pair of integers bigger than 1. Then for each
1<i<pand 0<s<q, the ideal J of G generated by e is improper.

Proof. For 1 < j < p with j # i, the left alternativity (1.1) and Proposi-

tion 3.1 yield
pt+s g pts _ptsy _ pts p+s _pt+sy __ _pts
PR (e, € )f—ej K(el™, et )ﬁej

so that J contains the whole p-dimensional Euclidean space spanned by
{e;’“ | 1 <7 <p}. Similarly, for 0 <t < g with ¢ # s, one has
ef_'JJrsK(Pprt ef“) _ p+fh ( pts

p+sy _ _p+t
e =5 .

e.
Applying the above argument with ¢ replaced by the various e/** for
Jj # i, it becomes clear that J contains the basis (3.1) of GP1. a

Theorem 3.3. For each pair of integers p,q > 1, not both equal to 2, the
Grassmann comtrans algebra GP9 is simple.

Proof. Let x be a non-zero element of a non-trivial ideal J of G™9. It will
be shown that .J contains a non-zero multiple of an element of the set A of
(3.1). The result then follows by application of Lemma 3.2.

Suppose that p = ¢ (the case q > p is similar). Consider the expression
of z as a linear combination -5 77| ,ufJ“'e’hLs of elements of the basis A
of (3.1). Suppose that a particular coefficient ;" is non-zero, that {t,u} is
a 2-element subset of {0,...,¢ — 1}, and that {) Jyk,1} is a 3-element subset

of {1,...,p}. Using Proposition 3.1,

IK(8?+u’ei+r) _ ‘Mp+t ptu | phu ‘{u+t v,
where y is an element of .J. Again by Proposition 3.1,
yK (el el™) = #Jp“ ette J,
as required. O

Ezample 3.4. The case p = ¢ = 2 has to be excluded from Theorem 3.3
since e —e3 and ef+ef span a proper, non-trivial ideal H of G*2. Similarly,
e3 — e} and e? + €3 span a proper, non-trivial ideal J of G*2. In Shen’s
classification [6] of 2-dimensional algebras over an algebraically closed field
of characteristic 0, the complexifications of both H and ./ are of type E(I, ).

The algebra G*? decomposes as the direct sum H & J.
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4 Grassmann Algebras and Rectangular Matrices

In this section, it will be shown that no simple Grassmann comtrans algebra
GP? appears as a rectangular algebra.

Definition 4.1. A subalgebra H of a finite-dimensional monic comtrans
algebra E over a field R of characteristic zero is said to be semisimplicial
if for each pair of (not necessarily distinct) elements 2 and y in H, the
endomorphism K (z,y) of E is semisimple.

Proposition 4.2. For each pair of integers p,q > 1, the subspace H of
the simple Grassmann comtrans algebra GP? spanned by {e%,e5™'} is an
abelian and semisimplicial subalgebra.

Proof. Consider the basis
B={e},eb" b —ef™ e + e ek |u>p+1ork>2) (4.1)

of G4, By Proposition 3.1, H is certainly an abelian subalgebra of GP9,
Moreover, the matrix of each K (z,y) for (not necessarily distinct) elements
x and y of H with respect to the basis B of GP9 is diagonal. m]

For a unital commutative ring R, let E' be an R-module equipped with a
bilinear form #. Then a comtrans algebra CT'(E, 3) with underlying module

E is defined by
[z,y.2] = yB(z, 2z) — 2B(y, 2) (4.2)
(z,y,2) = yB(z,2) — 2(y, 2) (4.3)

(see [8]). If 3 is symmetric, then CT(E, 3) is monic. For a vector space E
of dimension at least 3, two forms 3 and 4 on E are equivalent if and only
if the comtrans algebras CT(E, 3) and CT(E,~) are isomorphic (Theorem
3.6 of [8]).

Proposition 4.3. Let R be a field of characteristic different from 2. Let
E be an R-space equipped with a symmetric bilinear form G. Let H be a
subspace of E of dimension at least 2. Then H is an abelian subalgebra of
CT(FE,3) if and only if it forms an isotropic subspace of E.

and

Proof. If H is isotropic, then (4.2) shows that H is abelian. Conversely,
suppose that H is an abelian subalgebra of CT(E, 3). By (4.2), one has

yﬁ(:r,z) - mﬁhﬁ Z) =0 (44)

for all z,y,2 in H. Consider a pair of (not necessarily distinct) elements
y,z of H. Let = be an element of H that is linearly independent of 3. Then
(4.4) shows that 3(y,z) = 0. o

Proposition 4.4. Let E be a complex vector space of finite dimension
greater than 3, equipped with a non-degenerate, symmetric bilinear form 3.
Then the comtrans algebra CT(E, ) contains no two-dimensional abelian
semasimplicial subalgebra.
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Proof. Suppose that y and z span a two-dimensional abelian semisimplicial
subalgebra H of CT(E, 3). Since H is abelian as a comtrans subalgebra of
CT(E, 3), Proposition 4.3 shows that it is isotropic as a subspace of (E, 3).
Let z be an element of E such that 3(z,z) # 0. (The non-degeneracy of
/3 gnarantees that such an element exists.) Then the restriction of K(y, z)
to its invariant subspace spanned by {z,y, z} is a non-zero endomorphism
whose characteristic polynomial is A*, contradicting the semisimpliciality of

H. O

Theorem 4.5. For each pair of integers p,q > 1, not both equal to 2, there
are no square matrices A and B such that the simple Grassmann comtrans
algebra GP9 is isomorphic to the algebra CT (A, B).

Proof. Suppose that G is isomorphic to some CT(A, B). Then the com-
trans algebra CT(A, B) is monic and simple. By Proposition 5.1 of [9], it
follows that C'T(A, B) is of the form CT(RP?,3) for a symmetric bilinear
form 3. By Theorem 3.4 of [8], the form f is non-degenerate. By Propo-
sition 4.2, the complexification of GP9 contains a two-dimensional abelian
semisimplicial subalgebra. On the other hand, by Proposition 4.4, the com-
plexification of CT(A, B) cannot contain any such subalgebra. Thus G
cannot be isomorphic to CT(A, B). O

5 Grassmann Algebras and Lie Algebras

In this section, it will be shown that no simple Grassmann comtrans algebra
GP9 appears as the comtrans algebra CT(L) of a Lie algebra L.

Proposition 5.1. For each pair of integers p,q > 1, not both equal to
2, the characteristic polynomial of the simple Grassmann comtrans algebra
GP? has at least one linear factor of multiplicity one.

Proof. Take the basis (4.1) of G"7, and consider the specialization
K(26% + 8™, 2¢8 4 8tY) (5.1)

of (2.7). Then the basis (4.1) consists entirely of eigenvectors of (5.1).
By Proposition 3.1, the first two basis eigenvectors are annihilated, and the
third (2 — ") belongs to the eigenvalue —9, while the rest are all negated,
annihilated, or multiplied by —4. O

Proposition 5.2. Let L be a simple real Lie algebra of dimension larger
than 3. Then each linear factor of the characteristic polynomial of CT(L)
appears with multiplicity at least 2.

Proof. Let {ei,...,e,} be a basis for L over R. Let {X;,..., X} be a set
of n indeterminates over R, and let F' be the algebraic closure of the field
of rational functions over {Xi,...,X,}. Let L’ be the extension of L to F.
Let = be the generic element Xe; + --- + X, e, of L'. Then z is a regular
element of L’ (cf. Exercise 1X.6 of [4]), and its centralizer H is a Cartan
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subalgebra of L'. Consider the corresponding Cartan decomposition

U'=He) L,
pe®

of L'. Then in the comtrans algebra CT(L'), the extension to F of CT(L),
the eigenspaces of (2.6) are H and the sums Ly @ L', for roots ¢ in .
None of these is one-dimensional. O

Theorem 5.3. For each pair of integers p,q > 1, not both equal to 2, there
is no real Lie algebra L such that the simple Grassmann comtrans algebra
GP7 is isomorphic to the algebra CT(L).

Proof. Suppose that there is a real Lie algebra L such that GP is isomor-
phic to CT(L). Then CT(L) is simple, and its dimension is at least 6. By
Theorem 3.2 of [9], the real Lie algebra L is also simple. By Proposition 5.2,
each linear factor of the characteristic polynomial of CT(L) has multiplicity
at least 2. On the other hand, by Proposition 5.1, the characteristic poly-
nomial of GP4 has at least one linear factor of multiplicity one. Thus GP4
and CT(L) cannot be isomorphic. o

References

[1] T.S.R. Fuad, J.D. Phillips, X.R. Shen, J.D.H. Smith, Simple multilinear
algebras and hermitian operators, Comment. Math. Univ. Carol. 41 (2000)
251-259.

[2] V.V. Goldberg, Theory of Multicodimensional (n+ 1)-webs, Kluwer, Dor-
drecht, 1988.

[3] B.Im, J.D.H. Smith, Orthogonal ternary algebras and Thomas sums, Algebra
Collog. 11 (2004) 287296

[4] N. Jacobson, Lie Algebras, Wiley, New York, 1962.

[5] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Wiley, New
York, 1969.

[6] X.R. Shen, Classification of the comtrans algebras of low dimensionalities,
Comm. Algebra 23 (1995) 1751-1780.

[7] X.R. Shen, J.D.H. Smith, Representation theory of comtrans algebras, J. Pure
Appl. Algebra 80 (1992) 177-195.

[8] X.R. Shen, J.D.H. Smith, Comtrans algebras and bilinear forms, Arch. Math.
59 (1992) 327-333.

(9] X.R. Shen, J.D.H. Smith, Simple multilinear algebras, rectangular matrices
and Lie algebras, J. Algebra 160 (1993) 424-433,

[10] X.R. Shen, J.D.H. Smith, Simple algebras of Hermitian operators, Arch.
Math. 65 (1995) 534-539.

[11] X.R. Shen, J.D.H. Smith, Simple algebras of invariant operators, Algebra
Collog. 8 (2001) 285-291.

[12] J.D.H. Smith, Multilinear algebras and Lie's theorem for formal n-loops,
Arch. Math. 51 (1988) 169-177.

[13] J.D.H. Smith, A.B. Romanowska, Post-Modern Algebra, Wiley, New York,
1999.




Copyright of Algebra Colloquium is the property of Springer - Verlag New York, Inc.
and its content may not be copied or emailed to multiple sites or posted to a listserv
without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.



