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I. Introduction.

In a recent paper [Lo], Loginov introduced a concept of linear representation for Moufang
loops, based on an idea of Eilenberg (Ei] generalizing the concept of the split extension of
a group module by the group. Earlier [S1] [S2], a concept of representation in a variety
of quasigroups had been introduced, both abstractly as a module object in a comma
category and concretely as a module for a certain ring associated with a quasigroup in the
given variety. The current paper is concerned with investigating the relationship between
these two approaches to a representation theory for Moufang loops. In the process, the
general theory of representations in a va.rieﬁy of quasigroups is specialized explicitly to the
case of Moufang loops for the first time. Elementary definitions are given in the second
section. The third and fourth sections present a quick summary of representation theory
in varieties of quasigroups (referring to [S1] for fuller details). However, the fourth section
is of interest for exhibiting the linearization process of [S1] as a form of differentiation
(cf. [Fo]) explicitly iﬁtroducing notation from the differential calculus. The fifth section
applies the general theory to the variety of Moufang loops. In the sixth section, it is shown

that modules in the Eilenberg-Loginov sense fall within the framework of the representation
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theory in varieties. On the other hand, the seventh section gives an important example of a
representation in the variety of Moufang loops, namely the Zassenhaus-Bruck construction
of a free commutative Moufang loop on three generators, that cannot be described as an
Eilenberg-Loginov module. One may summarize by saying that, while Eilenberg-Loginov
split extensions and representations are equivalent for groups, they are no longer equivalent

for Moufang loops.

2. Elementary definitions.

A quasigroup (Q,-) is a set Q together with a binary operation of multiplication on Q,
denoted by - or juxtaposition (with the latter binding more strongly than infix operators
like <), such that in the equation z - y = z, knowledge of any two of I,Yy, z specifies the

third uniquely. Thus for an element y of Q, the right multiplication
(2.1) R(y): Q@ — @z~ zy

and left multiplication

—~
o
8%

~

L(y): Q = Qiz— yz

are bijections of Q. The subgroup of the permutation group Q! generated by {R(y), L{y)|y €
Q} is called the (combinatorial) multiplication group MItQ of Q. For universal algebraic

purposes, it is better to define a quasigroup in terms of identities. Introducing right division

(2.3) [:Q@xQ—Q:(z,y) — zR(y)™"

and left division

(2.4) \:@xQ—Q:(z,y)— yL(z)™",
the identities

(ER) (z/y)-y=g;
(UR) (z-y)fy=u
(EL) y-(y\z)==;
(UL) y\(y-z)=z

are satisfied by a quasigroup (@Q,-,/,\). Conversely [S1, 117}, an algebra (Q,-,/,\) with

—_
!\')
[&1]

~—

three binary operations satisfying (2.5) is a quasigroup (Q,-). A loop is a quasigroup Q

satisfying the identity
(2.6) z/r=y\y.

If a loop @ is non-empty, then its identity element e = z/x = y\y for any z,y in Q satisfies
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ez =z = ze. A loop Q is a Moufang loop if it satisfies the Moufang identity
(2.7 T123 - 7371 = 71(2223 - 1)

Groups are Moufang loops. Examples of non-associative Moufang loops are furnished by
the loops of invertible elements of the Cayley numbers over various fields, and by free
commutative Moufang loops on three or more generators (cf. Section 7 below). Recall
Moufang’s Theorem [B2, VII. 4] that Moufang loops are diassociative - the subloop of a
Moufang loop generated by any pair of elements is associative.

If Q is a group, then a Q-module M is an abelian group (M, +) equipped with a group

homomorphism

(2.8) T:Q— AutM;q— (m —» mT(q)).

Setting 7(¢) = T(¢™") for ¢ in Q, the set M x Q equipped with the multiplication
(2.9) (m1, q1)(m2, q2) = (M1 + m27(q1), 9192)

becomes a group M 2 Q known as the split eztension of M by Q. .Indeed, there is an

exact sequence of groups
(2.10) 1-oM-5M3Q-5Q-1

withi: M — M 13 Q;m — (m,e) and

(2.11) T:M3Q - Qi(m,q)—g
split by
(2.12) 0:Q—~M2Q;9+~(0,9).

The group action (2.8) is recovered from the split extension by

(2.13) | mT(q)i = miR((0,¢))L((0,¢))"

for m in M and ¢q in Q.

Now let @ be a Moufang loop with identity element e. Let (0,7) be a pair of maps
from @Q to the automorphism group of an abelian group M. Then M is said to be an
Eilenberg-Loginov module for Q if the set M x @ equipped with the multiplication

(2.14) (m1,q1)(m2, g2) = (m10(g2) + ma7(q1), 142)

is a Moufang loop M 3 Q with identity (0, e) (cf. [Lo,§2]). The méps t,m and 0 as above
yield a split extension (2.10) of Moufang loops.
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3. Represéntations in varieties of quasigroups.

A wvariety V of quasigroups is a class of quasigroups defined as universal algebras
(@,+,/,\) with three binary operations satisfying (2.5) and some additional set of identi-
ties known as the relative equational basis of V in the variety Q of all quasigroups. For
example, the variety £ of loops has the relative equational basis (2.6), while the variety
M of Moufang loops has basis (2.6), (2.7). A variety becomes a category on taking homo-
morphisms as morphisms. Such categories are bicomplete [HS, §32]. For a fixed member
Q of V, the comma category V/Q has V-morphisms 7 : E — Q as objects. The morphisms
of V/Q are V-morphisms 8 : E — F such that the diagram

E—o—-»F

(3.1) ,rl ln
Q=—2¢

commutes in V. The comma category V/Q has finite products. The empty product is the
identity 1 : @ — Q. The product of 7 : E 5 Qand p: F = Qismt xg ¢ : E xg F —
Q; (e, f)} > er, where E.XQ F={(e,f) € ExFler = fy}. Then a representation of Q in
V is an abelian group in the comma category V/Q, an object E — Q of V/Q equipped with
(V/Q)-morphisms zero O : Q — E, negation : E — E and addition + : E xg E — E, such
that the abelian group identities, written as commuting diagrams in V/Q, are satisfied.

For example, the abelian group identity z + (—z) = 0 becomes the commuting of

E XX, ExgE

(3.2) | |+

—_— E
Q (o]

in V/Q. If G is the variety of groups and Q is a group with identity element e, then a
Q-module M as in (2.8) gives a representation (2.11) of Q in G. The zero is the splitting
(2.12), negation is (m,q) — (—m,q), and addition is ((miq),(mz,q)) — (m; + m,,q).
Conversely, a representation 7 : E — Q of Q in G yields a Q-module M = 7~ {e} with
action (2.8) given by the inner automorphisms as in (2.13).

The definition of a representation of Q in V as an abelian group in the comma category
V/Q is somewhat abstract. Quasigroup theory provides a more concrete approach in terms
of representations of groups and rings. If Q is é. subquasigroup of P, then the relative multi-
plication group M1tpQ of @ in P is the subgroup of the combinatorial multiplication group
MIt P of P generated by the subset {R(y), L(y)ly € Q} of right and left multiplications
by elements of Q. (For example, if P is a group, then the orbits of the action of MItpQ’
on P are the double cosets of the subgroup Q.) The relative multiplication group MItpQ
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acts on Q. If e is an element of @, then its stabilizer (M1tpQ). in MitpQ is generated by

the elements
T.(q) =R(e\qg)L(g/e)7";
(3.3) R(g7) = R(e\QR()R(e\ ¢r);
Le(g,r) = L(g/e)L(r)L(rq/e)™"

for ¢,r in Q [S1,2.4]. If Q is a loop with identity element e, then the suffices e are
dropped from T, L, R (and the right hand sides of (3.3) simplify). Now let Q[X] denote
the coproduct in the variety V of the quasigroup @ with the free V-quasigroup on one
generator (“indeterminate”) X. The relative multiplication group of @ in Q[X] is called
the uniwersal multiplication group U(Q;V) of Q in V. If Q is a group, then U(Q;G) is the
square @ x Q [S1, 235]. For any quasigroup @, the group U(Q; Q) is free on the set 2Q (the
disjoint union of two copies of the set Q) [S1, 238] [FS]. For a quasigroup @ with element
e, representations of @ in Q are eqﬁivalent to modules for the stabilizer U(Q; @), of ¢ in
U(Q; Q) [S1,336] [S2, 3.2] [FS]. The equivalence works as follows. Given a representation
m: E — Q of Q in Q, the zero embeds @ as a subquasigroup of E. The universal
multiplication group U(Q; @) acts on E via the projection U(Q; Q) — MItgQ given by
R(y) = R(y) and L(y) — L(y) for y in Q [S1, 334]. The abelian group M = 7 !{e} is
invariant under U(Q; Q)., which acts as a group of automorphisms, making M a U(Q; Q).-
module. Conversely, given a U(Q; Q).-module M, a representation 7 : E — @Q is built via
the induced U(Q; @)-module MY(%Q = M ®zy(0:0). ZU(Q; Q) by E = |J M ® p(e, q)
with m : M®p(e, ¢) — {q}, where p(e, q) denotes a typical element R(e'\e)_lqlg(qe\q) making
up a transversal {p(e,q)lg € Q} to U(Q; Q). in U(Q; Q) The quasigroup operations are

given on E by the formulas

a-b =aR(br)+ bL(ar);
(3.4) a/b = (a—bL(ar/bm))R(br)7";
a\b =(b—aR(ar\br))L(ar)"?

[51,332).

4. Differentiation of the relative basis.

The equivalence between representations of a quasigroup @ with element e in the variety
Q of all quasigroups and modules over the universal siabilizer U(Q; Q)e may be specialized
to representations of @ in a variety V containing it. This specialization requires an analysis
of the relative equational basis of V in Q, based on a linearization [S1, p.57) or differentia-
tion (cf. [Fol) process for quasigroup words. The integral group algebra ZU(Q; Q). of the
universal stabilizer is a U(Q; Q).-module, and thus furnishes a representation 7 : £ — Q

of Q@ in Q. To facilitate useful intuitions from calculus, it is convenient to write elements
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of ZU(Q; Q). as infinitesimals. A typical element dz ® p(e,z) of E will then be written
as z + dz. Now consider a word f(z;,...,z,) in the quasigroup operations -,/ and \.
Without loss of generality, one may assume that this word has been reduced using the

quasigroup identities (2.5). Then by repeated use of (3.4) [S1, 338], there are maps
of
: a " ZU ;Q e
(41) L.g"-20Qi0)
fori=1,...,n such that

- 0
(4.2) flzr+dzy, ... 20+ dzn) = fz1,...,Zn) + ;dzg-éé(zl,...,:cn)

holds in E. As in calculus, the arguments z,,...,z, of the “partial derivative” a%i; will

not necessarily be written out explicitly. The partial derivatives ;%%, ceey a_a;% are described
respectively as the 1st, ..., n-th components of the gradient V f. Other notational conven-

tions from calculus may be used. Thus

(4.3) : 5—62:(1:11:2) = R(e\ €)"'R.(z1,z2)R(e\ €)
and
(4.4) aixz(ml z2) = R(e\ €)' Te(z2)Le(z2,21)Te(z122) "1 R(e \ €)

(cf. [S1, 339(a)]).

There is an epimorphism U(Q; Q) — U(Q; V); R(z) — R(z), L(z) = L(z), restricting
to an epimorphism U(Q; Q) — U(Q;V). of universal stabilizers. This epimorphism in
turn yields a ring homomorphism ZU(Q; Q) — ZU(Q;V).. Derivatives (4.1) of quasi-
group words may thus be interpreted in ZU(Q; V).. Let B denote the set of pairs (f, g) of
quasigroup words constituting identities f(zi,...,z,) = g(z1,...,z,) of the relative equa-

tional basis of V in Q. Let ZVQ denote the quotient of the integral group ring ZU(Q; V).
by the ideal JZU(Q; V). generated by the set

(45) %(QIa--'aQn)— aaTgi(QIa'HaQH)l(fvg) € Bv q; € Q}

of differences of corresponding gradient components of words in identities in the relative

basis. Representations of @ in V are then described concretely as follows.

FUNDAMENTAL THEOREM OF REPRESENTATIONS IN VARIETIES 4.1 [S1, 343)

[S2,4.6]. Let Q be a V-quasigroup with element e. Then the category of representations of
Q tn V 13 equivalent to the category of ZVQ-modules. O
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Remark {.2: [cf. S1, 424)].

Let 7 : E — Q be a representation of a loop Q with identity element e in the variety
Q of quasigroups. Since ¢/¢ = ¢\ ¢ for all ¢ in @, one has R(q\ ¢) = L(q/q) = 1. The
second and third formulas (3.4) then show that a/a = b\ b =0® p(e,e) in E, so Eis a
loop. Hencer: E— Qisa repfesentation of @ in @ if and only if it is a representation of

Q in the variety £ of loops. In particular, it follows from (4.1) that the loop identity (2.6)

makes no contribution to (4.5).

5. Moufang Loops.

Let @ be a Moufang loop with identity element e. Then Q is an inverse property loop:
each element z of @ has an inverse 2! with R(z™!) = R(z)~! and L(z™') = L(z)~! [B2,
Lemma VII. 3.1]. Furthermore [B1, Lemma II 4.D] [B2, VII (5.3)] [Do), the following
relations are satisfied in the relative multiplication groups of Q in Moufang loops (using

Doro’s notation P(z) = L(z)~'R(z)™!, not to be confused with [B2, VIL (5.4)}):

(5.1) P(e) = R(e) = L(e) = P(z)R(z)L(z) = 1;

(5.2)  P(zyz) = P(z)P(y)P(z), R(zyz) = R(z)R(y)R(z), L(zyz) = L(z)L(y)L(z);

P(z)*9) = P(zy)P(y™'), P(z)!W = P(yz)P(y~),
(5.3) R(z)*¥ = R(zy)R(y™'), R(2)P® = R(yz)R(y™),

L(z)"W = L(zy)L(y™"), L(z)R®) = L(yz)L(y™").
The free group on {P(z), R(z), L(z)lz € Q} = 3Q subject to the relations (5.1)-(5.3) is
called the universal group D(Q) with triality on the Moufang loop Q (the group G(Q) of
(Do, (19)]). Since the universal multiplication group U(Q; M) satisfies (5.1)-(5.3), it is a
quotient of the universal group with triality on Q. On the other hand, the universal group
with triality is a quotient of the universal multiplication group U(Q; £) of Q in the variety
of loops (since by (S1, 422], U(Q; £) is free on the disjoint union of two copies of @ — {e}).

PROBLEM 5.1 Is the universal multiplication group U(Q, M) of a Moufang loop @ in
the variety M of Moufang loops a proper quotient of the universal group with triality on
Q7

Addressing a different problem in the repreéentation theory of quasigroups, recall that a
variety V of quasigroups is universally finite if the universal multiplication group U(F; V) of
a finite member F of V is finite. A variety is locally finite if all its finitely generated members
are finite. The general problem [S1, 356] is to determine large universally finite varieties
that are not locally finite, since such varieties are likely to have intere.sting structure. Of

course, any subvariety of a universally finite variety is universally finite.
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Proposition 5.2. The variety M of Moufang loops is universally finite, but not locally

finite.

Proof. Let F be a finite Moufang loop. The universal group G(F) with triality on F is
finite [Do, Corollary 3]. Then U(F; M), as a quotient of G(F), is finite. O

Using the notation of (3.3) -~ which simplifies to Bruck’s notation [B2, IV. (1.5)] for

loops —one may now specialize Theorem 4.1.

Theorem 5.3. Let Q be a Moufang loop with identity element e. Then representations
of Q in the variety M of Moufang loops are equivalent to modules over the quotient of the

integral group algebra ZU(Q; M), by the ideal generated by all
(5.4) R(a,b)R(ab, ca) + T(a)L(a,c)L(ca,ab)T(ab: ca)™ — R(a, bc- a) — T(a)T(ab - ca)™?
for elements a, b, c of Q.

Proof. The relative equational basis of M in Q consists of the loop identity (2.6) and the
Moufang identity (2.7). By (*) the identity (2.6) makes no contribution to (4.5). Let w,
and w, respecitvely denote the words on the left and right of (2.7). Since z; and z;3 appear

uniquely above the line [S1, p.63] on each side of 2.7, one has g—:’z’- = 9% 5nd 2w - dw.

832 3:3 313

[S1, 353].

Applying (4.3) and (4.4), one obtains

awl
(5.5) el R(zy, z3)R(z129, z374)
+ T(z1)L(z1,z3) L2371, T122)T (2122 - T321) "
and
ow,
= R(zy, :

(5.6) 9z, (11 T2T3 J31)

+ T(Il)L(.’El, IQI3)L(.’E2.’E3 T, I1)T(IE1.’L‘2 . 123.'111)_1.

The latter summand of (5.6) may be simplified working with elements (3.3) of U(Q; M)
and using the third relation in (5.2):

T(a)L(a, be)L(bc - a,a)T(ab - ca)~?
=T(a)L(a)L(bc)L(bc - a) " L(bc - @) L(a)L(ab - ca)~* L(ab- ca)R(ab - ca)™*
=T(a)L(a)L(bc)L(a)R(ab - ca)"
=T(a)L(ab - ca)R(ab- ca)™
=T(a)T(ab - ca)™".
The form of (5.4) follows. O

6. Eilenberg-Loginov modules.

Consider an Eilenberg-Loginov module M for a Moufang loop @ with identity element

e. The module yields a split extension (2.10) with Moufang loop multiplication defined by (

214,

|
|
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Proposition 6.1. The Moufang loop homomorphism 7 : M 1 Q — Q is an abelian
group in the comma category M/Q of Moufang loops over @ with zero (2.12), negation

(m,q) = (=m,q) and addition ({(m1,q),(ma,q)) = (m; + m2,q).

Proof. The verifications are routine, given the assumptions that M 3 Qisa Moufang loop

and that ¢ and 7 map to the automorphism group of the abelian group M. 0O

Proposition 6.1 shows that the Eilenberg-Loginov Module M for Q affords a representa-
tion of Q in M. By Theorem 5.3, M affords a corresponding representation of U(@Q; M),
and ZMQ. Indeed, this representation lifts to a restriction of a representation of the

universal group with triality on Q.

Proposition 6.2. By means of
(6.1) R(z) = o(z), L(z) ~ (z),

- the Eilenberg-Loginov module M for Q affords a representation of the universal group with

triality over the Moufang loop Q.

Proof. First note o(e) = 7(e) = 1, since M 1 Q has identity element (0,¢) (cf. [Lo, (3))).
Because U(Q; £) is free on 2(Q — {e}), the specification (6.1) makes M a U(Q; £)-module.
This module is a lift of a module for the universal group with triality, since opposite
sides of the relations (5.1)-(5.3) have the same action on M. For example, to verify that

L(y)"'R(z)L(y) and R(zy)R(y™!) have the same action, i.e. to verify the relation
(6.2) T(y™o(2)r(y) = o(zy)o(y™),

note that L((0,y)~")R((0,2))L((0,y)) = R((0,z)(0,y))R((0,y)~?) holds in the relative
multiplication group of @ (i.e. of the image of the zero map (2.12)) in M 3 Q by [B1, IL
(4.7)]. The respective images of an element (m, ) of Mi under these equal group elements
are (mr(y™")o(z))r(y), ¥ zy) and (mo(zy)o(y~'), y~lzy). The relation (6.2) is then

obtained by equating the first components of these image elements. O

Remark 6.3. The proof of Proposition 6.2 offers an alternative derivation of those relations
(7)-(9) of (Lo} which involve at most two elements of Q (i.e. all but those involving addition

of module elements). For example, the last relations of (8), (9) follow from (5.2).

Corollary 6.4. The representations of U(Q; M), and ZMQ corresponding to the Eilenberg-

Loginov module M are given by
T(g)  =oa(g)r(a™)
(6.3) R(g,r) =o(q)o(r)o(gr)™!
Llg,r) =r(g)r(r)r(rg)™
(using the notation of (3.3)). O
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Remark 6.5. For the case where @Q is associative and o(Q) = {1} < Aut(M, +), Corollary
6.4 recovers the relationship between (2.8) and (2.9) for group modules and extensions (cf.
S1, 4.1)).

Starting with the ZMQ-, U(Q; M).- or U(Q; Q).-module given by (6.3), one may build
the abelian group object # : E — Q on E = U M ® p(e, ¢q) with operations (3.4) as
summarized at the end of the third section. The ﬁnal result of the current section relates

the two objects E - Q and M 3 Q — Q.

Proposition 6.6. The abelian group objects 7 : E — Q and # : M 1 Q — Q of the

comma category M/Q are isomorphic via
(6.4) §:E— M3Qim® p(e,q) — (ma(q),q)-

Proof. The morphism é respects the abelian group operations since o(g) is an automor-
phism of (M, +). To verify that 6 is a loop homomorphism, one may use (4.4), (4.5) and
(6.3) as follows:

[(m ® R(q))(n ® R(r))}6
=((mR(q,r) + nT(r)L(r,q)T(gr)~") ® R(qr)}
=[(ma(q)a(r)a(gr)™" + no(r)r(g)o(gr)™") ® R(gr))é
=(ma(q)o(r) + no(r)r(q), gr)
=(ma(q), g)(no(r), r)
=[m ® R(q)}6 - [n ® R(r)}6

working with elements of U(Q; M) rather than U(Q; Q) for brevity. O

7. The Zassenhaus-Bruck Construction.

Let Q be the abelian group Z @ Z. Let M be the abelian group Z @ Z/3Z. Let E be
M x Q. Define the product of two elements ((m;, m} + 3Z), (gi,¢})) (with i =1,2) of E
to be

(7.1) ((m1 + ma,m} + my + (my — ma)(q1¢h — q192) + 3Z), (@1 + 92,9} + ¢3))-

Then E with this product is the free commutative Moufang loop on its three-element

subset

(7.2) {((1,0),(0,0)), ((0,0),(1,0)), ((0,0),(0,1))}

[B1, Theorem II. 9A], {S2, §6]. In particular E, being nilpotent of class 2, is not associative.

Furthermore,
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(7.3) 7:E - Q;((m,m' +3Z), (¢,4")) — (g,¢)

1s a representation of @ in the variety M - and indeed in the variety of commutative
Moufang loops [S2, Theorem 6.3]. However, E cannot be recovered as a split extension

M 1 Q from an Eilenberg-Loginov module structure for Q on M.

Proposition 7.1. There are no maps 0,7 : Q — AutM such that E with the product
(7.1) can be written as a split extension M 1 Q with product (2.14).

Proof. Assume the existence of suitable maps o, 7, so that

(7.4) { (m1 +ma,my + mh + (my — m2)(q1¢5 — ¢1g2) + 3Z)

= (m1,my +3Z)0(g2,93) + (m2, m; + 3Z)7(q1, q1)-

Set ) = ¢ = mg =1, m; =m{ =m} = 0. Then for all q,¢' in Z, one obtains
(7.5) (Lg—¢'+32) =(1,3Z)(1,1).

Thus 7(1,1) cannot be well-defined. O
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