
DUALITY FOR QUASILATTICES AND GALOIS
CONNECTIONS

A.B. ROMANOWSKA1 AND J.D.H. SMITH2

Abstract. The primary goal of the paper is to establish a duality
for quasilattices. The main ingredients are duality for semilattices
and their representations, the structural analysis of quasilattices as
P lonka sums of lattices, and the duality for lattices developed by
Hartonas and Dunn. Lattice duality treats the identity function on
a lattice as a Galois connection between its meet and join semilat-
tice reducts, and then invokes a duality between Galois connections
and polarities. A second goal of the paper is a further examination
of this latter duality, using the concept of a pairing to provide an
algebraic equivalent to the relational structure of a polarity.

1. Preliminaries

1.1. Introduction. Quasilattices are algebras (X,+,×) with two semi-
lattice structures (X,+) and (X,×), satisfying the identities

[(x+ y)× z] + [y × z] = (x+ y)× z and

[(x× y) + z]× [y + z] = (x× y) + z

(Definition 6.1). They were first introduced by P lonka [1], under the
additional assumption that each semilattice operation distributes over
the other, and then studied in full generality by Padmanabhan [2]. In
turn, quasilattices form a special class of Birkhoff systems, algebras
with two semilattice operations connected by the Birkhoff identity

x× (x+ y) = x+ (x× y)

— compare [3, 4].
A duality for the distributive quasilattices studied by P lonka was

developed by Gierz and the first author [5]. The duality relied on
three ingredients: Priestley duality for distributive lattices, duality for
semilattices and their representations, and P lonka’s structural analysis
of a distributive quasilattice, as a union of distributive lattice fibers over
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the semilattice replica of the distributive quasilattice. Such structural
behavior, in terms of a union of fibers over a semilattice, is now known
as a P lonka sum in general algebra, or more narrowly as a semilattice
sum in the context of semigroup theory. Geometrically, P lonka sums
form the total spaces or bundles of sheaves over semilattices with the
Alexandrov topology.

The current paper establishes a duality for general quasilattices. Two
of the three ingredients in the new duality are analogues of those used
for distributive quasilattices: duality for semilattices and their repre-
sentations, and Padmanabhan’s structural analysis of general quasilat-
tices as P lonka sums of general lattices [2]. The third ingredient is the
duality for lattices developed by Hartonas and Dunn [6]. Predecessors
of this duality were Urquhart’s lattice representations [7], and the du-
ality for surjective lattice homomorphisms established by Hartung [8]
on the basis of Wille’s concept analysis [9].

The lattice duality of Hartonas and Dunn interprets the identity
function on a lattice as a Galois connection between the meet and join
semilattice reducts of the lattice, and then invokes a duality between
semilattice Galois connections and polarities. Thus a second feature
of our paper is a further examination of this latter duality, since it is
of considerable interest in its own right. In particular, the topological
Boolean algebras that were central to much of Rasiowa’s work make
an appearance here (Remark 3.9). In our approach to the duality for
semilattice Galois connections, we introduce the concept of a pairing to
provide an algebraic equivalent to the relational structure of a polarity.
Pairings often allow us to give a more immediate and precise treatment
of various features of the duality.

1.2. Plan of the paper. Section 2 summarizes the well-studied dual-
ity between the category SL of semilattices (understood as idempotent,
commutative semigroups) and the category B of bounded compact
Hausdorff zero-dimensional topological semilattices, based on the so-
called “Pontryagin duality” for idempotent, commutative monoids [10].
Objects of B are described simply as B-spaces. Semilattice duality is
fundamental to all the other dualities considered in the paper, start-
ing with the duality for Galois connections between semilattices, due
to Hartonas and Dunn, that is described in Section 3. Hartonas and
Dunn presented the dual objects as polarities, i.e. relations between
sets. Although there are certainly times when the relational language
of polarities is appropriate, there are other times when an equivalent
but more algebraic concept of a pairing is to be preferred. In particu-
lar, we are able to give a more direct characterization of the duals of
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semilattice Galois connections as semilattice pairings (Definition 3.17),
compared with the semilattice polarities that were used originally.

Section 4 outlines the Hartonas-Dunn duality for lattices, based on
the duality between semilattice Galois connections and semilattice po-
larities or pairings presented in the preceding section. The spaces dual
to lattices are the so-called lattice polarities of Definition 4.2 or the
equivalent lattice pairings of Definition 4.3 (the “L-frames” or “lattice
frames” of Hartonas and Dunn). A lattice pairing is a pairing between
B-spaces that satisfies the condition (4.6). Thus Hartonas-Dunn du-
ality is interpreted as a duality between the category L of lattices and
the category LP of lattice pairings.

Section 5 summarizes the duality for semilattice representations de-
veloped by the authors [11, 12] as a generalization of a technique used
for distributive quasilattices in [5]. A duality (5.13) between complete
and cocomplete categories A and X lifts to a duality (5.15) between

the category Ã of semilattice representations in A and the category X̃
of B-continuous representations of B-spaces in X.

The duality for quasilattices is finally presented as Theorem 6.5.
The language of semilattice representations and P lonka sums allows

one to identify the category of quasilattices as the category L̃. Then

the Hartonas-Dunn duality for lattices lifts to a duality between L̃ and

the category L̃P of B-continuous representations of B-spaces in LP.

Thus the objects of L̃P, the spaces dual to quasilattices, are the total
spaces or bundles of sheaves of lattice pairings over B-spaces. A small
example is worked in §6.3.

1.3. Some notational conventions. In general, notation that is not
otherwise explicitly identified here will follow the conventions of [13].
In particular, in primal situations, we normally use algebraic notation
placing functors and functions to the right of, or as superfixes to, their
arguments. “Left-handed” Eulerian notation, with functions composed
in backwards order, is then reserved for dual situations. In an ordered
set (X,≤), we write x≤ for the “up-set” {y ∈ X | x ≤ y} of an element
x, and x≥ for the “down-set” or subordinate subset {y ∈ X | x ≥ y}.

An adjunction

Aop
D′
**
X

E′
kk
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that involves covariant functors D′ and E ′ between a category X and
the dual Aop of a category A will be written as a dual adjunction

(1.1) A
D
**
X

E

jj

involving contravariant functors D and E, with natural isomorphisms

(1.2) A(A,XE) ∼= Aop(XE,A) ∼= X(X,AD)

for objects A of A and X of X. The component

ηX : X → XED

of the unit at an object X of X is the image of the identity 1XE under
the isomorphism (1.2). The component

εA : A→ ADE

of the counit at an object A of A is the image of the identity 1AD
under the isomorphism (1.2). The dual adjunction (1.1) becomes a
dual equivalence if the unit and counit are natural isomorphisms.

2. Duality for semilattices

2.1. Semilattices. We begin by recalling various well-known aspects
of semilattices, mainly to establish the terminology and conventions
that will be used throughout.

2.1.1. Semilattices as algebras. The variety SL of semilattices is the
variety of commutative, idempotent semigroups. (Note that in [10],
members of SL were described as “protosemilattices”.) The symbol
SL will also be used to denote the category with object class SL, where
the morphisms are semigroup homomorphisms.

2.1.2. Semilattices as posets. Consider a semilattice (H, ·). It becomes
a meet semilattice (H, ·,≤) when equipped with the order relation

(2.1) x ≤ y ⇔ x = x · y ,

and a join semilattice (H, ·,≤) when equipped with the order relation
x ≤ y ⇔ x · y = y. Order-theoretically, a meet semilattice is a poset
in which each subset {x, y} has a greatest lower bound x · y, while a
join semilattice is a poset in which each subset {x, y} has a least upper
bound x · y.
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2.1.3. Semilattices as categories. A small category C becomes a poset
category if for each pair x, y of objects of C, the condition |C(x, y) ∪
C(y, x)| ∈ {0, 1} holds. The relation x ≤ y ⇔ |C(x, y)| = 1 then
creates a poset (C0,≤) on the object set C0 of C. Note that in a
poset category C, the only isomorphisms are the identity morphisms
at objects of C.

A meet semilattice (H, ·,≤) may be construed as a poset category,
where x ·y is the product of x and y. Dually, a join semilattice (H, ·,≤)
may be construed as a poset category where x · y is the coproduct of x
and y.

2.2. Semilattice duality. Duality for semilattices is treated explicitly
in [14, §4.5] [15, p.158], [16, p.28], and also summarized in [11, 12]. It
is given by a pair

(2.2) SL
C
**
B

F

kk

of contravariant functors. Objects of the category B (i.e., B-spaces) are
compact Hausdorff zero-dimensional (“Stone”) topological meet semi-
lattices, with both a least element 0 and a greatest element 1, selected
by nullary operations. The morphisms of the category are the contin-
uous homomorphisms.

The two-element semilattice 2 = {0 < 1} is a dualizing object for
the duality (2.2). As an object of SL, the dualizing object is the two-
element meet semilattice. As an object of B, the dualizing object is
additionally equipped with the discrete topology, along with nullary
operations selecting 0 and 1. For a semilattice H, the B-space HC is
defined as the closed subspace SL(H,2) of the compact product space
2H . Elements of HC are called characters of H. For a semilattice
homomorphism f : H1 → H2, one obtains the dual B-morphism

(2.3) fC : H2C → H1C; θ 7→ fθ .

For a B-space G, the semilattice GF is the subsemilattice B(G,2) of
the semilattice reduct of the product 2G. Then the dual semilattice
homomorphism

fF : G2F → G1F ; θ 7→ fθ

of a B-morphism f : G1 → G2 is obtained in similar fashion to (2.3).

2.3. The set theory of semilattice duality. The functors of the
duality (2.2) will now be described in set-theoretical terms.
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2.3.1. Characters and walls. Recall that a subset Θ of a semilattice
(H, ·) is a wall if and only if

∀ x, y ∈ H , (x · y ∈ Θ) ⇔ (x ∈ Θ and y ∈ Θ)

[13, Defn. IV.1.2.2(b)]. In meet semilattices, walls are filters; in join
semilattices, they are ideals.

Lemma 2.1. Suppose that Θ is a subset of a semilattice (H, ·). Then
the characteristic function of Θ is a character of (H, ·) if and only if
Θ is a wall of (H, ·).

Let HW be the set of walls of a semilattice (H, ·). Then under
intersection, HW forms a subsemilattice of the power set of H. Let
f : H1 → H2 be a morphism of SL. There is a well-defined function

fW : H2W → H1W ; Θ 7→ f−1(Θ) .

Proposition 2.2. The specifications given above yield a contravariant
functor W : SL→ B. There is a natural isomorphism γ : C → W with
component

γH : (HC, ·,≤, 0, 1)→ (HW,∩,⊆,Ø, H); θ 7→ θ−1(1)

at a semilattice H.

Proof. Compare [10, Prop. II.2.4(ii)], recalling that the least element
of HW is the empty wall. □

2.3.2. Compact elements. As posets, B-spaces are complete lattices
[10, p.39]. Let G denote a B-space. A subset X of G is a cover of an
element g of G if and only if g ≤ supX.

Definition 2.3. An element c of a B-space is compact if it is nonzero,
and if each cover of c contains a finite cover.

Recall that a lattice is algebraic if it is complete, and if each element
is the supremum of the set of compact elements that it dominates. For
the following, compare [10, Cor. II.3.6].

Proposition 2.4. B-spaces are algebraic lattices.

If G is a B-space, let GK denote the set of compact elements of G.
Let f : G1 → G2 be a morphism of B. Then there is a well-defined
function

fK : G2K → G1K; c 7→ inf f−1(c≤) .
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Proposition 2.5. The specifications given above yield a contravariant
functor K : B→ SL. Then there is a natural isomorphism κ : F → K
with component

(2.4) κG : GF → GK; θ 7→ inf θ−1(1)

at a B-space G.

Proof. Compare [10, Th. II.3.7 and Prop. II.3.20]. □

2.3.3. Equivalence using the set-theoretic functors.

Definition 2.6. Let h be an element of a semilattice H. Then the
principal wall [h] is defined as the intersection of all the walls of H
that contain h.

Making use of the set-theoretic functors defined above, the natu-
ral isomorphisms establishing the duality for semilattices may now be
presented as follows.

Proposition 2.7. Let H be a semilattice. An element Θ of HW is
compact if and only if it is a principal wall. Then there is a natural
isomorphism ε : 1SL → WK with component

εH : (H,≤)→ (HWK,⊇);h 7→ [h]

at a semilattice H.

Proof. Compare [10, Prop. II.3.8]. In particular, note that

x ≤ y ⇔ ∀ θ ∈ HC , xθ = 1⇒ yθ = 1

⇔ ∀ Θ ∈ HW , x ∈ Θ⇒ y ∈ Θ

⇔
⋂

x∈Θ∈HW

Θ ⊇
⋂

y∈Θ∈HW

Θ

⇔ [x] ⊇ [y]

for all x, y in a semilattice H. □

Corollary 2.8. Let H be a semilattice. Then

(2.5) ε̃H : (H,≤)→
(
2HW ,⊆

)
;h 7→ [h]⊆ = {Θ ∈ HW | h ∈ Θ}

is an order-preserving embedding.

Proof. The argument used for the proof of Proposition 2.7 may be
modified to read as

x ≤ y ⇔ ∀ θ ∈ HC , xθ = 1⇒ yθ = 1

⇔ ∀ Θ ∈ HW , x ∈ Θ⇒ y ∈ Θ

⇔ {Θ | x ∈ Θ} ⊆ {Θ | y ∈ Θ}
for elements x, y of a semilattice H. □
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Proposition 2.9. There is a natural isomorphism η : 1B → KW with
component

(2.6) ηG : G→ GKW ; g 7→ GK ∩ g≥

at a B-space G.

Proof. Compare [10, Prop. II.3.9], noting that the zero element of G
in (2.6) maps to the empty wall, since each compact element of G is
strictly bigger than zero. □

2.3.4. The topology of spaces dual to semilattices. For the following
result, which will be needed in the subsequent chapter, compare [17,
§2.1], [10, Prop. II.2.4(i)]. The notation of (2.5) is used.

Proposition 2.10. Let H be a semilattice. Then the set

{hε̃H | h ∈ H} ∪ {HW ∖ hε̃H | h ∈ H}

forms a subbasis of clopen sets for the B-topology on HW .

3. The pairing/Galois connection duality

In their 1993 preprint [17], Hartonas and Dunn described respective
dualities between polarities and two forms of Galois connections: dual
adjunctions of posets, and dual adjunctions of semilattices. We will
summarize the latter duality, since it underlies duality for lattices. The
polarities that appear here are two-sorted relational structures. As
such, they do not always fit well into our algebraic approach. Thus we
will reinterpret them as dual pairings between semilattices, with values
in the two-element semilattice.

3.1. Polarities, pairings, and Galois connections.

3.1.1. Semilattice Galois connections.

Definition 3.1. A (semilattice) Galois connection is a dual adjunction

(3.1) (P,≤)
R --

(Q,≤)
S
mm

between meet semilattices.

Remark 3.2. Let a be an element of a relatively pseudo-complemented
lattice (X,+,×,→) [18, §I.12], [19, §IV.1]. Define the maps

R(a) : X → X;x 7→ (a× x) and S(a) : X → X;x 7→ (a→ x) .



DUALITY FOR QUASILATTICES 9

Then

(X,≤)
R(a)

--
(X,≤)

S(a)

mm

is a semilattice Galois connection. In this case, the lattice X is distribu-
tive [13, p.267], [18, §I.12.1]. Galois connections between distributive
lattices were studied by Or lowska and Rewitzky [20, §4].

The counit and unit of the dual adjunction (3.1) are the relationships

(3.2) p ≤ pRS and q ≤ qSR

for elements p of P and q of Q. Then since R and S reverse orders, one
has pR ≥ pRSR and qS ≥ qSRS. On the other hand, setting p = qS
and q = pR in (3.2) yields qS ≤ qSRS and pR ≤ pRSR. Thus

(3.3) pR = pRSR and qS = qSRS

for p ∈ P and q ∈ Q.
The definition below follows Hartonas and Dunn [6, 17] in substitut-

ing for the standard “closure” terminology of Galois connections [13,
p.261], since this standard terminology would clash with the topological
notion of closure in the present context.

Definition 3.3. (a) Elements of the subset QS = {qS | q ∈ Q} of P
are described as stable.

(b) Elements of the subset PR = {pR | p ∈ P} of Q are described as
stable.

Proposition 3.4. In a Galois connection (3.1), the two contravariant
functors R and S restrict to a pair

(3.4) (QS,≤)
R --

(PR,≤)
S
mm

of mutually inverse order-reversing set isomorphisms.

Proof. The mutual inverse relation between the restrictions of R and
S is established by (3.3). □

Definition 3.5. The relationship (3.4) is said to be the Galois corre-
spondence furnished by the Galois connection (3.1).

3.1.2. Polarities and pairings. Polarities are usually defined as two-
sorted relational structures (compare [13, III, Ex. 3.3.2(c)]).
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Definition 3.6. Let X and Y be sets. Then a polarity (X, Y, α) con-
sists of the ordered pair (X, Y ), together with a subset α of X × Y ,
a relation between X and Y . The set X is called the domain of the
polarity, while the set Y is called the codomain.

Note that a polarity (X, Y, α) yields a bipartite graph. The vertex
set of the graph is X ∪ Y , while the edge set is {{x, y} | (x, y) ∈ α}.
On the other hand, the bipartite graph structure does not distinguish
between the domain and codomain of the polarity. Polarities may be
interpreted in terms of Wille’s “concepts” [9] or Hardegree’s “natural
kinds” [21]. For a discussion, see [13, III, Exer. 3.3G].

While Definition 3.6 is standard, it is often convenient to have an
equivalent notion that may fit better into the current algebraic context.
We use the following.

Definition 3.7. Let X and Y be sets.

(a) A pairing ⟨X|Y ⟩ is a function

(3.5) ⟨ | ⟩ : X × Y → 2; (x, y) 7→ ⟨x|y⟩

from X ×Y to the two-element lattice (2,∨,∧) of truth values.
(b) The set X is called the domain of the pairing, while the set Y

is called the codomain.
(c) Given a pairing (3.5), write

⟨x| ⟩ : Y → 2; y 7→ ⟨x|y⟩

for each element x of X.
(d) Given a pairing (3.5), write

⟨ |y⟩ : X → 2;x 7→ ⟨x|y⟩

for each element y of Y .

Pairings such as (3.5) correspond to the characteristic functions of
the relations α in polarities (X, Y, α). In general, one often conflates
subsets of a set with their characteristic functions, as is implicit in the
notation 2P for the power set of a set P . Nevertheless, if Θ is a wall of
a meet semilattice (P,≤), we will continue to use θ as our notation for
the corresponding character, namely the characteristic function of Θ.

3.1.3. Galois connections from pairings. With different conventions, in
particular using polarities rather than pairings, the following result is
standard. For a proof, compare [13, §III.3.3], [22, §§V.7–8]. Herrlich
and Hušek refer to “Galois connections of the first kind” in this context
[23, §1].
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Proposition 3.8. Let X and Y be sets. Then a pairing ⟨X|Y ⟩ yields
a semilattice Galois connection

(3.6)
(
Set(X,2),≤

) R .. (
Set(Y,2),≤

)
,

S
nn

with

R : Set(X,2)→ Set(Y,2); θ 7→
∧
xθ=1

⟨x| ⟩

and

S : Set(Y,2)→ Set(X,2);φ 7→
∧
yφ=1

⟨ |y⟩ .

Here, the restricted maps R and S of the Galois correspondence

(
Set(Y,2)S,≤

) R .. (
Set(X,2)R,≤

)
S

nn

are anti-isomorphisms of complete lattices.

Remark 3.9. In the context of Proposition 3.8, the structures
(
Set(X,2), RS

)
and

(
Set(Y,2), SR

)
are closure systems. As such, they may each be

construed as forming a topological Boolean algebra, a concept which
was central to much of the work of Rasiowa [18, §III.1], [19, §VI.5].

3.1.4. Pairings from Galois connections.

Lemma 3.10. Within a semilattice Galois connection (3.1), consider
characters θ of P and φ of Q. Then the following two conditions are
equivalent:

(a) ∃ p ∈ P . pθ = 1 and pRφ = 1 ;
(b) ∃ q ∈ Q . qSθ = 1 and qφ = 1 .

Proof. Suppose that (a) holds. Take q = pR. Then qφ = 1. Also
qS = pRS ≥ p by (3.2). Since θ : (P,≤) → (2,≤) is a semilattice
homomorphism, it follows that qSθ = pRSθ ≥ pθ = 1, so qS = 1 and
(b) holds. The proof that (b) implies (a) is similar. □

Corollary 3.11. For a semilattice Galois connection (3.1), the equa-
tion ∨

p∈P

p(θ ∧Rφ) =
∨
q∈Q

q(Sθ ∧ φ)

holds for all θ ∈ PC and φ ∈ QC.

Definition 3.12. Consider a semilattice Galois connection (3.1).
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(a) Define

(3.7) ⟨θ|φ⟩ =
∨
p∈P

p(θ ∧Rφ) =
∨
q∈Q

q(Sθ ∧ φ)

for θ ∈ PC and φ ∈ QC.
(b) Write ⟨PC|QC⟩R,S for the pairing given by (3.7).

Set-theoretically, the pairing (3.7) corresponds to the polarity

(3.8) (Θ,Φ) ∈ α ⇔ ∃ p ∈ Θ . pR ∈ Φ

with domain PW and codomain QW (compare [6, p.392], [17, p.11]).
Consider the corresponding Galois connection

(3.9)
(
2PW ,⊆

) 2RW
.. (

2QW ,⊆
)
,

2SW

nn

of the form (3.6) obtained from the polarity (PW,QW,α) according
to Proposition 3.8. (Here, the functors are renamed to distinguish
them from the original version as it appears in Proposition 3.15.) The
following result (cf. [17, Lemma 3.2]) uses the notation of Corollary 2.8.

Proposition 3.13. The Galois connection restricts to the pair(
P ε̃P ,⊆

) RWK.. (
Qε̃Q,⊆

)
.

SWK
nn

of order-reversing functions, together constituting a semilattice Galois
connection.

3.1.5. The semilattice Galois connection category. For the following,
compare [17, p.12].

Definition 3.14. For semilattice Galois connections

(P,≤)
R --

(Q,≤)
S
mm and (P ′,≤)

R′
--
(Q′,≤) ,

S′
mm

a semilattice Galois connection morphism is a pair

(f : P → P ′, g : Q→ Q′)

of semilattice homomorphisms such that the diagram

(P,≤)
R --

f
��

(Q,≤)
S

mm

g

��
(P ′,≤)

R′
--
(Q′,≤) .

S′
mm
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commutes, in the sense that Rg = fR′ and Sf = gS ′.

Semilattice Galois connection morphisms combine to constitute a
category SLGC of semilattice Galois connections. For the following
result, again compare [17, Lemma 3.2].

Proposition 3.15. In the context of Proposition 3.13, the diagram

(3.10) (P,≤)
R --

ε̃P
��

(Q,≤)
S

mm

ε̃Q
��(

P ε̃P ,⊆
) RWK.. (

Qε̃Q,⊆
)
.

SWK
nn

represents an isomorphism of semilattice Galois connections.

3.2. Pairings dual to semilattice Galois connections.

3.2.1. Semilattice polarities and pairings. If (X,≤) is a B-space, set

(3.11) X∗ = {k≤ | k ∈ XK} .

Note that the elements of X∗ are clopen [10, Th. 3.3(3)]. Indeed, by
Proposition 2.10 and semilattice duality, it follows that

{k≤ | k ∈ XK} ∪ {X ∖ k≤ | k ∈ XK}

is a subbasis for the topology on X, and that the set (3.11) is closed
under intersection. (Compare the definition of “FSpaces” in [6] or
“F1Spaces” in [17].) The following, somewhat indirect definition recalls
the “(⊥-)frames” of [6].

Definition 3.16. A polarity (X, Y, α) is a semilattice polarity if X and
Y are B-spaces, and if the induced semilattice Galois connection

(3.12)
(
2X ,⊆

) R -- (
2Y ,⊆

)
S
mm

restricts to a semilattice Galois connection

(3.13) (X∗,⊆)
R --

(Y ∗,⊆)
S
mm

between the corresponding sets (3.11) of clopen subsets of X and Y .

For more direct conditions, Definition 3.16 may be rephrased in terms
of pairings, making use of appropriately dualized versions of the for-
mulas for R and S from Proposition 3.8.
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Definition 3.17. A pairing ⟨X|Y ⟩ between B-spaces X and Y is said
to be a semilattice pairing if the conditions

∀ p ∈ B(X,2),
∧
pχ=1

⟨χ| ⟩ ∈ B(Y,2)

and
∀ q ∈ B(X,2),

∧
qψ=1

⟨ |ψ⟩ ∈ B(X,2)

are satisfied.

3.2.2. Categories of semilattice polarities and pairings. The following
definition recalls [17, pp.12–13].

Definition 3.18. Suppose that (X1, Y1, α1) and (X2, Y2, α2) are semi-
lattice polarities. Then a semilattice polarity morphism

(3.14) (f, g) : (X1, Y1, α1)→ (X2, Y2, α2)

is a pair of B-morphisms f : X1 → X2 and g : Y1 → Y2 such that

(X∗
2 ,⊆)

R2 --

f−1

��

(Y ∗
2 ,⊆)

S2

mm

g−1

��
(X∗

1 ,⊆)
R1 --

(Y ∗
1 ,⊆) .

S1

mm

is a semilattice Galois connection morphism between the corresponding
analogues of (3.13) for the codomain and domain of (f, g).

Much as the somewhat indirect Definition 3.16 of a semilattice polar-
ity was reformulated as the more direct Definition 3.17 of a semilattice
pairing, so the indirect Definition 3.18 of a semilattice polarity mor-
phism may be reformulated as follows.

Definition 3.19. Suppose that ⟨X1|Y1⟩1 and ⟨X2|Y2⟩2 are semilattice
pairings. Then a semilattice pairing morphism

(f, g) : ⟨X1|Y1⟩1 → ⟨X2|Y2⟩2
is a pair of B-morphisms

f : X1 → X2;χ1 7→ f(χ1)

and
g : Y1 → Y2;ψ1 7→ g(ψ1)

such that ∧
p2f(χ1)=1

⟨χ1|ψ1⟩1 =
∧

p2χ2=1

⟨χ2|g(ψ1)⟩2
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for all p2 ∈ X2F and ψ1 ∈ Y1, and dually∧
q2g(ψ1)=1

⟨χ1|ψ1⟩1 =
∧

q2ψ2=1

⟨f(χ1)|ψ2⟩2

for all q2 ∈ Y2F and χ1 ∈ X1.

The semilattice polarity morphisms specified in Definition 3.18, or
equivalently the semilattice pairing morphisms that are specified in Def-
inition 3.19, combine to form a category SLP of semilattice polarities
or semilattice pairings. One may choose between the two equivalent
formulations, set-theoretic or algebraic, according to which is more ap-
propriate for the task at hand. For example, within the proof of the
duality of Theorem 3.20 given below, the counit is described in the set-
theoretic language of semilattice polarities, while the unit is described
in the algebraic language of semilattice pairings.

Definition 3.16 is set up to make the assignment

(3.15) Γ: (X, Y, α) 7→
[

(X∗,⊆)
R --

(Y ∗,⊆)
S
mm

]
the object part of a functor Γ: SLP → SLGC. The object part of a
functor Π: SLGC→ SLP is similarly given by the assignment

(3.16) Π:
[

(P,≤)
R --

(Q,≤)
S
mm

]
7→

(
(P,≤)W, (Q,≤)W,α

)
of the semilattice polarity of (3.8) to the semilattice Galois connection
(3.1).

3.2.3. Pairing/Galois connection duality.

Theorem 3.20. A dual equivalence

SLGC
Π ,,

SLP
Γ
mm

is provided by the functors Π and Γ.

Proof. The component of the counit at a semilattice Galois connection
(3.1) is given by the isomorphism (3.10). For the unit, consider a
semilattice pairing ⟨X|Y ⟩. Application of the (pairing version of the)
functor Γ yields a semilattice Galois connection

(3.17) XF
R ++

Y F
S

ll
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with

R : p 7→
∧
pχ=1

⟨χ| ⟩ and S : q 7→
∧
qψ=1

⟨ |ψ⟩ .

In turn, application of Π to (3.17) by means of Definition 3.12(a) yields
a pairing ⟨⟨XFC|Y FC⟩⟩. Identifying XFC with X and Y FC with Y
by semilattice duality, one then has

⟨⟨θ|φ⟩⟩ = 1 ⇔
∨
p∈XF

p(θ ∧Rφ) = 1

⇔ ∃ p ∈ XF . pθ = 1 and pRφ = 1 ⇔

∃ p ∈ XF . pθ = 1 and
∧
pχ=1

⟨χ|φ⟩ = 1(3.18)

for θ ∈ X and φ ∈ Y . Now the condition (3.18) certainly implies
1 =

∧
pχ=1⟨χ|φ⟩ ≤ ⟨θ|φ⟩ , so ⟨θ|φ⟩ = 1. Conversely, suppose ⟨θ|φ⟩ = 0.

It follows that pθ = 0 or
∧
pχ=1⟨χ|φ⟩ = 0 for all p in XF . Indeed, if

pθ = 1, then
∧
pχ=1⟨χ|ϕ⟩ ≤ ⟨θ|φ⟩ = 0. Thus

⟨⟨θ|φ⟩⟩ = 1 ⇔ ⟨θ|φ⟩ = 1 :

The pairings ⟨⟨X|Y ⟩⟩ and ⟨X|Y ⟩ coincide. □

4. Duality for lattices

4.1. Lattices.

4.1.1. Semilattice reducts of lattices. Order-theoretically, a lattice H is
defined as a poset (H,≤) in which each subset {x, y} has a greatest
lower bound x× y and a least upper bound x+ y. In terms of category
theory, H is a poset category with binary products x × y and binary
coproducts x + y. The poset (H,≤) is equal to the poset reduct of
the meet semilattice (H,×,≤×), and to the poset reduct of the join
semilattice (H,+,≤+). By taking the dual of the latter order, one may
consider (H,+,≥+) as a meet semilattice, since

x ≥+ y ⇔ y ≤+ x ⇔ x = x+ y

— compare (2.1). The absorption property

x ≤× y ⇔ x ≤ y ⇔ x ≤+ y

of the lattice H may be formulated as

x ≤× y ⇔ y ≥+ x
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for all x, y ∈ H. This is the statement that the identity function 1H on
the set H furnishes order-reversing functions or contravariant functors
that yield a semilattice Galois connection

(4.1) (H,≤×)
1H --

(H,≥+)
1H

mm

from the meet semilattice reduct of H to the dual of its join semilattice
reduct. When working with (4.1), it is sometimes helpful to write

(4.2) x = x× = x+

for an element x of H, using x× for x as a member of the meet semi-
lattice (H,≤×), and x+ for x as a member of the meet semilattice
(H,≥+).

4.1.2. Polarities and pairings from lattices. Given a lattice (H,+,×),
application of the functor (3.16) to the semilattice Galois connection
(4.1) yields a semilattice polarity

(4.3)
(
(H,≤×)W, (H,≥+)W,α

)
with

(Θ,Φ) ∈ α ⇔ Θ ∩ Φ ̸= Ø

[6, p.394], [17, p.19]. Equivalently, it yields the semilattice pairing〈
(H,≤×)C

∣∣(H,≥+)C
〉

with

⟨θ|ϕ⟩ =
∨
h∈H

(h×θ ∧ h+φ)

for characters θ of (H,≤×)C and φ of (H,≥+), using the notation of
(4.2). For the equivalence, note that

h ∈ Θ ∩ Φ ⇔ h×θ = 1 and h+φ = 1

for each element h of H, with Θ = θ−1(1) and Φ = φ−1(1) under the
usual convention recalled at the end of §3.1.2.

To define one of the contravariant functors that constitute lattice
duality, we will write

𭟋 : (H,+,×) 7→
(
(H,≤×)W, (H,≥+)W,α

)
for the assignment of (4.3) or the equivalent semilattice pairing〈

(H,≤×)C
∣∣(H,≥+)C

〉
to the lattice (H,+,×). Now if f : (H1,+,×)→ (H2,+,×) is a lattice
homomorphism, it follows that
(4.4)((
fW : (H2,≤×)W → (H1,≤×)W

)
,
(
fW : (H2,≥+)W → (H1,≥+)W

))
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is a semilattice polarity homomorphism [6, Prop. 2.14].

4.2. Representation and duality of lattices.

4.2.1. Representations of lattices. Consider a lattice (H,+,×), with
semilattice polarity (4.3). Use of the construction from §3.2.1 provides
a set-theoretical representation of the lattice (compare [6, Th. 2.4], [17,
Prop. 4.3, Th. 4.5]). Take X as the B-space (H,≤×)W . Take Y as the
B-space (H,≥+)W . Take R and S from (3.12).

Theorem 4.1. With the closure operator RS on the complete Boolean
algebra 2X , the lattice H is isomorphic via

ε̃ : h 7→ {Θ ∈ (H,≤×)W | h ∈ Θ}
to the lattice of clopen, stable subsets of X. One has

(x× y)ε̃ = xε̃ ∩ yε̃ and (x+ y)ε̃ =
(
xε̃R ∩ yε̃R

)
S

for elements x and y of H.

In anticipation of the second contravariant functor that constitutes
lattice duality (see Theorem 4.9 below), we will write

(4.5) ∆:
(
(H,≤×)W, (H,≥+)W,α

)
7→ (H,+,×)

for the recovery of the lattice (H,+,×) from (4.3) or the equivalent
semilattice pairing 〈

(H,≤×)C
∣∣(H,≥+)C

〉
by means of Theorem 4.1.

4.2.2. Lattice polarities and pairings. The following definition recalls
the “L-frames” or “lattice frames” of [6, Defn. 2.3], [17, Defn. 4.6].

Definition 4.2. A semilattice polarity (X, Y, α) as in Definition 3.16
is a lattice polarity if the semilattice Galois connection (3.13) is a dual
equivalence.

Since the only isomorphisms in poset categories are the identities, the
condition in Definition 4.2 means that the order-reversing functions R
and S of (3.13) are mutually inverse. Definition 4.2 may be rephrased
in terms of pairings.

Definition 4.3. A semilattice pairing ⟨X|Y ⟩ as in Definition 3.17 is a
lattice pairing if

(4.6) p =
∧
qψ=1

⟨ |ψ⟩ ⇔ q =
∧
pχ=1

⟨χ| ⟩

for all p in B(X,2) and q in B(Y,2).
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In terms of the order-reversing functions R and S of (3.13), the
condition in Definition 4.3 means that p = qS if and only if q = pR.
The condition may also be reformulated at an elementary level.

Lemma 4.4. The condition

∀ p ∈ B(X,2) , ∀ q ∈ B(Y,2) , ∀ θ ∈ X , ∀ φ ∈ Y ,

pθ =
∧
qψ=1

⟨θ|ψ⟩ ⇔ qφ =
∧
pχ=1

⟨χ|φ⟩

is necessary and sufficient for a semilattice pairing ⟨X|Y ⟩ to be a lattice
pairing.

4.2.3. Lattice duality. Define L to be the category of lattices and lattice
homomorphisms. Let LP be the full subcategory of SLP whose object
class is the class of all lattice polarities or pairings.

Proposition 4.5. [6, Lemma 2.6] If (H,+,×) is a lattice, then the
semilattice polarity (H,+,×)𭟋 is a lattice polarity.

Defining f𭟋 by (4.4) for a lattice homomorphism f : H1 → H2, one
obtains a contravariant functor 𭟋 : L→ LP.

Definition 4.6. A lattice polarity (X, Y, α), and the equivalent lattice
pairing ⟨X|Y ⟩, are canonical if they are of the form (H,+,×)𭟋 for a
lattice (H,+,×).

In the terminology of [24, Def’n. 12.5], the following result states that
the contravariant functor 𭟋 : L → SLP, along with its corestriction
𭟋 : L→ LP, is dense.

Proposition 4.7. [6, Prop. 2.12] In the category SLP, and therefore
also in the category LP, each lattice polarity/pairing is isomorphic to
a canonical lattice polarity/pairing.

For the following, see [6, pp.399–401].

Proposition 4.8. The contravariant functor 𭟋 : L → LP is full and
faithful.

By [25, Th. IV.4.1], Propositions 4.7 and 4.8 yield the following
(compare [6, Th. 2.15]).

Theorem 4.9. There is a dual equivalence

(4.7) L
𭟋 ++

LP
∆

ii

provided by 𭟋 and a contravariant functor ∆ with object part (4.5).



20 A.B. ROMANOWSKA AND J.D.H. SMITH

5. Duality for semilattice representations

This chapter recalls some basic definitions and results from [11, 12].

5.1. P lonka sums, sheaves, and bundles.

5.1.1. Set representations of semilattices.

Definition 5.1. Suppose that (H,≤) is a meet semilattice.

(a) A (set) representation of (H,≤) is a contravariant functor

(5.1) R : H → Set

from H (considered as a poset category according to §2.1.3) to
the category of sets.

(b) A morphism of set representations of (H,≤) is a natural trans-
formation between functors of the form (5.1).

(c) The functor category

(5.2) Ĥ = SetH
op

is the category of set representations of (H,≤).

5.1.2. Semilattices as topological spaces. Suppose that (H,≤) is a meet
semilattice. One may consider H as a topological space under the
Alexandrov topology Ω(H) of the dual poset (H,≥), where the open
sets are the subordinate subsets of (H,≤) [26, II.1.8]. The poset (H,≤)
is then represented as the subposet

(
{h≥ | h ∈ H},⊆

)
of

(
Ω(H),⊆

)
consisting of the principal subordinate subsets. Thus the semilattice
H is a basis for the Alexandrov topology Ω(H).

5.1.3. Sheaves and bundles. Using topological language, the functor
category (5.2) is the category of presheaves on H. Now the elements
of H, as principal lower sets in the poset (Ω,⊆), are join-irreducible.
Thus the condition [27, II.1(9)] for a presheaf on H to be a sheaf is
trivially satisfied. By the Comparison Lemma for Grothendieck topoi
[28, Th. I.3.7], [27, Th. II.1.3 and App., Cor. 3(a)], the functor category

Ĥ is equivalent to the category Sh(H) of sheaves of sets over the space
H under the Alexandrov topology. In turn, there is an equivalence

(5.3) Sh(H)
Λ --

Etale(H)
Γ

mm

of the category Sh(H) of sheaves with the category Etale(H) of étale
bundles π : E → H over the spaceH [26, Cor. V.1.5(i)], [27, Cor. II.6.3].
Specifically, for a representation R : H → Set, the bundle π : E → H,
or more loosely the total space E, is the bundle RΛ of germs of the
sheaf R : Ω(H)→ Set.
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5.1.4. The bundle of a left normal band. In place of the topological
description of the equivalence between set representations R : H → Set
and bundles π : E → H given in the preceding two paragraphs, one may
give a purely algebraic description.

Definition 5.2. Let (S, ∗) be a semigroup.

(a) If (S, ∗) satisfies the identity x ∗ y = x, then it belongs to the
variety Lz of left zero or left trivial bands [29, p.119], [30, 225].

(b) If (S, ∗) is idempotent and satisfies the identity x∗y∗z = x∗z∗y,
then it belongs to the variety Ln of left normal bands [29, p.119],
[30, 223].

(c) If (E, ∗) is a left normal band, then its bundle π : E → H
is its projection onto its semilattice replica (H, ∗), its largest
semilattice quotient [30, p.17].

An isomorphism between the category of sets and the category of left
zero semigroups places the projection structure x∗y = x on a set. The
inverse functor is the forgetful functor Lz → Set. We thus identify
Set with Lz.

Suppose that (E, ∗) is a left normal band. The bundle π : E → H
yields a representation

(5.4) EΓ: H → Set;h 7→ π−1{h} ,

well-defined on morphisms by

(h→ k)EΓ: π−1{k} → π−1{h};x 7→ x ∗ y

for any element y of π−1{h}.

5.1.5. P lonka sums. Let (H,≤) be a meet semilattice. Then a set
representation R : H → Set may be interpreted as a contravariant
functor

(5.5) R : H → Lz

taking the left projection structure on each set hR for h ∈ H. The
functor (5.5) summarizes the data for a construction known as a “strong
semilattice” in semigroup theory [29, p.90], and more generally as a
P lonka sum [30, 236], [31], [32, §6]. Let E =

∑
h∈H hR be the coproduct

(disjoint union), with π =
∑

h∈H
(
hR→ {h}

)
. Defining

(5.6) x ∗ y = x(xπ ∗ yπ → xπ)R

for x, y in E gives the bundle

(5.7) RΛ: E → H
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of a left normal band (E, ∗). The constructions Γ of (5.4) and Λ of
(5.7) extend to functors providing an equivalence

(5.8) Ĥ
Λ --

(Ln, H)
Γ

ll

between the presheaf category Ĥ for the fixed semilattice H and the
comma or slice category (Ln, H) of left normal bands over H (cf. [25,
§II.6]). The equivalence (5.8) is an algebraic analogue of the topological
equivalence (5.3).

5.2. Extending dualities to semilattice representations.

5.2.1. Semicolon categories. The algebraic equivalence (5.8) may be
extended. Suppose that C is a category whose objects are small cate-
gories and whose morphisms are functors. Let D be a category. Define
a semicolon category (C; D) as follows. Its objects are covariant func-
tors R : C → D from an object C of C to D. Given two such objects
R : C → D and R′ : C ′ → D, a morphism (σ, f) : R → R′ is a pair
consisting of a C-morphism f : C → C ′ and a natural transformation
σ : R → fR′. The composition of morphisms in (C; D) is defined by
(σ, f)(τ, g) = (σ(fτ), fg) [10, §0.1], [27, Ex. V.2.5(b)]. (Note that
Mac Lane used the name “supercomma” and the symbol .↓. in place of
the semicolon.)

For a concrete category D, let (SL; Dop)′ denote the full subcategory
of (SL; Dop) comprising the functor Ø→ Dop along with functors from
nonempty semilattices to the full subcategory of Dop that consists of
nonempty D-objects. Then the equivalence (5.8) may be extended to
the equivalence

(5.9) (SL; Setop)′
Λ

,, Ln
Γ

nn .

Consider a left normal band homomorphism F : E → E ′, with semi-
lattice replica f : H → H ′. Define R = EΓ: H → Set and R′ =
E ′Γ: H ′ → Set. A natural transformation φ : R → fR′ is defined by
its components

(5.10) φh : hR→ hfR′;x 7→ xF

at elements h of H. The (SL; Setop)′-morphism FΓ: EΓ → E ′Γ is
then defined as the pair (φ, f). Conversely, for such a pair forming
an (SL; Setop)′-morphism, a left normal band homomorphism f =
(φ, f)Γ: RΓ → R′Γ is defined as the coproduct or disjoint union of
the components (5.10).
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5.2.2. Strongly irregular varieties. The fundamental equivalence (5.9)
may be lifted to other contexts. Recall that a variety V of finitary
algebras is strongly irregular if the V-algebra structure reduces to a
left trivial semigroup [32, §4.8]. For example, the variety of lattices is
strongly irregular by virtue of the derived operation

(5.11) x ∗ y = x+ (x× y) ,

since absorption implies x ∗ y = x. The regularization Ṽ of any variety
V of finitary algebras is defined to be the variety of algebras that
satisfy each regular identity of V. (An identity is regular if it involves
exactly the same set of arguments on each side [30, p.13], [33, p.47].)
Then P lonka’s Theorem describing regularizations of strongly irregular
varieties of algebras without nullary operations [30, 239], [31], [32, 4.8
and 7.1] may be formulated as follows.

Theorem 5.3. The equivalence (5.9) lifts to an equivalence

(5.12) (SL; Vop)′
Λ

,, Ṽ
Γ

mm

when V is a strongly irregular variety of algebras whose type contains
no constants.

For an operation ω in the context of Theorem 5.3, the analogue of
(5.6) is

. . . xi . . . ω = . . . xi(. . . x
π
i . . . ω → xπi )R . . . ω

for elements xi of E = RΛ.

5.2.3. Continuous representations. Consider a dual equivalence

(5.13) A
D
**
X

E

jj

between complete and cocomplete categories. Let Ã be the category
of representations of meet semilattices in A. Such representations are
often implicitly identified with the corresponding bundles RΛ. For a
B-space G, a representation R : G→ X is said to be B-continuous if

(5.14) gR = lim←−
(
R : GK ∩ g≤ → X

)
for each element g of G. Here, the limit on the right hand side of (5.14)
is the limit of the restriction of R to the upwardly-directed ordered

subset of G consisting of compact elements below g. A category X̃
is then defined to be the full subcategory of (B; Xop) consisting of B-

continuous representations of B-spaces in X. As for the case of Ã, such
representations are often identified with the corresponding bundles RΛ.
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5.2.4. Lifting dualities. Consider a dual equivalence (5.13). Then there
is a dual equivalence

(5.15) Ã
D̃
**
X̃

Ẽ

jj

for suitable functors D̃ and Ẽ [11, Th. 4.4], [12, Th. 4.3].

The functor D̃ is defined as taking a representation R : H → A to a
B-continuous representation HC → X of the semilattice dual HC of

H. This X̃-object, as a continuous representation, sends a character θ
of H to the dual space

[
lim−→(R : θ−1{1} → A)

]
D of the colimit of the

corresponding restriction. For further details of the functor D̃, see [12,
Prop. 4.1].

Now consider an object R : G → X of X̃. Consider the natural
transformation component κG : GF → GK of (2.4), along with the

embedding j : GK ↪→ G. Then at the object level, the functor Ẽ takes
the continuous representation R : G→ X to the representation

GF
κG // GK

j // G
R // X

E // A

of the meet semilattice GF . For further details of the functor Ẽ, see
[12, Prop. 4.2].

6. Duality for quasilattices

6.1. Quasilattices as P lonka sums.

Definition 6.1. [2, Lemma 1] A quasilattice (Q,+,×) is an algebra
with binary operations + of join and × of meet, such that (Q,+) and
(Q,×) are semilattices, and the identities

[(x+ y)× z] + [y × z] = (x+ y)× z ,
[(x× y) + z]× [y + z] = (x× y) + z

are satisfied.

Recall that a stammered semilattice (Q, ·, ·) is an algebra with two
binary operations, each of which is the multiplication of a semilattice
(Q, ·) [30, 327].

Lemma 6.2. The class of (stammered) semilattices coincides with the
class of quasilattices in which the regular identity

x+ y = x× y
is satisfied.
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For the following, compare [2, p.184, Footnote (3)]

Proposition 6.3. The class of lattices coincides with the class of quasi-
lattices in which the irregular identity

x+ (x× y) = x

is satisfied.

One obtains the following result as a consequence.

Proposition 6.4. [2, Lemma 3] An algebra (Q,+,×) with binary op-
erations + and × is a quasilattice if and only if it is a P lonka sum of
lattices.

In view of Proposition 6.4 and §5.2.2, we may consider the variety of

quasilattices to be the regularization L̃ of the strongly irregular variety
L of lattices. In particular, a quasilattice (X,+,×) is a P lonka sum
over its stammered semilattice replica, in the sense of Lemma 6.2.

6.2. Duality for quasilattices. Application of the lifting machinery
of §5.2 to the Hartonas-Dunn duality for lattices now yields our main
theorem.

Theorem 6.5. The duality

L
𭟋 ++

LP
∆

ii

of (4.7), between lattices and lattice pairings, extends to a duality

(6.1) L̃
�̃� ++

L̃P
∆̃

ii

between quasilattices and B-continuous representations of B-spaces in
the category LP of lattice pairings.

Thus the spaces dual to quasilattices are the total spaces or bundles
of sheaves of lattice pairings over B-spaces.

6.3. An example. Theorem 6.5 may be illustrated by the 7-element
quasilattice (Q,+,×) given as the P lonka sum of the 2-element lattice
(2,+,×) and the non-modular 5-element lattice (N5,+,×) displayed
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in (6.2). The semilattice replica is the 2-element semilattice.

(6.2) ◦ � f / ◦

~~
~~
~~
~

//
//
//
//
//
//
//

◦

◦

◦ � f / ◦

◦

@@@@@@@

��������������

The P lonka sum (6.2) may be summarized by the lattice homomor-
phism f : 2→ N5.

6.3.1. The dual of the two-element lattice. The full lattice polarity
(2,+,×)𭟋 dual to (2,+,×) is

(6.3) (2,≤×)C :
1
1

��
��7

77
77

77
77

77
77

77
77

77
1
0

����
��
��
��
��
��
��
��
��
�

0
0

(2,≥+)C :
1
1

0
1

0
0

Here, for each of the semilattice reducts (2,≤×) and (2,≥+) of (2,+,×),
the rows of (6.3) display the three characters by showing their respec-
tive images of the elements of 2 in their relative positions on the Hasse
diagram of 2 that appears on the left of (6.2).

6.3.2. The dual of the five-element non-modular lattice. The following
diagram shows a reduced and decorated picture of the lattice polarity
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(N5,+,×)𭟋 dual to the non-modular 5-element lattice (N5,+,×).
(6.4)

(N5,≤×)C :

1
0

1
0

0

��

1
1

0
1

0

��
��7

77
77

77
77

77
77

77
77

77

1
1

0
0

0

����
��
��
��
��
��
��
��
��
�

1
0

0
0

0

(N5,≥+)C :

0
0

1
0

1

0
1

0
1

1

0
0

0
1

1

0
0

0
0

1

The decoration, consisting of the underlining of certain elements, is ir-
relevant for the interpretation of (6.4) as the lattice polarity (N5,+,×)𭟋
corresponding to (N5,+,×). The reduction consists of the suppression
of the two constant characters. Thus for each of the semilattice reducts
(N5,≤×) and (N5,≥+) of (N5,+,×), the rows of (6.4) display the non-
constant characters by showing the respective images of the elements
of N5 in their relative positions on the Hasse diagram that appears on
the right of (6.2). The polarity relations that are not displayed in the
reduced diagram (6.4) relate the constant character 1 of (N5,≤×) to
each non-zero character of (N5,≥+), together with relations from each
non-zero character of (N5,≤×) to the constant character 1 of (N5,≥+).

6.3.3. The dual of the seven-element quasilattice. The 7-element quasi-
lattice (Q,+,×) is the P lonka sum determined by the lattice homomor-
phism f : 2 → N5 of (6.2). Thus the non-trivial part of the dual ob-
ject (Q,+,×)�̃� provided by Theorem 6.5 comprises the LP-morphism
f𭟋 : N5𭟋 → 2𭟋. Following (4.4), the LP-morphism f𭟋 is given by
the underscores that decorate (6.4): Each character displayed in ei-
ther of the rows of (6.4) is taken to the corresponding character of 2
given by the ordered pair of underlined elements appearing within that
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character. For example, one has

0
0

0
1

1

� // 0
1

as part of the mapping from (N5,≥+)C to (2,≥+)C.
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