
A. B. ROMANOWSKA 

J. D. H. SMITH 

S emi lat  t ice- B a s e d  
Dual i t i e s  

A b s t r a c t .  The paper discusses "regularisation" of dualities. A given duality between 
(concrete) categories, e.g. a variety of algebras and a category of representation spaces, 
is lifted to a duality between the respective categories of semilattice representations in 
the category of algebras and the category of spaces. In particular, this gives duality for 
the regularisation of an irregular variety that has a duality. If the type of the variety 
includes constants, then the regularisation depends critically on the location or absence 
of constants within the defining identities. The role of schizophrenic objects is discussed, 
and a number of applications are given. Among these applications are different forms of 
regularisation of Priestley, Stone and Pontryagin dualities. 
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1. I n t r o d u c t i o n  

Priestley duality [26] [27] between bounded distributive lattices and ordered 
Stone spaces may be recast as a duality between unbounded distributive 
lattices and bounded ordered Stone spaces [6, p.170]. In joint work with 
Gierz [7], and using a range of ad hoc techniques, the first author combined 
this form of Priestley duality with the Ptonka sum construction to obtain 
duality for distributive bisemilattices without constants. Such algebras have 
recently found application in the theory of program semantics [15] [28]. The 
variety of distributive bisemilattices without constants is the regularization 
of the variety of unbounded distributive lattices, i.e. the class of algebras, of 
the same type as unbounded lattices, satisfying each of the regular identities 
satisfied by all unbounded distributive lattices. In this sense, the duality 
of [7] may be described as the regularization of Priestley duality without 
constants. 

For a type with constants, there are various forms of regularization ac- 
cording to the location or absence of the constants within identities. Part  
of the motivation for the current work is the desire to apply these versions 
of regularization to Priestley duality in its original form, i.e. as a duality 
for bounded distributive lattices. Indeed the resulting algebras, distributive 
bisemilattices with constants, are more readily suited to the applications in 
program semantics. Another motivation for the current work is the desire 
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to extend traditional Pontryagin duality by regnlarization. Since Pontrya- 
gin duality (between discrete abelian groups and compact Hausdorff abe]Jan 
groups) involves constants, such extensions have to involve constants as well. 

The ad hoc techniques of [7] did not lend themselves well to further de- 
velopment. As a first step, the present authors gave a general and more 
conceptual t reatment  of the regularization of a duality for algebras without 
constants [34]. There were two key ingredients in this t reatment .  The first 
(which was also used independently by Idziak in a different context [12]) 
was the interpretation of the Ptonka sum as an equivalence between semi- 
lattice representations or sheaves and (total spaces of) bundles. The second 
was a purely categorical theorem showing how an initial duality could be 
enlarged to a duality between categories of representations of semilattices 
in the categories of the initial duality. (The initial duality was recovered 
from the enlarged duality as the duality for representations of trivial semi- 
lattices.) The present paper recalls the key concepts of [34], but the reader 
is referred there for details such as the proof of the duality theorem for semi- 
lattice representations. The proof remains valid for the improved version 
of this duality theorem (Theorem 4.4) formulated here with less restrictive 
completeness assumptions. 

For algebras with constants, there are three main forms of regulariza- 
tion. These are known as regularization, symmetrization, and symmetric 
regularization. They correspond to three possible locations of a constant 
object in a meet semilattice viewed as a poset category: terminal, initial, 
or arbitrary. There are three corresponding varieties of semilattices with 
constant.  The second section of the paper discusses duality theorems for 
semilattices without constants and for these three varieties of semilattices 
with constant.  These semilattice dualities may be viewed as regularizations 
of (trivial) duality for trivial algebras. Semilattice duality is the basis for 
regularization of other dualities. 

The third section starts with the analysis of identities with and without 
constants that  leads to the various forms of regnlarization. It then presents 
the various forms of the Ptonka sum construction that  describe algebras 
in the various regularizations of a strongly irregular variety ~ .  For the 
symmetrization and symmetric regularization, the appropriate Ptonka sums 
represent semilattices in a new category 2~. This new category is itself a 
sort of Ptonka sum of the category !U (with homomorphisms as morphisms) 
and the ~non-constant reduction" of ~ ,  the variety ~+  generated by the 
non-constant  reducts of algebras from ~U. 

The fourth section begins with the concept of compatibility between du- 
alities for ~ and ~+.  Given such compatible dualities, there is a duality for 
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the Ptonka sum category 2~ (Theorem 4.2). The section then leads up to the 
main Theorem 4.6 presenting dualities for all the various regularizations of a 
strongly irregular variety ~ ,  with or without constants. Subsequent sections 
give a selection of examples illustrating how Theorem 4.6 may be applied. 
In the applications, one is often interested in axiomatizing semilattice repre- 
sentations as sets with structure (algebraic, relational, or topological). This 
may be achieved by the use of schizophrenic objects as discussed in Proposi- 
tion 5.1, and by the basic Theorem 5.2. The first applications, discussed in 
the fifth section, are the regularizations of Priestley, Stone, and Pontryagin 
duality. These applications are relatively straightforward. 

The sixth section shows how Priestley duality may be symmetrically reg- 
ularized. In order to obtain compatible dualities for distributive lattices with 
and without lower bounds, the standard Priestley duality for distributive 
lattices with lower bounds has to undergo a subtle modification involving 
"creation operators" and "destruction operators". The key issue is that  the 
underlying set functor from a concrete category of sets with structure is not 
always a functor forgetting that  structure. (A standard example of this phe- 
nomenon occurs when the underlying set of an object in a category of Banach 
spaces is the unit disc of the Banach space, not the whole space [35, p. 47].) 
The seventh section presents various regularizations of Lindenbaum-Tarski 
duality, based on a new version of this duality covering the case of pointed 
sets. The final section deals with varieties such as Boolean algebras and 
abelian groups having definable constants. Although it may not be possible 
to find a compatible duality for the non-constant reduction of such a variety, 
a simple modification to Theorem 4.6 enables it to provide symmetric reg- 
ularizations of dualities for these varieties. Stone and Pontryagin dualities 
are analyzed from this standpoint.  

The topic of this paper involves concepts from a number of branches of 
mathematics .  Readers unfamiliar with any one of these branches may often 
be able to suspend disbelief temporarily in order not to lose the thread of 
the discussion. For category theory, one may refer to [16] or [35]; for sheaf 
theory, to [13] or [17]; for universal algebra, to [31]; for duality, to [5] or 
[13]. Note that  mappings and functors are generally written to the right of 
their arguments so that  concatenations such as (4.11) or (6.6) may be read 
in natural  order from left to right. 

2. S e m i l a t t i c e  D u a l i t i e s  

The variety S1 of serailattices is the variety of commutative, idempotent  
semigroups. The semigroup multiplication will usually be denoted by a 
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period or by juxtaposition of the arguments. A semilattice H or (H, .) may 
be considered as a poset (H, _~) or (H, < .) - a meet semilattiee - under the 
relation 

(2.1) x ~ y ~ x . y = x .  

In turn, the poset (H, _<) may be considered as a small category H with set 
H of objects. The morphism set H(x,  y) is the singleton x -~ y if x < y, 
and otherwise H(x,  y) is empty. Another way of looking at a semilattice H 
is as a topological space with topology 

(2.2) 

the Alexandrov topology T(H, >) of the dual poset (H, ~_) [13, II. 1.8]. The 
poset (H, <) may be identified with the subposet {~ hlh E H} of (~2(g), C_) 
consisting of principal subordinate subsets. In this guise, H forms a basis 
for the topology ~/(H). At various times throughout the current work, it 
becomes convenient to regard semilattices as semigroups, posets, categories, 
topological spaces, or as bases of topologies. 

Beyond the basic variety S1 of semilattices, various varieties of semilat- 
tices with constants are needed. A bounded semilattice is a semilattice H 
with two constants forming lower and upper bounds in the poset (H, <). 
The variety S1  is the variety of semilattices with a single constant (i.e. the 

tensor product [31,232] of S1 with the variety of pointed sets). The variety 
S=~ol is the variety of commutative idempotent monoids. (The suffix 0 here 
pertains to the additive notation for semilattices used in [25]. Despite the 
current use of multiplicative notation, retention of this designation for the 
variety of monoids facilitates use of [25] and related references.) Finally, the 
variety S11 is the variety of semilattices with an absorbing constant (i.e. an 
initial object in the corresponding category). Along with the notation for 
semilattice varieties, which are categories having all homomorphlsms as mor- 
phisms, notations for the dual categories of representation spaces are needed. 
Recall that a Stone topological space is one having a compact Hausdorff zero- 
dimensional topology, or characterized by the equivalent conditions of [13, 
Theorem II. 4.2]. Then fi denotes the category of bounded Stone topological 
semilattices and continuous homomorphisms between them. Following [10], 
Z denotes the category of Stone topological S___01 -algebras (the mnemonic Z 
for "zero" is helpful here). As posets, fi-spaces are complete (indeed al- 
gebraic) lattices [10, p. 39]. A subset X of a fiB-space G is a cover of an 
element g o f G i f f g  < supX.  An element c of G i s  compact if it is not 
the lower bound, and if each cover of c contains a finite subcover. Then U 
denotes the full subcategory of fi consisting of fi-spaces with compact upper 
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bound.  Finally, M is the category of 03-spaces with a compact constant and 
03-morphisms respecting these constants. 

The dualities for semilattice varieties may be listed as follows: 

(2.3) C : Sl ~ 03 : F; 

(2.4) Co : S=~ol ~ Z : F0; 

(2 ,5 )  C 1 : 81 1 ~ U : F1; 

(2.6) C u :S1  ~ - M : F  u. 

Duality (2.4)is covered very thoroughly in [10], and brieny in [13, VI. 3.6]. 
Duality (2 .3) is  given explicitly in [6, p. 158], [5, p. 28]. Both these du- 
afities arise from the role of the 2-element semilattice 2 = {0 < 1} as a 
"schizophrenic object",  i.e. as an object (with appropriate structure) of 
each of the categories appearing in the duality. Thus C = S I ( , 2 ) ,  F = 
0 3 ( , 2 ) ,  C0 = S=~I( ,2 ) ,  and Fo = Z ( , 2 ) .  The dualities (2.5) and (2.6) 
do not seem to have been treated in the fiterature (and (2.6) does not appear 
to arise from a schizophrenic object). They are discussed below on the basis 
of the duality (2.3). 

As an object 2 o f  03, the two-element semilattice has the discrete topol- 
ogy, lower bound 0, and upper bound 1. For a semilattice H,  the 03-space 
HC is defined to be the closed subspace SA(H, 2) of the product space 2 H. 
Elements of HC are called characters of H.  The characteristic function of 
a subset 0 of a semilattice (H, .) is a character of (H, .) iff the subset 0 is a 
wall of (H, .), i.e. iff 

(2.7) Vh, k � 9  ( h . k � 9  c ~ ( h � 9 1 4 9  

[33, Prop. 2.2]. In meet semilattices, walls are often described as "filters" 
(cf. [10, bern.  2.1]), while in join semilattices they are often described as 
"ideals" (cf. [32, bern.  4.1]). Let H W  denote the set of walls of H.  

PROPOSITION 2.1.  Under intersection, H W  forms a subsemilattice of the 
power set of H. Moreover, there is a natural 03-isomorphism 

(2.8) HC ~ HW;  X ~  )r 

PROOF. Cf. [10, Prop. II. 2.4(ii)]. The least element of H W  is the 
empty  wall. �9 
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PROPOSITION 2.2. In a ?8-space G, the set G K  of compact elements forms 
a join semilattice (i.e. a subcategory with coproducts of pairs of  objects). 

PROOF. See [3, Th. VIII. 8], [10, Prop. II. 1.10 and Th. II. 3.3] or [31, 
64]. �9 

For an element h of a semilattice H, the wall [h] is the intersection of all 
the walls of H containing h. Such a wall is called principal. 

PRoPoSITION 2.3. For a semilattice H, an element 0 of  H W  is compact 
i f f  it is principal. There is a natural isomorphism 

(2.9) H -+ H W K ;  h ~ [h]. 

PROOF. See [10, Prop. II. 3.8], [31,344 (i)] or [32, Th. 5.1]. The latter 
two references apply on considering the variety of stammered semilattices 
[31, 327]. �9 

In the other direction, one has the following 

PROPOSITION 2.4. For a ~-space G, there is a natural isomorphism 

(2.10) 7c  : G--+ G K W ;  g ~ G K N  $ g. 

PROOF. Cf. [10, Prop. II. 3.9]. The bottom element of G maps to the 
empty wall: each compact element of G is strictly above the bottom. �9 

PROPOSITION 2.5. There is a contravariant functor K : ~ -+ S1 given by 
Proposition 2.2. For a fS-space G, define 

(2.11) '~a : G F  -+ GK;  ~ ~ in f , - l{1} .  

Then a : F-:+ K is a natural isomorphism. 

PROOF. See [10, Th. II.3.7 and Prop. II. 3.2011 

With these details of the basic semilattice duality (2.3) established, it be- 
comes easy to treat the dualities (2.5) and (2.6). For an S1 -object (H, .,#), 
the corresponding M-object H C ,  may be defined with the aid of Proposi- 
tions 2.1 and 2.3. Namely H C ,  is the ~B-object H W  with the principal wall 
[#] selected as the compact constant. In the other direction, suppose given 
an M-object G with compact constant m. Then G F ,  is the semilattice G F  
with constant m , ~  1, defined using the natural isomorphism of (2.11). The 
functors C1 and F1 of (2.5) are the respective restrictions of C~ and F~ to 
the full subcategories S11 of S1 and U of M. 
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3. Identit ies  and Plonka Sums 

The varieties leading to semilattice-based dualities are determined by proper- 
ties of their defining identities. One thus needs a fairly detailed classification 
of different kinds of identity. An identity is regular if it involves exactly the 
same set of arguments  on each side [31, 13]. It is strictly regular if it is 
regular, and does not involve nullary operations on either side. It is nullary 
symmetric if it does involve nullary operations on each side. It is nullary 
asymmetric if it involves nullary operations on one side only. It is symmet- 
ric if it is strictly regular or nullary symmetric.  Finally, it is symmetrically 
regular if it is regular, but  not nullary asymmetric.  This classification may  
be displayed by the following Venn diagram. 

I 
R 
R 
E 
G 
U 
L 
A 
R 

WITH 0 UT 
NULLARIES 

E 
G RICT 
U 
L ~ . E G U L  

R 

WITH NULLARIES 
NULLARY 

SYMMETRIC 
NULLARY 

ASYMMETRIC 

SYMMETRIC 

SY M M ET RIC ALL~ 

REGULAR 
REGULAR 

There is a nice correspondence between the classes of identities outlined in 
the diagram and the varieties of semilattices listed on the left hand side of 
(2.3) - (2.6). Let v :  B -~ N be a plural type, i.e. with v - l { n  6 NIn > 1] 
non-empty.  Set B + - v - l Z  + and Bo -- 7-1(0}.  A semilattice (H, .) may  be 
realized as a B+-algebra,  a B+-semilattice, on setting 

(3.1) h i . . .  h ~  = hi . . . . .  h ~  
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for co in B +. A pointed semilattice (H, . ,#)  from S1 or its subvarieties 
S=~01, SA1 may be realized as a B-algebra for non-empty Bo via (3.1) and 

(3.2) co = # 

for co in B0. Such a B-algebra is called a B-semilattice. The classification of 
identities in the type 7- carries over to varieties of B-algebras. A variety ~ of 
B-algebras is said to be symmetrically regular, for example, if it is precisely 
the class of all B-algebras satisfying a set of symmetrically regular identities. 

PROPOSITION 3.1. Let r : B ~ N be a plural type, and let ~J be a variety of 
B-algebras. 

(a) 

(b) 

Suppose that Bo is empty. Then flJ contains the variety S1 of B- 
semilattices iff ?5 is (strictly) regular. In particular, S1 is the variety 
of B-algebras satisfying all (strictly) regular identities in the type v. 

Suppose that Bo is non-empty. Then ~ contains the varieties (i) S=~ol , 
(ii) Sll,  (iii) S 1  of B-semilattices iff ~3 is respectively (i) regular, (ii) 
symmetric, (iii) symmetrically regular. In particular, the varieties (i) 
S=~1, (ii) Sll, (iii) SI are the varieties of B-algebras satisfying respec- 
tively all (i) regular, (ii) symmetric, (iii) symmetrically regular identi- 
ties in the type r. 

PttoOF. (a) Cf. [20], [21], [25, Prop 2.1], [31, 235]. (b) Cf. [25, Prop. 
9.1]. For (i), el. [12, Cor. 3.8], [22]. For (ii), of. [23]. For (iii), el. [24]. �9 

DEFINITION 3.2. Let 7" : B ~ N be a plural type, and let ~J be a variety of 
B-algebras. 

(a) Suppose that  B0 is empty. Then the (strict) regularization f~ of ~ is the 
variety of all B-algebras satisfying all the (strictly) regular identities 
satisfied in ~ .  

(b) Suppose that  Bo is non-empty. Then the (i) regularization ~3o, (ii) 
symmetrization ~1, (iii) symmetric regularization ~J, of f13 are the va- 
rieties of all B-algebras satisfying respectively all the (i) regular, (ii) 
symmetric,  (iii) symmetrically regular identities satisfied in ~3. 

(c) The (non-constant) reduction ~+ of ~ is the variety of B+-algebras 
satisfying each of the identities satisfied by all of the B+-reducts  of 
algebras from ~.  
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Models for the  various varieties in t roduced in Definition 3.2 (a) (b) may  
be obta ined  by a construct ion known as the Ptonka sum from representa- 
t ions of semilatt ices or sheaves over Alexandrov spaces (2.2). Let H be a 
semilatt ice,  considered as a small category. A set representat ion of H is a 
contravar iant  functor  

(3.3) R : H ~ Set 

f rom H to the  category of sets, i.e. an object in the functor  category 
= Set H~ of presheaves on H.  Since the elements of H,  as principal 

subordina te  subsets,  are join-irreducible in the poset ( f t (H) ,  C_), the condi- 
t ion [17, II. 1(9)] for a presheaf on H to be a sheaf is trivially satisfied. By 
the  Compar ison  L e m m a  for Grothendieck topoi [17, Th.  II.1.3 and App. ,  
Cor. 3(a)], the  category H is equivalent to the category Sh(H)  of sheaves (of 
sets) over the  space H under  the Alexandrov topology (2.2). By [17, Cor. II. 
6.3], the  category Sh (H)  is in turn  equivalent to the category E ta leH of ~tale 
bundles ~r : E ~ H over the space H.  Given a representat ion (presheaf) 
R : H --+ Set, the  corresponding bundle ~r : E --+ H (or more loosely just  the  
to ta l  space E)  is the bundle RA of germs of the sheaf R : ~ ( H )  -+ Set. An 
al ternat ive,  purely algebraic description of the equivMence between semilat- 
rice representa t ions  and dtale bundles may  be given. The  variety Lz of left 
trivial or left zero bands is the variety of semigroups satisfying 

(3.4) x �9 y = x 

[11, 119], [31, 225]. The  category Lz is isomorphic to the category Set of 
sets. In one direction, forget the mult iplication (3.4). In the other  direction, 
the mult ipl icat ion on any set is just  the project ion (x, y) ~ x f rom the direct 
square. The  (strict) regularization Lz is the variety of left normal  bands, the 
variety of i dempo ten t  semigroups (bands) satisfying 

(3.5) x * y * z = x , z , y  

[11,119] [31, 223]. The  bundle ~r: E --* H of a left normal  band (E,  *) is its 
projec t ion onto  its semilattice replica [31, 17]. One obtains a corresponding 
representa t ion  

(3.6) E F  : H ~ Set; h ~ ~ ' - l { h } ,  

defined on the morph i sm level by 

(3.7) (h --, k)Er : ~ - l { k }  -~ ~r-l{h}; x ~ x �9 y 
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for any y in 7r-l{h}. In the other direction, a presheaf or representat ion 
(3.3) gives a contravariant functor 

(3.8) R :  H ~ (*) 

to the category ( . )  of groupoids or magmas (sets with a binary multiplica- 
tion) and homomorphisms. Here (3.8)is obtained from (3.3) on interpreting 
each set h R  as the left zero band (hR ,  . ) .  Defining ~r = (J (hR --+ {h}) and 

heH 

(3.9) x * y = x ( x  ~ * y~ ~ x~) R 

for x, y in E = 0 h R  gives the bundle 
hEH 

(3.10) RA : E ~ H 

of a left normal band (E,  . ) .  The constructions F of (3.6) and A of (3.10) 
extend to functors providing an equivMence 

(3.11) 

between t h e  presheaf category H for a fixed semilattice H and the comma 
category (L_~_z, H ) o f  left normal bands over H (cf. [16], w 6). The equiva- 
lence (3.11) is an algebraic analogue of the equivalence 

(3.12) A : S h H  ~ Etale H : P 

of sheaf theory [13, Cor. V. 1.5(i)], [17, Cor. II. 63]. 
The algebraic equivalence (3.11) may be extended. Let C be a category 

whose objects are small categories and whose morphisms are functors. Let D 
be a category. Then one may define a new category (C; D), called a semicolon 
category, as follows. Its objects are covariant functors R : C --+ D__ from an 
object C of C to D. Given two such objects R :  C -+ D and R ' :  C '  --* D, a 
morphism (a, f )  : R ~ R '  is a pair consisting of a C-morphism f : C -* C ~ 
and a natural  transformation a : R -:+ f R  t. The composition of morphisms 
in (C; D ) i s  defined by 

(3.13) (a, f ) ( T , g )  = ( a ( f r ) ,  f g )  

(cf. [10, w [16, Ex. V. 2.5 (b)]. (Note that  Mac Lane used the name 
"supercomma"and the symbol .~. in place of the semicolon.) For a concrete 
category D, let (S1;D~ ' denote the full subcategory of (S_I;D ~ comprising 
the functor O ~ D ~ and functors from non-empty semilattices to the full 
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subcategory of D ~ consisting of non-empty D-objects. Then the equivalence 
(3.11) may be extended to the equivalence 

(3.14) A :  (S1; Set~ ' m L_~_z: F. 

Consider a left normal  band morphism F : E --+ E I, with semilattice replica 
f : H --+ H I. Define R = E F  : H -+ Set and R I = ElF : H I--+ Set. A 
natura l  t ransformation ~ : R -~ f R  I is defined by its components 

(3.15) 9% : hR  --* h fRI;  x ~ x F  

at objects h of H.  The (S1; Set~ FF : EF  --+ E I r  is then defined 
as the pair (~, f ) .  Conversely, given such a pair as an (SA; Set~ 
a left normal  band morphism f = (9~, f ) F  : RF ~ R T  is defined as the 
disjoint union of the components (3.15). 

The general equivalence (3.14) may be specialized in various ways. Of 
part icular  interest in the current context is the case of a strongly irregular 
variety ~3 of B-algebras, considered as a category with homomorphisms as 
morphisms. Such a variety ~3 is said to be strongly irregular if there is a 
left zero band operation �9 derived from the basic B+-operations in ~ .  For 
example, the variety of groups (as usually presented with multiplication, 
inversion and unit)  is strongly irregular by virtue of 

(3.16) x , y = ( x y ) y  -1. 

Then Ptonka's Theorem describing regularizations of strongly irregular va- 
rieties may  be formulated as follows: 

THEOREM 3.3. Let v : B --+ N be a plural type, and let ~ be a strongly 
irregular variety of  B-algebras. 

(a) Suppose that Bo is empty. Then the equivalence (3.14) specializes to 
an equivalence 

(3.17) A:  (sA; ~~ ' ~ ~ :  r .  

(b) Suppose that Bo is non-empty. Then the equivalence (3.14) specializes 
to an equivalence 

(3.18) Ao: ( ~ ;  ~~ ~ ~ 0 :  r0. 

PP~OOF. (a) Cf. [20], [21], [25, 7.1], [31,239]. (b) Cf. [221, [25, l l . l (b ) ] .  
Consider a semilattice representation R �9 H --+ ~ .  For an operation w in 
B +, the operation w on the bundle E = RA is defined by 

(3.19) . . . x i . . . w  = . . . x i ( . . . x [ . . . w  -+ x~)R . . .w .  
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For w in B0, the constant w in the bundle E = RA = RA0 is defined to be 
the constant w in the B-algebra representing the unit of the monoid H. �9 

The functors A of (3.17) and A0 of (3.18) are known as Ptonka sums, A0 
"with constants". 

Ptonka's Theorem 3.3 describes algebras from ~ and ~0 as Ptonka sums. 
For non-empty B0, there are analogous descriptions of algebras from ~1 and 
~g.  However, the representations of the semilattice replicas are not in the 
category 93, but in a more complicated category 293 obtained from 93. In fact, 
this more complicated category is itself a sort of Ptonka sum of categories 
over the two-element semilattice. First note the forgetful functor 

(3.20) U : 93 ~ 93+ 

obtained by taking B+-reducts. The class of objects of 293 is the disjoint 
union 

(3.21) Ob(293) = Ob(93+) 0 0b(93). 

The morphisms of 293 are either morphisms of 93 or 93+, or else of the form 

(3.22) f :  X ~ Y 

with X E 0b(93+), Y E Ob(93), f E 93+(X, YU). Then for g E 93(Y, Z), one 
has fg  E 293(X, Z) with fgV E 93+(X, ZU). For h E 93+(W,X), one has 
h i  E 293(W,Y) with h f  E 93+(W, YU). Define 

(3.23)  93op)  

to be the full subcategory of (S1; 293op) consisting offunctors R : H ~ 293op 

with restrictions R : ($ #) -~ 93 ~nd R : ( H -  $ #) --+ 93+. Objects in the im- 
age of the latter restriction are required to be non-empty. Define (Sll, 293~ 
as the full subcategory of (S1; 293op), consisting of functors whose domain 

semilattices have initial constant objects. Then Ptonka's Theorem describing 
symmetrizations and symmetric regularizations of strongly irregular varieties 
may be formulated as follows: 

TttEOREM 3.4. Let r : B --+ N be a plural type with v- l{0}  non-empty. Let 
93 be a strongly irregular variety of B-algebras. Then the equivalence (3.14) 
specializes to equivalences 

(3.24) A1 : (511; 293~ ~- ~1 : F1 

and 

(3.25) (s3.; 
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PP~oor. For (3.24), cf. [23], [25, 11.1(c)]. For (3.25), cf. [24], [25, 
11.1(a)]. m 

The functors A1 of (3.24) and At, of (3.25) are known as Ptonka sums with 
constants. 

4. S e m i l a t t i c e - b a s e d  D u a l i t i e s  

A duality (of concrete categories) is written as 

(4.1) D : 92 ~ i~ : E 

and unders tood as follows. Firstly, P2 is a concrete category of objects called 
algebras (e.g. a variety of algebras of type 7 : B ~ N), while X is a concrete 
category of objects called representation spaces for 92-algebras. There are 
(covariant) functors D : 92 ~ X~ and E : 9E ~ 92op furnishing an (adjoint) 
equivalence between 92 and 2r ~ (as in [16, Th. IV. 4.1]). Thus there are 
natura l  isomorphisms ~ : I ~ : * D E  and ~/ : l x - :+ED.  For example, in the 
duality (2.3) for semiluttices, these natural  isomorphisms are given by (2.9) 
and (2.10) respectively. 

Suppose given a duality (of concrete categories) 

(4.2) D : ~ ~ ~ : E 

for a variety ~U of B-algebras with B0 non-empty. Let the natural  isomor- 
phisms for the duality (4.2) be s : I~-=+DE and r/ : I ~ - : * E D .  Further,  
suppose given a duality (of concrete categories) 

(4.3) D+ : ~ +  ~ ~ +  : E+ 

for the reduction ~U+ of ~ ,  with natural  isomorphisms 6 + : 1~+ -:*D+E+ and 
7 + : 1~+ -:+E+D+. Recall the forgetful functor U : ~ --+ ~ +  of (3.20). Then 
the dualities (4.2) and (4.3) are said to be compatible if there is a functor 
(preserving underlying sets) 

(4.4) Z : ~  ~ ~ +  

such that  the following compatibility conditions are satisfied: 

(4.5) 

(a) 
(b) 
(c) for A E Ob(?8), 
(d) for Y e Ob(~V), 

D Z  = UD+; 
EU = ZE+; 

e A U  + " = 6AU ,  
rly Z = r]+ z .  
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(Thus the pair (U, Z) is a "map of adjunctions" in the sense of [16, w 7].) 
Define a dual Ptonka sum ~2 of ~ and ~+  by 

(4.6) Ob(~) 2) = Ob(~)) 00b(~)+) ,  

such that morphisms of ~2 are either morphisms of ~ or ~+ ,  or else of the 
form 

(4.7) f : r ~ r + 

with Y �9 Ob(~3),Y + �9 Ob(~j+),f �9 ~)+(YZ, Y +) (cf. (3.21) and (3.22)). 

PROPOSITION 4.1. 

(a) The category 22 is complete, and has directed colimits. 

(b) The category ~2 is cocomplete, and has directed limits. 

PROOF. It will be shown that 22 is complete. Cocompleteness of ~2 is 
proved dually. First, consider a pair (f, g) of parallel morphisms in 22. If 
the pair lies in ~ ,  then its equalizer in 2~ is its equalizer in ~ .  If the pair 
lies in ~+,  then its equMizer in 2~ is its equalizer in ~+.  Suppose the pair 
has domain A + in 2+  and codomain A in 2 .  Thus there is a parallel pair 
in O+(A+,AU). The ~+-equalizer of this pair is then the 2~-equalizer of 
(f,  g). Thus 2~ has equalizers. 

Next, consider a set (Aili �9 I) of ~I-objects, partitioned so that I = 
I0 @/1 with set (Ai]i �9 Io) of O+-objects and set (Aili � 9  of g-objects.  
Form the O+-product P = ( 1-I Ai) x ( rI AiU) with projections pi : P --+ Ai 

ielo i~I1 
for i in I0 and Pi : P --+ AiU for i in /1. Then P becomes the product of 
(Ai]i �9 I) in 22, equipped with projections Pi : P --* Ai in 2~ corresponding 
to Pi : P --* AiU in ~g+ for i in /1 .  Since 2~ has equMizers and products, it 
follows [16, w 2] that 2~ is complete. 

Now it will be shown that ~2 has directed limits. The proof that 2~ has 
directed colimits is dual. Consider an (upwardly-)directed poset J, and a 
contravariant functor R : J ~ fO 2. There are two cases to consider. 

(a) 3 k � 9  k R � 9  

In this case fim(R : J ~ ~2) = fim(R : T k ~ ~).  Indeed, any cone 

including a morphism to kR in Ob(~)) must have its vertex in ~ ,  and then 
the universality property for fim(R : T k ~ ~)  in ~ yields the universality 

property for fim(R : J ~ ~2) in ~2. 

(6) vk e J, k n  �9 
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In this case ~ m ( R :  J ~ ~2) = ~m(R:  J ~ ~+).  For a cone with vertex in 

~+ ,  the universality property for ~m(R : J -+ ~+)  in ~+ yields the requisite 

universality property for ~m(R : J ~ ~V 2) in ~2. For a cone with vertex Y 

in ~ ,  the ~2-morphisms Y ~ k R  to the limiting cone correspond to ~+-  
morphisms Y Z  --. kR .  The universality property for H ra(R : J ~ ~+)  in 

~+  yields a unique ~+-morphism Y Z  --+ lira R, giving the requisite unique 
4 - -  

~2-morphism Y ~ lim R. �9 
4--- 

THEOREM 4.2. Given compatible dualities (4.2) and (4.3), there is a duality 
(o f  concrete categories) 

(4.8) 2 D :  2 2 ~ _ ~ 2 : E  2. 

PROOF. The dual of the non-trivial 22-morphism f : A + ~ A corre- 
sponding to the ~+-morphism f : A + ~ AU is the non-trivial ~2-morphism 
f 2 D  : A D  ~ A+D+ corresponding to the ~+-morphism f D +  : AUD+ --~ 
A + D+. Compatibility condition (4.5) (a) guarantees that this ~+-morphism 
has the correct domain. The functor 2D acts as D on Mot (2)  and as D+ 
on Mot (~+).  The functor E 2 is defined dually. In particular, it sends a 
non-trivial ~2-morphism f : Y ~ Y+ to the non-trivial 2~-morphism f E  2 : 

Y + E +  --~ Y E  corresponding to the ~+-morphism f E +  : Y + E +  --. Y Z E + .  

Compatibility condition (4.5) (b) guarantees that this ~+-morphism has the 
correct codomain. The natural transformation 2e : 12, ~ --~2DE2 is defined 
b y  2s A • CA for A e O b ( 2 )  and 2~ A ----- gA + for A e Ob(~+).  The natu- 
ral transformation ~2 : 1~2 ..:+E 2 2 D is defined similarly by ~ = rrr for 
y E Ob(~)) and ~ = z~+ for Y �9 Ob(~9+). The naturality of 2s on morphisms 
entirely within ~ or 2 +  is immediate. Consider a non-trivial 22-morphism 
f : A + -+ A corresponding to the O+-morphism f : A + ~ AU.  Then 
2r is natural at this 2~-morphism f since f2s  A = feA  = f sU  = fS+u = 
s++ fD+E+ =2 CA+ f2DE2. The first and last equalities here follow by defini- 
tion of 2r 2D, and E 2. The second equality follows by composition in 22, 
the third by compatibility condition (4.5)(c), and the fourth by naturality 
of e+ at the ~+-morphism f : A + ~ AU. The naturality of ~]2 is obtained 
dually. �9 

EXAMPLE 4.3. The semilattice dualities (2.6) and (2.3) are compatible. The 
functor U : S1 ~ S1 forgets the constant, while the functor Z : M --* 
forgets the compact constant. 
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Now suppose that  a duality of the form (4.1) is given, with complete 
9.1 having directed colimits, so that  X is cocomplete and has directed limits. 
Such a duality may come from (4.2) with B0 empty, or from (4.8) of Theorem 
4.2. Set ~ = (S1; PI~ For a ~-space G, a representation (contravariant 
functor) R : G ~ :~ is said to be fS-continuous if 

(4.9) gR = H+m(R : GKN ~ g --+ X) 

for each element g of G. (The limit on the right hand side of (4.9) is the 
limit of the restriction of R to the upwardly directed ordered subset of G 
consisting of compact elements below g.) The category :~ is defined to be 
the full subcategory of (~;  Eop) consisting of ~-cont inuous representations 
of !B-spaces in 9C. By virtue of (3.14), representations R in ~ and :~ may be 
identified with the ( to ta l  spffces of the) corresponding bundles RA. Define 
a contravariant functor D : 91 --* :~ by 

(4.10) ( R : H - - *  91)D = ( H C  ~ X; ~ ~ [~m(R : 8-1{1) --~ 91)]D). 

To see that  R/9 is ~-continuous,  it is convenient to identify characters O of 
H with the walls ~-1{1} that  they determine, according to (2.8). Under 
the identification, H C K  is the set of principal walls (Proposition 2.3). For 

an element h of H,  with corresponding principal wall [h], one has [hi R 5 = 

[~m(R : [h] ~ 91)] D = hRD.  Then for an arbitrary wall 0 of H,  it follows 

that  ~m(RD : H C K N  ~[ 0 ~ X ) =  ~m(R15 : {[h][h e O} ~ X) = ~ m ( R D :  

O --+ X) = [lim(R : O ~ 91)]D = OR ~, as required. The penul t imate  

equality holds since the covariant functor D : 91 --* X ~ having E : X ~ --* 91 
as a right adjoint, preserves colimits [16, w 5]. The definition of E : :~ -+ 
is quite direct. Recall the natural  isomorphism na  : G F  ~ G K  between 
the meet semilattice GF dual to the ~-space G and the join semilattice G K  
of compact elements of G (Proposition 2.5). The composite of nG with the 
order-preserving embedding j : G K  ~ G of the poset G K  in G gives a 
contravariant functor t~Gj : GF --~ G. The definition of E is then given by 

(4.11) ( R :  G --~ X)E = (ga  j R E :  G F  ~ 91). 

The right hand side of (4.11), as the composite of three contravariant func- 
tots, is contravariant.  It thus forms a representation of the semilattice G F  
in 9.1, determining an Z-algebra. 

THEOREM 4.4. Suppose given a duality (4.1) between a complete concrete 
category pl with directed colimits and a concrete category X of  representation 
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spaces. Then the functors b of (4.10) and E of (4.11) yield a duality 

N N ~ 

(4.12) D : 92 ~- 3; : E 

between the category ~ = (S1; Pl ~ and the full subeategory :~ of (~;  3; ~ 
consisting of ~-continuous representations. 

PROOF. Cf. [34, Th. 4.3]. Cocompleteness of 92 was assumed there, 
but  the existence of directed colimits suffices. �9 

Theorem 4.4 uses the semilattice duality (2.3). An analogous result may 
be formulated and proved on the basis of the semilattice monoid duality 
(2.4). 

THEOREM 4.5. 

(4.13) 

Under the assumptions of Theorem 4.4, there is a duality 

no: : Eo 

between the category ~0 = (S=~ol; Pl~ and the full subcategory ~:o of (Z; X ~ 
consisting of continuous representations. 

Ptonka's Theorems 3.3 and 3.4 may now be combined with Theorems 
4.4 and 4.5 to yield dualities for the regularizations and symmetrization of 
a strongly irregular variety. 

TItEOttEM 4.6. Let r : B --+ N be a plural type, and let ~ be a strongly 
irregular variety of B-algebras, equipped with a duality of concrete categories 

(4.14) D : ~ m ~) : E.  

(a) Suppose that Bo is empty. Then there is a duality 

N N ~ 

(4.15) D : ~ ~ ~ : E 

for the regularization 93 of ~.  

(b) Suppose that Bo is non-empty. Then there is a duality 

(4.16) Do:  ~o ~ Co: /~o  

for the regularization ~o of ~.  Suppose further that there is a duality 

(4.17) D+ : ~3+ ~ ~ +  : E+ 
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for the reduction ~+ of ~ compatible with the duality (4.14). Then 
there are dualities 

(4.18) DI: r ~ r 

for the symmetrization 51 of VO and 

(4.19) / ) ,  : ~ ,  ~ Or, : Et, 

for the symmetric regularization ~3~ of ~3. 

PROOF. (a) Applying Theorem 4.4 with (4.14) in place of (4.1) yields 
a duality 

(4.20) D :  (S1; ~3 ~ m ~ : / ~  

between (S1; 93 ~ and the full subcategory ~ of (~; O~ consisting of ~- 
continuous representations. This duality restricts to 

(4.21) D :  (S1; ~3~ ' m ~ : / ~  

for a suitable subcategory ~ of :~. By the equivalence (3.17) of Theorem 3.3, 
the category on the left hand side of (4.21) may be replaced with 5 ,  yielding 
(4.15). 
(b) Applying Theorem 4.5 with (4.14) in place of (4.1) yields (4.16). Apply- 
ing Theorem 4.4 to the duality (4.8) of Theorem 4.2 yields a duality 

(4.22) 2/~: (Sl; 2gjop) ~ ~ : ~2 

for the full subeategory ~ of (~B; ~2 op) consisting of continuous represen- 
tations. By (3.25), the symmetric regularization ~Jt~ is equivalent to the 
category (S1; 2~op), of (3.23). This category in turn has an equivalence 

(4.23) L :(S1 ; 2~3~ 

with a subcategory ~ of (S1; 2~3~ The functor L forgets ("Loses") the 
constant # in the domain semilattice of a representation. The functor J 
recovers the constant in the domain of suitable representations (viz. those in 
6)  as the least upper bound ("Join") of the semilattice elements represented 
by 2~3-objects in ~3. Define a functor 

(4.24) / )~:  ~ ~ :~ 

as the composite : G L  of the functors of (3.25), (4.23), and (4.22). 
Let ~ be the image of Dr, in :~. Let / ~  be the restriction of/~2 to ~ .  
This yields the duality (4.19). Finally, (4.18) is obtained from (4.19) by 
restriction. �9 
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5. F i r s t  a p p l i c a t i o n s  

The current and subsequent sections discuss some typical applications of 
the general Theorem 4.6. In these applications, the category ~3 of (4.14) is a 
strongly irregular variety of finitary B-algebras with nullary operations. The 
category ~0 is the regularization of ~3, the category ~]  is the symmetrization 
of ~3, and finally ~ is the symmetric regularization of ~ .  The duality (4.14) 
arises from a schizophrenic object T, appearing simultaneously as an object 
T of ff~ and as an object T of ~ ,  in such a way that there are natural 
isomorphisms 

(5.1) 

and 

(5.2) p: 

Moreover, the underlying sets o fT  and T coincide with T. The category ~ is 
the closure ISP{T__} of the singleton class {T} under the closure operations 
P of power, S of subalgebra, and I of isomorphic copy. The representa- 
tion space T is a compact Hausdorff structure with closed relations. These 
relations on T are subalgebras of powers of T with respect to the algebra 
structure on T given by T. Moreover, operations w : T --+ T of T are con- 
tinuous with respect to the topology of T. The category ~ is the closure 
ISP{T} under the closure operations P of power, S of (closed) substructure, 
and I of isomorphic (homeomorphic) copy. (Cf. [5].) By Theorem 4.6, there 
are dualities 

(4.16) /~o: ~0 m Co:  Eo, 

(4.18) 

(4.19) D ,  : ~ ,  ~ a t , :  E~ 

for algebras from the regularization ~o, the symmetrization ~1, and the 
symmetric regularization ~t,, respectively. Similarly as in (4.14), the duali- 
ties (4.15) D :  ~ ~ ~ :  E and (4.16) arise from schizophrenic objects. Given 
a schiophrenic object T for the duality (4.14), there is a representation J of 
the two-element semilattice 2 in 2 ,  with 1J = T and 0J = oc, the terminal 
object of ~ or ~V, that may be interpreted either as an object !. or T__ ~ rep- 
resenting 2 in ~1 or as an object Y or T ~ representing 2 in ~ .  There is a 
similar representation of the two-element semilattice monoid 20 in ~30, that 
may be interpreted either as an object T__0 c~ representing 2_ 0 in ~3o, or as an 
object To ~ representing ~ in ~0. 
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PROPOSITION 5.1. I f T  is a schizophrenic object for the duality (4.14), then 
T ~ is a schizophrenic object for the duality (4.15) and T ~  is a schizophrenic 
object for the duality (4.16). 

PROOF. For the first part, see [34, Th. 6.1]. The second part follows 
similarly. �9 

As in the case of the duality (2.6) for semilattices, the duality (4.19) does 
not seem to arise from a schizophrenic object. 

Before discussing our first examples, let us note that if a basis for the 
identities holding in the variety of gJ is known, then it is very easy to find 
a basis for each of the varieties ~3,~30,~3], and ~ .  Since ~3 is a strongly 
irregular variety, there is a basis for the identities satisfied in ~3 consisting 
of a set of symmetrically regular identities and a unique irregular identity of 
the form 

(5.3) x * y = x 

as discussed in Section 3. (See [18], [29].) The bases for the varieties 
~ ,  gi0, ~1 and ~u can be obtained by means of the following theorem. 

TIIEOItEM 5.2. Let r : B --+ N be a plural type~ and let ~U be a strongly irreg- 
ular variety of B-algebras defined by a set E of symmetrically regular identi- 
ties and the identity (5.3). Then the (strict) regularization, symmetrization 
and symmetrical regularization of ~ may be defined by the following sets of 
identities, respectively: 

(a) I f  Bo is empty, then ~ is defined by the identities E, the identities 
defining �9 as a left normal band operation, and for each w in B the 
identities 

(5.4) y = �9 �9 

(5.5) y*  (Xl...XwrW) = y*  xl * . . . *  xwr. 

(b) I f  Bo is non-empty, then ~3 u is defined by the identities as for ~ and 
the identity 

( 5 . 6 )  * = 

for all Wo, ~ol in Bo. 
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(c) If Bo is non-empty, then ~o is defined by the identities as for ~ and 
the identity 

( 5 . 7 )  x �9 ~ 0  = x 

for each wo in Bo, and ?~1 is defined by the identities as for ~ and 
the identity 

( 5 . S )  ~o * x = ~o 

for each wo in Bo. 

PRoof .  See [20], [21], [29], [30], [22], [23], [24], [251. " 

EXAMPLE 5.3. (REGULARIZED PttIESTLEY DUALITY) The variety D__l of dis- 
tributive lattices may be defined by the set of symmetrically regular (indeed 
regular) identities axiomatizing + and �9 as semilattice operations and con- 
necting them by the distributive laws, and moreover one strongly irregular 
identity 

(5.9) x * y : = x  + x y = x  

of absorption. As shown in [19], the set of identities from Theorem 5.2 
defining the variety Dd of doubly distributive dissemilattices (cf. [31, 109], 
[19], [25]), that is the regularization of the variety D_~l, may be reduced to the 
regular ones among those defining D1. The algebras in Dd are also called 
distributive quasilattices or bisemilattices. (Cf. [19], [32]). The variety Dlz 
of distributive lattices with a lower bound 0 is axiomatized by the identities 
defining D_l together with the symmetrically regular identity 

(5.10) x + 0 = x + xO. 

Finally, the variety Dlb of bounded distributive lattices with a lower bound 
0 and an upper bound 1 is axiomatized by the identities defining Dlz and 
the symmetrically regular identity 

(5.11) x -1  = x(x + 1). 

By Theorem 5.2, it is easy to see that the symmetrically regular identities 
from those defining Dlz describe the regularization Dlzo of Dlz. And simi- 
larly, the symmetrically regular identities from those defining Dlb describe 

the regularization Dlb 0 of Dlb. Note that the dissemilattices in Dlz o are 
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those that have recently found applications in the theory of program seman- 
tics [15], [28]. They are called "snack algebras" in [15], and are used there to 
describe the structure of certain types of so called "edible" power domains. 

For each of the three varieties of distributive lattices D1, Dlz and Dlb con- 
sidered above, there is a version of Priestley duality. Each one arises from a 
schizophrenic object that is the two-element lattice 2 without or with suitable 
constants. The functor D or D0 of (4.15) or (4.16) is naturally isomorphic 
to the functor given by homming to the schizophrenic object considered as 
a lattice. Similarly, the functor /~ or E0 of (4.15) or (4.16) is naturally 
isomorphic to the functor given by homming to the same schizophrenic ob- 
ject considered as a corresponding ordered space. In particular, one has the 
following dualities 

(5.12) DI( ,_2): D I ~  OSb: OSb(,220,1) , 

(5.13) Dlz( ,2_o): Dlz m OSz: O S z ( , ~ ) ,  

(5.14) .D lb ( ,2_ .0 ,1 )  :Dlb ~ OS: OS( , ~  

between distributive lattices and bounded ordered Stone (or bounded Priest- 
ley) spaces, between distributive lattices with a lower bound and ordered 
Stone (or Priestley) spaces with lower bound, and finally between bounded 
distributive lattices and ordered Stone (or Priestley) spaces. (Cf. [6]) The 
schizophrenic object of (5.12) is the two-element lattice _2 = ({0, 1), +, .) 
or the order space ~,1 = ({0, 1}, <,0, 1,7). The schizophrenic object of 
(5.13) is the two element lattice 20 = ({0, 1), +,. ,  0) or the ordered space 
20 = ({0, 1}, <, 0, 7). Finally, the schizophrenic object of (5.14)is the lat- 
tice _20,1 = ({0, 1), +,-, 0, 1) or the ordered space 2 = ({0, 1}, <, 7"). 

The dualities (5.12), (5.13) and (5.14) may be regularized using Theo- 
rem 4.6. The duality for the variety Dd = D~l of (non-empty) distributive 
dissemilattices is thoroughly treated in [7]. It has the form 

(5.15) Dd( , 3 ) : D d ~ O S N B : O S N B (  , ~ ,  

where the category OSNB is axiomatized as the category of ordered Stone 
topological left normal bands with three constants Co, cl, ca satisfying 

(5.16) 

/ X * Co~ ----- Co~*X ~ Co~ , 

X *C O ---~ X *C 1 ~ X, 

CO ['" X < Cl, Ca __< X E C2, 

C o * X  ~ gl * X  ~ X ---- Ca, 
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where U is the  ordering relation defined by 

(5.17) x C yr x * y  < y and y , x  = y. 

The  schizophrenic object  3 = 200 is interpreted either as the dissemilat- 
t i ce  3 = ({0, 1,a},- t- , -) ,  the Ptonka sum of a two-element latt ice and a 
one-element  lattice, or as the ordered Stone topological left normal  band 
~,1  = ({0, 1, ~}, _<,., 0, 1, a ,  T) ,  the Ptonka sum of a two-element ordered 
left zero band  and a one-element left zero band,  with all three elements serv- 
ing as the  constants .  The  constantless reducts of the schizophrenic objects  
of the  regularizations of the dualities (5.13) and (5.14) are the same as the 
constantless reducts  of 3_ and 3~,1. Moreover 30 = 2_0 ~ and ~ = 2000 have 
one constant  operat ion selecting the lower bound of the two-element latt ice 
component .  The  object  _30,1 = -0,1200 has two constant  operations,  selecting 
the  upper  and lower bounds  of the two-element lattice component  respec- 
tively, and the object  3 = 2 ~  has the set of these bounds as a (closed) 

unary  relation, say v. The  category ~ = I S P  (2~~ the regularization 
of D!z , is equivalent to the category (S__01 ;Dlz~ ) (cf. (3.18).) The  category 

OSz~ = ISP(2o00 ) is the full subcategory of (Z; OSz ~ consisting of con- 
t inuous representat ions of Z-semilattices in the category OSz. It may  be 
axiomatized as the category of ordered Stone topological left normal  bands 
wi th  one constant  Co satisfying the conditions 

(5.18) x *  co = x and c0* x _< x. 

The  category Dlb o = ISP(2_o~,I), the regularization of Dlb, is equivalent 
to  the category (S=~01 ;D]b~ ) (cf. (3.18)). Let Dlb* be the subcategory of 
Dlb consisting of non-trivial  algebras. The  category (S=~ol; Dlb ~ has a full 

subcategory (SJol; Dlb*~ ) with D!b 0 = (S=~l; Dlb*~ 

The  elements of ~-b~ may  be described as Plonka sums (with con- 

s tant )  of non-triviM bounded  distributive lattices. The  category OS 0 is 
the  full subcategory of (Z; OS ~ consisting of continuous representat ions 
of Z__-semilattices in the category OS. This category cannot be axiomatized 

similarly as the  category 0Sz.o. The  reason is tha t  OS 0 contains representa- 
t ions R : G ~ OS with some g R  empty.  Note tha t  if for g in G, g R  = 0 
and g _< h, then  h R  = 0 ,  too. In particular,  the dual of each represen- 
ta t ion  R : H --* Dlb with h R  = oc for all h in H is the representat ion 

R ~~ : H W  --+ OS with OR 150 = ~ for all 0 in H W .  More generally, if 
there  is a subordinate  set D C H such tha t  for all h in D, h R  = oo, then 

T hRD~ = r for all h in D. Let us call such representat ions trivial. Consider 
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the subcategory 6Sz; of 0~z o consisting of non-trivial representations in 

OSza. Then the duality 

(5.18) /)0: Dl'---b 0 ~ O~S.0 :/~0 

restricts to the duality 

(5.19) D~]: Dlb o ~ O=~S :/~(] 

between the category of Ptonka sums of nontrivial bounded lattices and the 
category of non-trivial representations of Z-semilattices in OS. The category 

O-S~ = I S P ( 2  ~176 may now be axiomatized as the category of ordered Stone 
topological left normal bands having a closed unary relation v, satisfying 

(5.20) VxET-, V y E r ,  x = x , y a n d y = y , x  

and 

(5.21) Vx ,  3 y . 3 z  E "r. x = x , y,  y = y , x and  y = z , y. 

Axiom (5.20) says that v is a class of the semilattice replica, while axiom 
(5.21) says that 7 is the unique maximal class under the (meet-) semilattice 
ordering of the replica. These axioms guarantee that semilattice replicas of 
~ g t  

O__S0-morphmms are genuine Z-morphisms. 

EXAMPLE 5.4. (REGULARIZED STONE DUALITY) Stone duality may be con- 
strued as the duality Bool ~- Stone between the variety of Boolean algebras 
and the category of Stone spaces. The category Stone is isomorphic with the 
category SLz of Stone topological left zero bands. The schizophrenic object 
for the duality 

(5.22) D : Bool ~ SLz : E 

has two elements~ and is interpreted as the two-element Boolean algebra 
2_ b = ({0, 1}, + , - , ' ,  0, 1) or the two-element (topological) left-zero band ~ = 
({0, 1}, , ,  7).  So the schizophrenic object 2~ for the regularization of the 

duality (5.22) appears in Bool 0 as the three-element Ptonka sum of the sin- 
gleton ~ and the Boolean algebra 2 b. As 2~ ~176 the schizophrenic object is a 
Stone topological normal band ({0, 1, a}, , ,  IF), the Ptonka sum of the sin- 
gleton ~ and the left-zero band 2~, together with a constant operation ca 
selectinng cr and a unary relation 7 consisting of the subset {0, 1}. The vari- 
ety Bool0 , the regularization of the variety Bool, can be axiomatized by the 



Semilattice-based dualities 249 

identities defining the variety Dlz.0 together with the following: 

(5.23) 

(x + y)t = xly,, 
X I t  : X, 

x .O ~ XX I, 

0 ' =  1. 

(See [22] and Theorem 5.2.) The category Bool o contains a full subcategory 

B~-~ol~ of Ptonka sums of non-trivial Boolean algebras. The category SL~-~o 
is the full subcategory of (Z; SLz ~ consisting of continuous representations 

of Z--semilattices in the category SLz. Similarly as in the case of OSo, the 

category SLz~ also contains trivial representations. However, again similarly 
as in that case, the duality 

(5.24) D0 : Bo~-~lo ~ SL~'-z0 : E0 

restricts to a duality 

(5.25) D ; :  8ool  0 ~ SL=~: E~ 

between the category of Ptonka sums of non-trivial Boolean algebras and 
the category of non-trivial continuous representations of Z--semilattices in 
SLz. The category SL~-~. = ISP(2~oo) is axiomatized as the category of Stone 
topological left-normal bands with one constant operation ca acting as zero 
and with one closed unary relation r satisfying conditions (5.20) and (5.21). 

EXAMPLE 5.5. (REGULARIZED PONTRYAGIN DUALITY) (See [34].) This is 
the regularization 

(5.26) Ab0( , T ~ 1 7 6  o m CHAb: C H A b ( , T o o )  

of the Pontryagin duality 

(5.27) Ab( , T ) : A b ~ - C H A b : C H A b ( , T )  

between the variety Ab of abelian groups and the category of compact Haus- 
dorff abelian groups. The circle group T = R/Z is a schizophrenic object for 
the duality (5.27). The variety Ab o is the variety of commutative inverse 
semigroups with identity 0 satisfying 

(5.2s) { - ( - x )  = x, 
- (x  + y) = (-x)  + (-y),  
X - - X ~ - X ~ X  

x + 0 = x .  
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It is the class of Ptonka sums with constants of abelian groups [22], [25], and 
is equivalent to the category (SJol; Ab~ The class CHAb is axiomatized as 

the category of compact Hausdorff Ab0-algebras. For an Ab0-monoid G, the 

dual Ab0(G,T~176 ) is the set G* of semicharacters of G in the notat ion of [9, 
Defn. 5.3]. 

In much the same way, one can find regularizations of dualities for the 
varieties A of abelian groups of exponent m and varieties V of vector 

spaces over the finite field GF(q) (see [6], [5]). 

6. S y m m e t r i c a l l y  r e g u l a r i z e d  P r i e s t l e y  d u a l i t y  

In this section, the category fi of (4.14) is the variety Dlz of distributive 
lattices with a lower bound 0, and the category ~ of (4.14) is the category 
OSz of ordered Stone spaces with a lower bound 0. The category fig+ is 
the variety Dlz+ = D1 of distributive lattices, and the category ~+  is the 
category OSz+ = OSb of bounded ordered Stone spaces. There is a duality 

(6.1) D+ = DI( ,_2): D l ~  OSb:  O S b ( , ~ , 1 )  = E+, 

(cf. 5.12) with natural  isomorphisms s + : 1D1 -~D+E+ and ~+ : 1DS b -:. 

E+D+. In order to achieve compatibility with (6.1), the duality (5.13) has to 
be modified slightly. The categories fi  and ~ are as defined above. Instead 
of the functors Dlz( ,2_0)  and OSz( , 2~), two other functors D and E are 
defined. To this end, let the "creation operator" 

(6.2) Z+ : = Z : O S z ~ O S b  

be the functor that  assigns, to each space X in OSz., the space x u { 1 } ,  where 
1 is not in X,  and for each x in X, x < 1. Morphisms between Z-images 
of members of OSz extend OSz-morphisms by preserving 1. The category 
OSz becomes concrete by virtue of the composite Z+G : OSz ~ Set of 
the creation operator Z+ : OSz --* OSb with the standard forgetful functor 
G : OSb ~ Set. Now let the "destruction operator" 

(6.3) Z_ : OSzZ --* OSz 

be the functor removing the element 1 from each space Y in the image OSzZ 
of OSz under Z. Note that  Z_Z+ = 1OSzz and Z+Z_ = lOS z. Now recall 

the forgetful functor U : fi  ~ fi+ of (3.20) and accordingly define 

(6.4) U_ := U : Dlz -~ D1, and 
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(6.5) U+ : DlzU_ ~ Dlz. 

The first functor  U_ forgets the constant O, and the second one recalls it. 
As before, U_ U+ = 1D1 z and U+U_ = 1Dlzv. The functors D and E are 

defined as follows: 

(6.6) D := U_D+Z_ and E := Z+E+U+. 

PROPOSITION 6.1. Let L denote an object of Dlz. There is a natural iso- 
morphism c2: D l z ( , 2 _ 0 )  ~ D  = U_D+Z_ between the functors D l z ( , 2 _ 0 )  
of (5.13) and D of (6.6) given by 

(6.7) ~L : Dlz(L,2a) ---+ LU_D+Z_;((L,+,.,O)---+ 2_0) ~ ( ( L , + ,  .)--+ 2_). 

Let Y denote an object of OSz. There is a natural isomorphism 
r  OSz( , ~ )  ~ E  = Z+E+U+ between the functors O S z ( , 2 ~ )  of (5.13) 
and E of (6.6) given by 

(6.8) g,y : OSz(Y, ~ )  --+ YX+E+U+; 

((Y, <_,O,T)--+ ~ ) ~  ( (Y  0 {1},_<,0,1,T) -+ 20,1 ). 

PROOF. Both functions ~L and ~y are obviously bijective. The upper 
bound of LU_D+ is the function f : L ~ 2_; a ~ 1 with L f  = {1}. �9 

Since 9~ : Dlz( ,2_0)~D and r : OSz( , ~ ) ~ E  are natural  isomor- 
phisms, one obtains a duality 

(6.9) D : Dlz ~ 0Sz : E.  

The na tura l  isomorphisms for (6.9), E : 1D1 z -: .DE = U_D+Z_Z+E+U+ = 

U_D+E+U+ and ~/= lOS z -:+ E D  = Z+E+U+U_D+Z_ = Z+E+D+Z_,  are 

given by 

(6.10) EL = ~+uV+ and rty = rl+gZ_. 

PROPOSITION 6.2. The dualities (6.9) D : Dlz ~ OSz : E and (6.1) D+ : 
D1 ~ OSb : E+ are compatible. 

PROOF. One has to check the conditions (a)-(d) of (4.5). First note that  
D Z  = U_D+Z_Z+ = U_D+ = UD+ and ZE+ = Z+E+ = Z+E+U+U_ = 
EU_ = EU.  This proves (a) and (b). Now, for each lattice L in Dlz and 
space Y in OSz, the conditions (6.10) give that  ELU = ELU- = E+LuU_U+ = 
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r and similarly r/yZ = r/yZ+ = ~I+zZ_Z+ = ~l+yz . This proves (c) and 
(d). I 

Since the dualities (6.9) and (6.1) are compatible, Proposition 4.1 and 
Theorem 4.2 yield the duality 

(6.11) 2 D :2 Dlz ~ OSz 2 : E 2. 

Note that the category OSz 2 is concrete by virtue of the faithful functor into 
Set that acts as the standard forgetful functor G on the subcategory OSz+, 

as Z+G on the subcategory 0Sz, and that assigns to each OSz2-morphism 
of the form f : Y -+ X ,  where Y is in Ob(OSz) and X is in Ob(OSz+), the 
Set-morphism f : Y Z  -+ X .  The following diagram helps to summarize the 
dualities and functors discussed in this section: 

Set 
G D Z+G 

Dlz �9 ~ OSz Set 
E ..... 

z--z+llz 
DlzU OSzZ 

G D+ 
let ~ Dlz+ �9 ~ OSz+ ~ let 

E+ G 

Theorem 4.6 now yields the dualities 

(6.12) / ~ 1 :  Dl-~a ~ OS~-za : E1  

for the symmetrization Dlz I of Dlz and 

(6 .13)  / ) u :  Dl'--z ~ OS'-'-z : E u -/z - - #  

for the symmetric regularization Dlz of Dlz. An equational axiomatization :/z 

of the varieties Dlz I and Dlz. u can be deduced from Theorem 5.2. The 

variety Dlz I is defined by the symmetrically regular identities defining Dlz 
(cf. Section 5) together with the identity 

(6.14) 

and the variety Dlz :# 
those defining Dlz. 

0 + 0x = 0, 

is defined by the symmetrically regular identities from 
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Note that the dualities for D'zu and Dlz x obtained in this section do 
not seem to arise from schizophrenic objects. However, it is likely that a 
duality with a schizophrenic object exists at least for Dlz 1. It should be 
based on a duality for S11 obtained by means of the two-element semilattice 
with an absorbing element selected as a constant nullary operation serving 
as a schizophrenic object. We did not pursue this line in the current work. 
Similarly, we did not consider another possible duality for Dlz 0 that can be 

obtained from our duality for Dlz by taking # = 0. - - #  

7. L i n d e n b a u m - T a r s k i  d u a l i t y  

Here the basic variety ~ is the variety L___~z of left zero bands, discussed in 
Section 3, isomorphic to the category Set of sets. The categorical version of 
the well-known Lindenbaum-Tarski duality [1], [6], [13, VI. 4.6(b)], [34] may 
be written as 

(7.1) Lz( ,_2): L__~_z ~ St B : St B ( , 2 ) ,  

where St B is the category of Stone topological Boolean algebras, isomorphic 
to the category of complete, atomic Boolean algebras. For a left zero band E,  
the space L____zz(E, 2) consists of characteristic functions TT: E ~ 2 of subsets 
T of E. One can then identify the space Lz(E, 2) with the (topological) 
Boolean algebra of subsets of the set E. The natural isomorphisms gLT and 
TILT for the duality (7.1) are given, as usual, by 

(7.2) ¢LT: E + St B(Lz(E,2_),~; a ~ (~ ~ a~) 

and 

(7.3) x Lz(St B(X, D, 2_); x (h xh). 

The schizophrenic two-element object 2 appears in L__zz as the band 2 = 
({0, 1},*), and in St B as the Boolean algebra 2 = ({0, 1}, +, - , ' ,  0, 1,7") 
with discrete topology T. A duality for the variety L_n_n of left normal bands, 
the (strict) regularization of the variety L__~_z, was obtained in [34]. It has the 
form 

(7.4) Ln( , 3 ) : L ~ S t  B : S t B (  , ~ .  

The algebraic part of the category St B is axiomatized as the regulariza- 

tion Bool of the variety Bool of Boolean algebras. Here the variety Bool 
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may be axiomatized by the identities defining the variety Dd of distributive 
dissemilattices together with (regular) identities 

(7.5) 
(x + y)' = x ' y ' ,  
x x  I + yy~ = x x ~ y y  p, 

X l /  : X 

and one irregular identity 

(7.6) x + x y  = x 

of absorption. The regularization Bool is axiomatized by the axioms for Dd 

and the identities (7.5). The category St B is described as the class of Stone 

topological Bool-algebras with three nullary operations ca, co, cl satisfying 

(7.7) I 
X -~ XCO --~ X,  

C O ~ - X  -~ X = XC 1, 

C 2 -~- X -~ C a = XC~, 

Co + CoX = Cl + X =~ X = Ca. 

The schizophrenic object 3 appears in L_n_n as the Ptonka sum 3 of the two- 

element left zero band 2 and a one-element left zero band, and in St B as a 
3-element regularized Boolean algebra 3~ with discrete topology, and with its 
three elements a, 0 and 1 selected as constants by nullary operations ca, co 
and Cl respectively. The algebra 3 is well known under various names such 
as the "weak extension of Boolean logic" [8], [14] and the "Bochvar system 
of logic" [2], [4]. 

The duality (7.1) can be modified to obtain duality for pointed sets. Here 
the basic category ~3 of (4.14) is the category L__~z P of left-zero bands with a 

(non-empty) set P of nullary operations, isomorphic to the category Set P of 
P-pointed sets. One easily obtains the duality 

(7.8) D : L___zz P ~ St B P : E 

between the category L__zz P isomorphic to Set P and the category of Stone topo- 
logical Boolean algebras with a set of pointed atoms selected by nullary oper- 

�9 ~ E D  ations in P.  The natural isomorphisms e : 1Set. P - :+DE and r/: 1St___B_Bp 

for the duality (7.8) are given by (7.2) and (7.3) with s = g L T  and r /=  ? ] L T  

but one requires additionally that  for any pointed set (S, P)  and each p in 
P ,  the element of S D  selected as a constant by the nullary operation p is 
the a tom {p} containing the element p in the Boolean algebra of subsets of 
S. Similarly, for a pointed Stone Boolean algebra X with a pointed a tom p 
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in P,  the element of X E  selected as a constant by the nullary operation p 
is the morphism h with (T p )h  = {1} and ( X -  T p )h  = {0). The natural 
isomorphisms e and q act on constant elements p in P accordingly: 

(7.9) p ~ (pes  : S D  --* 2~ ~PT ~ P ~ T ) ,  

(7.10) p ~ (p~x  : X E -~ 2; h ~ ph  ). 

Note that the schizophrenic object 2 for the duality (7.1) is no longer a 
schizophrenic object for the duality (7.8). Homomorphisms of Boolean al- 
gebras do not necessarily respect nullary operations in P. Nevertheless the 
duality (7.8) satisfies the assumptions of Theorem 4.6, whence there is a 
duality 

(7.11) /9o : L=~o m - - P  St'-~ P : Eo 

N p  N p  
for the regularization L==~z of L S .  The variety L=~oZ is axiomatized by the 
identities defining the variety L~ and, for each p in P, the identity x ,  p = x. 

p 
The category St B 0 is axiomatized as the category of Stone topological Bool- 
algebras with the set P U {ca, Cl, c0} of nullary operations. For a represen- 
tation R : (H, . ,  1) ~ L__z, all P-constants lie in the fibre 1R. 

To find dualities for the symmetrization and symmetricM regularization 
of the variety Lz__~_ P, one needs to specify the categories ff~+ and ~+ of (4.3). 
For 2 +  one takes the variety L___z, for ~+ the category St B, and for (4.3) 
the duality (7.1). One has the following diagram of dualities and functors 
similar to that for Dlz and Dlz+. 

G D 
Set < L__zz P ~ * St B P 

- -  E 

D+ 
Set ~G --L---~z _~E+ S tB  

G Set 

Set 
G 

Here both functors U : Lz_~_ P --~ L_zz and Z : St B P --+ St B forget the nullary 
operations in P. The functors D+ and E+ in the bottomline are the Lz( ,2) 
and St B( , ~  of (7.1) respectively. 

LEMMA 7.1. The dualit ies (7.8) D : L z P ~ St B P : E and (7.1) D+ : Lz~-  
St B : E are compatible. 
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PROOF. The conditions (a) and (b) of (4.5) follow directly from the 
definitions of the functors in the diagram above. The conditions (c) and (d) 
are also obvious. �9 

Now since the assumptions of Theorem 4.6 are obviously satisfied, it 
follows that  there are dualities 

(7.10) 9 1 :  ~Zl P ~ St"-nP : E1 

~ p  
for the symmetrization Lz 1 of  Lz P and 

(7.11) D .  :~zz P ~ ST-'B P :/~g ~ / z  :/z 

for the symmetric regularization ST-B~ p of St B P. The variety L__~_~ P is ax- 
iomatized by the identities defining the variety Ln and, for each p in P ,  the 

identity p �9 x = p, whereas the variety ~zz~ is axiomatized by the identities 

defining L__~_n and all the identities p �9 q = p for p, q in P.  For a representation 
R : (H,-,  0) --~ L___z P, all P-constants are located in the fibre OR, and for a 

representation R : (H, . ,#) ~ Lz P, all P-constants are located in the fibre 

#R. The non-constant reducts of St B f -  and __S~JBP-spaces are defined as 
~ p 

St B-spaces. Each St B]-space has the set P of nullary operations. For a 

representation R : (G, -, 1) ~ St B P, all P-constants are located in the fibre 
1R. For a representation R : (G, -, m) ~ St B P, there is the set P of nullary 
operations in each fibre g R  for g > m. Denote by Pg the set of constants 
in  gR.  Then the space corresponding to the representation R has the set 

[.J Pg of constants. 
g>m 

8. D e f i n a b l e  c o n s t a n t s  

For this final section, suppose that  the category ~3 of (4.14) is a strongly irreg- 
ular variety of B-algebras with definable constant operations. (Recall that  a 
constant is definable if the nullary operation selecting it is identically equal to 
an operation derived from the basic non-nullary operations.) Examples are 
furnished by Boolean algebras, where 0 = x . x  ~ and 1 = x + x ' ,  and by abelian 
groups, where 0 = x - x. It follows that  the functor U : f13 ---* 2 +  of (3.20) is 
an isomorphism between ~ and ~3U. Moreover Ob(?8+) = Ob(fi3U) 0 {O}. 
Given a duality (4.2) for such a variety, there may be no compatible duality 
(4.3) for 2 +  enabling one to apply Theorem 4.6 to obtain dualities for ~ 
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and ~1. What  is always possible, however, as illustrated in this section by 
Pontryagin and Stone dualities, is that one may replace the category ~3+ in 
Section 4 by ~3~_ := ~3U. The category ~+ is then replaced by a category 
~ _  that  is a disjoint copy ~V Z of the category ~ via an isomorphism Z. The 
duality (4.2) then yields a compatible duality 

(8.1) D~_: ~_  ~ ~3~-: E~_ 

with D+ = U-1DZ, D'+ = Z-1EU, etc. Thus (8.1) may replace (4.3), and 
more generally the work of Section 4 applies once symbols with "+" acquire 
primes. Modified in this way, Theorem 4.6 gives dualities (4.19) and (4.18) 
for ~ and ~1. 

EXAMPLE 8.1. (SYMMETRICALLY REGULARIZED PONTRYAGIN DUALITY) 
The duality (4.14) here is the Pontryagin duality 

(8.2) D = A b (  , T ) : A b ~ C H A b : C H A b (  , T ) = E  

(cf. (5.27) discussed in Example 5.5). The category Ab~ is the category 
of non-empty abelian groups defined as algebras (G, + , - )  (without 0 as a 
basic nullary operation) satisfying the identities 

[ (x + y) + z = �9 + (y + z) 
(8.3) [ x + y = y + x  

(8.4) x + y -  y = x 

(cf. [21]). Note that abelian groups as algebras (G, + , - , 0 )  may be defined 
by the same set of axioms together with the identity 

(8.5) 0 + 0 = 0 .  

Among all these identities only (8.4) is irregular. The identities defining the 
symmetric regularization A b  are (8.3), (8.5) and 

(8.6) { - ( - x ) = x  
- ( x  + y) = ( - ~ )  - (y) 
X ~ - X - - X ~ - X .  

N 

Non-constant reducts of Ab-semigroups are commutative inverse semigroups, tt 
_ _  is equivalent to a cate- Ptonka sums of Ab+-groups. The category Abt ' 

gory of representations of S1 -semilattices in 2Ab. For such a representation 
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R : (H, .,#) --+ 2Ab~ the constant 0 is selected from the fibre #R. For # = 1, 

one obtains the symmetrization A_~b I of Ab. It is defined by the axioms for 

Ab and the identity -# 

(8.7) 0 + x -  x = 0. 

The category CHAb~. is the category of non-empty compact Hausdorff abe- 

lian groups (G, +,  - ,  7"). The category C H A b  is equivalent to a category of 

continuous representations of M--semilattices in the category CHAb 2. Non- 

constant algebraic reducts of CHAb. -semigroups are commutative inverse 

semigroups, Ptonka sums of Abe-groups. For such a representation R : 
(G,-, m) ---, CHA__bb 2, there is one nullary operation 0g in each fibre gR for 
g > m. The space corresponding to the representation R has the set {0gig E 
G and g > m} of constants. 

E X A M P L E  8 . 2 .  S Y M M E T R I C A L L Y  R E G U L A R I Z E D  S T O N E  D U A L I T Y  The basic 
duality (4.14) is again the duality 

(8.8) D : Bool ~ Stone __ SLz : E 

between the variety Bool of Boolean algebras and the category Stone of Stone 
spaces or S Lz of Stone topological left zero bands (cf. Example 5.4). The 
variety Bool is defined by the axioms for the variety D d and the identities 
(7.5) and (7.6) of Section 7 together with the symmetrically regular identities 
(5.10) and (5.11) of Section 5. The category Bool~_ is the category of non- 
empty Boolean algebras defined as algebras without basic nullary operations 
by the same axioms as Bool but without (5.10) and (5.11). The symmetric 

regularization Bool of Bool is defined by the symmetrical identities defining :# 
Bool and the identities 

(8.9) O + 0 . 1 = O a n d l + l . O =  1. 

If # = 1, one should also add the identities 

(8.10) 0 + 0 . x  = 0 and 1 + 1 .x = 1. 

The category Bool is equivalent to a category of representations of S1 - - - : #  ~-/z 

semilattices in the category 2Bool. Just as for Bool~, the category Bool :/z 

contains representations R : (H , . , # )  ~ 2Bool with trivial fibres hR. The 

_ _  consists of Ptonka sums of non-trivial Boo!+- full subcategory B~ol: of B~o l  
algebras, with constants 0 and 1 selected by the two nullary operations of 
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the fibre #R. The categories SLz.+ and SLz coincide. The category SL____~z 
is equivalent to a category of continuous representations of M--semilattices 
in the category SLz 2. It may contain trivial representations with empty 

fibres. The full subcategory ~ z *  of ~ z  consists of non-trivial continuous - - #  - - #  

representations of M__-semilattices in SLz 2. Non-constant algebraic reducts of 

S-Lz..:-SPaCes are normal bands, Ptonka sums of left zero bands. The duality 

(8.11) D,  : Boo--1 ~ SLz : E ,  

restricts to a duality 

(8.12) / ) ; :  __B~~ ~ ~ z * :  E, .  
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