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1. Introduction

Comtrans algebras are unital modules over a commutative ring R, equipped with
two basic trilinear operations: a commutator [x, y, z] satisfying the left alternative
identity

[x, x, y] = 0, (1.1)

and a translator 〈x, y, z〉 satisfying the Jacobi identity

〈x, y, z〉 + 〈y, z, x〉 + 〈z, x, y〉 = 0, (1.2)

such that together the commutator and translator satisfy the comtrans identity

[x, y, x] = 〈x, y, x〉. (1.3)

¶The first author acknowledges support from a Korea Research Foundation Grant funded by the
Korean Government (KRF-2008-313-C00022).
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Comtrans algebras were introduced in [9] to answer a problem from differential
geometry, asking for the algebraic structure in the tangent bundle corresponding to
the coordinate n-ary loop of an (n + 1)-web (cf. [1]). The role played by comtrans
algebras is analogous to the role played by the Lie algebra of a Lie group. A comtrans
algebra is said to be abelian if its commutator and translator are zero. Thus abelian
comtrans algebras are essentially just R-modules. Comtrans algebras arise naturally
in many different contexts [3–8, 10].

The class CTR or CT of all comtrans algebras over a commutative ring R forms
a variety in the sense of universal algebra. Within this class, a set of comtrans
algebra identities specifies a subvariety VR or V (for example, the variety AR of
abelian comtrans algebras over R, or the variety LR of Lie triple systems over
R). Each variety VR then becomes (the class of objects of) a bicomplete category
whose morphisms are the homomorphisms between the comtrans algebras (cf. [12,
Theorems IV, 2.1.3 and 2.2.3]).

Let E be an algebra in a variety V of comtrans algebras over a commutative ring
R. A representation of E in V is defined as an R-module in the slice category V/E,
i.e., an object of the category AR⊗V/E. For a field F , representations of a comtrans
algebra E in the full class CTF were studied in [6]. The representations were
identified as modules over a certain universal enveloping algebra U(E) (see Sec. 2
below). The current paper extends that result to the case of general commutative
rings, and obtains a corresponding characterization for representations of comtrans
algebras in each subvariety of CTR.

Section 3 recalls the correspondence between split extensions and representa-
tions. Section 4 examines monic comtrans algebras, where the commutator and
translator agree. For a monic comtrans algebra E, Theorem 4.2 identifies the uni-
versal enveloping algebra as the even part of the tensor algebra T (E). Based on the
framework of monic algebras, Sec. 5 then offers a new treatment of the representa-
tion theory for Lie triple systems, which may be contrasted with [2]. The approach
taken in Secs. 4 and 5 is as explicit as possible. Section 6 gives a general iden-
tification of the universal enveloping algebra for an arbitrary variety of comtrans
algebras, using a differential calculus within the language of comtrans algebras. As
a sample application of this calculus, Sec. 7 specifies a universal enveloping algebra
for comtrans algebras defined by bilinear forms (compare [4, 5, 7]).

For concepts and conventions of algebra that have not otherwise been explained
in this paper, readers are referred to [12]. Note that the tensor products and tensor
algebras appearing, always in the context of modules over a given commutative ring
R, are to be taken in the category of R-modules.

2. Universal Enveloping Algebras

Let VR be a variety of comtrans algebras over a commutative ring R. For a member
E of VR, let EV[X ] or E[X ] denote the coproduct of E in VR with the free
VR-algebra on a singleton {X}. For x, y in E, there are R-module homomorphisms
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KV(x, y) or

K(x, y) : E[X ] → E[X ]; z �→ [z, x, y], (2.1)

RV(x, y) or

R(x, y) : E[X ] → E[X ]; z �→ 〈z, x, y〉, (2.2)

and LV(x, y) or

L(x, y) : E[X ] → E[X ]; z �→ 〈y, x, z〉. (2.3)

These endomorphisms of ER[X ], or their restrictions to endomorphisms of E

alone, are known, respectively, as the commutative, right, and left adjoint maps.
The universal enveloping algebra UV(E) of E is defined as the R-subalgebra
generated by

{L(x, y), K(x, y), R(x, y) | x, y ∈ E} (2.4)

in the endomorphism ring of the R-module E[X ]. Containment of varieties induces
quotients of the corresponding universal enveloping algebras.

Proposition 2.1. Let R be a commutative ring. Let V be a variety of comtrans
algebras over R, and let W be a subvariety of V. Let E be a member of W. Then
UW(E) is a quotient of UV(E).

Proof. Since EW[X ] is a member of V, a surjective homomorphism θ is specified
uniquely from EV[X ] to EW[X ] by the requirements of mapping from X in EV[X ]
to X in EW[X ], and by restricting to the identity on E. Then for x, y in E,
one has XKV(x, y)θ = [X, x, y]θ = [Xθ, xθ, yθ] = [X, x, y] = XKW(x, y), etc., so
KV(x, y) �→ KW(x, y), LV(x, y) �→ LW(x, y), RV(x, y) �→ RW(x, y) induce the
required surjective homomorphism UV(E) → UW(E).

Proposition 2.2. Within the universal enveloping algebra U(E) of a comtrans
algebra E, one has

L(x, x) − K(x, x) + R(x, x) = 0. (2.5)

Proof. Apply the left-hand side of (2.5) to an element z of E[X ] and simplify by
consecutive use of (1.1), (1.3), and (1.2).

In view of Proposition 2.2, it will be convenient to define the middle adjoint
map

M(x, y) : E[X ] → E[X ]; z �→ [y, x, z]. (2.6)

The comtrans identity gives

M(x, x) = 0
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and

M(x, y) + K(x, y) = L(x, y) + R(x, y),

so the universal enveloping algebra may be generated by

{L(x, y), M(x, y), R(x, y) |x, y ∈ E} (2.7)

in place of (2.4). This allows the following extension of [6, Theorem 4.5].

Theorem 2.3. Let E be a comtrans algebra over a commutative ring R. Let

V = (E ⊗ E) ⊕ (E ∧ E) ⊕ (E ⊗ E). (2.8)

Then UCT(E) is isomorphic to the tensor algebra on V .

Under the isomorphism of Theorem 2.3, an element

(v−3 ⊗ v−2) ⊕ (v−1 ∧ v1) ⊕ (v2 ⊗ v3)

of V corresponds to

L(v−3, v−2) + M(v−1, v1) + R(v2, v3)

in the endomorphism ring of E[X ]. Primitive elements of the respective summands
of (2.8) are then written as L(x, y) = x ⊗ y, M(x, y) = x ∧ y, and R(x, y) = x ⊗ y

for x, y in E, with

K(x, y) = L(x, y) − M(x, y) + R(x, y).

These conventions are followed in Secs. 6 and 7.

3. Representations and Modules

This section briefly recalls the relationship between comtrans algebra represen-
tations and modules over the universal enveloping algebra in the full variety of
all comtrans algebras. Suppose that E is a comtrans algebra over a commutative
ring R. A UCT(E)-module V furnishes a comtrans algebra structure V � E on
the module V ⊕ E, where the V -component of the commutator [v1 ⊕ e1, v2 ⊕ e2,
v3 ⊕ e3] is

v1K(e2, e3) − v2K(e1, e3) + v3M(e2, e1), (3.1)

while the V -component of the translator 〈v1 ⊕ e1, v2 ⊕ e2, v3 ⊕ e3〉 is

v1R(e2, e3) − v2[L(e1, e3) + R(e3, e1)] + v3L(e2, e1). (3.2)

Further, the projection π : V ⊕E → E becomes a comtrans algebra homomorphism
π : V � E → E, an R-module in the slice category CT/E. Conversely, given an
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R-module π : A → E in the slice category CT/E, define V = π−1{0}, and consider
the zero section ∆ : E → A. Then an action of UCT(E) on V is defined by

vK(e1, e2) = [v, e1∆, 0e2∆],

vR(e1, e2) = 〈v, e1∆, e2∆〉,
and

vL(e1, e2) = 〈e2∆, e1∆, v〉
for v in V and e1, e2 in E. These correspondences are part of an equivalence between
the category of UCT(E)-modules and the category A ⊗ CT/E of representations
of E [6, Theorem 3.10].

4. Monic Algebras

A comtrans algebra is monic if it satisfies the identity

[x, y, z] = 〈x, y, z〉;
in other words, its commutators and translators are equal. The variety of monic
comtrans algebras over a ring R will be written as MR, or simply M. Within M,
the commutative and right adjoint maps coincide, as do the middle and left adjoint
maps. Furthermore, the left adjoint maps may be expressed in terms of the right
adjoint maps.

Proposition 4.1. Within the variety of monic comtrans algebras,

L(x, y) = R(x, y) − R(y, x). (4.1)

Proof. For E in MR, the Jacobi identity in EM[X ] implies

0 = 〈X, y, x〉 + 〈y, x, X〉 + 〈x, X, y〉
= 〈X, y, x〉 + 〈y, x, X〉 − 〈X, x, y〉
= X(R(y, x) + L(x, y) − R(x, y)).

Then (4.1) follows.

Theorem 4.2. Let E be a monic comtrans algebra over a ring R. Then the uni-
versal enveloping algebra UM(E) is isomorphic to the even part T (E)0 = T (E⊗E)
of the tensor algebra T (E) on E.

Proof. Consider the R-algebra homomorphism s : T (E)0 → UM(E) extending the
linear map E ⊗ E → UM(E); e1 ⊗ e2 �→ R(e1, e2). By (4.1), s surjects. In order to
show that s injects, a monic comtrans algebra structure T (E)0 � E will be built
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on the module T (E)0 ⊕ E to yield an R-module π : T (E)0 � E → E in M/E. The
T (E)0-component of the commutator [v1 ⊕ e1, v2 ⊕ e2, v3 ⊕ e3] is defined as

v1 ⊗ (e2 ⊗ e3) − v2 ⊗ (e1 ⊗ e3) + v3 ⊗ (e2 ⊗ e1 − e1 ⊗ e2). (4.2)

It is then straightforward to verify the left alternativity and Jacobi identity in the
monic algebra T (E)0 � E. Since

[1 ⊕ 0, 0 ⊕ e2, 0 ⊕ e3] = (e2 ⊗ e3) ⊕ 0,

s is injective.

Given Theorem 4.2, the various general observations on comtrans algebra
representation theory from [6] specialize as follows.

Corollary 4.3. Let E be a monic comtrans algebra over a ring R.

(a) Let V be a T (E)0-module. Then the comtrans algebra structure V � E given by
the commutator

[v1 ⊕ e1, v2 ⊕ e2, v3 ⊕ e3] = (v1 · (e2 ⊗ e3) − v2 · (e1 ⊗ e3)

+ v3 · (e2 ⊗ e1 − e1 ⊗ e2)
) ⊕ [e1, e2, e3] (4.3)

with the projection π : V ⊕E → E forms a representation π : V � E → E of E

in M.

(b) Let π : A → E be a representation of E in M, with zero section ∆ : E → A. Let
V = π−1{0}. Then V becomes a T (E)0-module specified by the basic actions

v · e1 ⊗ e2 = [v, e1∆, e2∆]

for v ∈ V and e1, e2 ∈ E.

5. Lie Triple Systems

A Lie triple system is a monic comtrans algebra that satisfies the identity

[x1, x2, [x3, x4, x5]] = [[x1, x2, x3], x4, x5] + [x3, [x1, x2, x4], x5]

+ [x3, x4, [x1, x2, x5]]. (5.1)

The variety of Lie triple systems over a commutative ring R is written as LR, or
simply L. For an R-module E, the expression

[x, y] = x ⊗ y − y ⊗ x

will be used for binary commutators in the tensor algebra T (E).

Theorem 5.1. Let E be a Lie triple system over a commutative ring R. Let J be
the ideal of T (E ⊗ E) generated by the union of the sets

{[x, y, z]⊗ t − [[x, y], z] ⊗ t |x, y, z, t ∈ E} (5.2)
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and

{x ⊗ [y, z, t]− x ⊗ [[y, z], t] |x, y, z, t ∈ E}. (5.3)

Then UL(E) is isomorphic to T (E ⊗ E)/J .

Remark 5.2. Theorem 5.1 may be compared to the results of [2].

Let V be a T (E ⊗ E)/J-module. The proof of Theorem 5.1 depends on com-
putational lemmas that identify the respective V -components of the four repeated
commutators from (5.1) in the monic algebra V � E defined by (4.3). The proof
is completed by Propositions 5.7 and 5.8 below, making use of the same general
observations from [6] that were used in Sec. 4, but this time in the reverse direction.

Lemma 5.3. In the algebra V � E, the V -component of

[v1 ⊕ e1, v2 ⊕ e2, [v3 ⊕ e3, v4 ⊕ e4, v5 ⊕ e5]]

is

v1 · e2 ⊗ [e3, e4, e5], (5.4)

−v2 · e1 ⊗ [e3, e4, e5], (5.5)

−v3 · e4 ⊗ e5 ⊗ [e1, e2], (5.6)

+v4 · e3 ⊗ e5 ⊗ [e1, e2], (5.7)

+v5 · [e3, e4] ⊗ [e1, e2]. (5.8)

Lemma 5.4. In the algebra V � E, the V -component of

[[v1 ⊕ e1, v2 ⊕ e2, v3 ⊕ e3], v4 ⊕ e4, v5 ⊕ e5]

is

v1 · e2 ⊗ e3 ⊗ e4 ⊗ e5, (5.9)

−v2 · e1 ⊗ e3 ⊗ e4 ⊗ e5, (5.10)

−v3 · [e1, e2] ⊗ e4 ⊗ e5, (5.11)

−v4 · [e1, e2, e3] ⊗ e5, (5.12)

−v5 · [[e1, e2, e3], e4]. (5.13)

Lemma 5.5. In the algebra V � E, the V0-component of

[v3 ⊕ e3, [v1 ⊕ e1, v2 ⊕ e2, v4 ⊕ e4], v5 ⊕ e5]

is

−v1 · e2 ⊗ e4 ⊗ e3 ⊗ e5, (5.14)

+v2 · e1 ⊗ e4 ⊗ e3 ⊗ e5, (5.15)

+v3 · [e1, e2, e4] ⊗ e5, (5.16)
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+v4 · [e1, e2] ⊗ e3 ⊗ e5, (5.17)

+v5 · [[e1, e2, e4], e3]. (5.18)

Lemma 5.6. In the algebra V � E, the V -component of

[v3 ⊕ e3, v4 ⊕ e4, [v1 ⊕ e1, v2 ⊕ e2, v5 ⊕ e5]]

is

−v1 · e2 ⊗ e5 ⊗ [e3, e4], (5.19)

+v2 · e1 ⊗ e5 ⊗ [e3, e4], (5.20)

+v3 · e4 ⊗ [e1, e2, e5], (5.21)

−v4 · e3 ⊗ [e1, e2, e5], (5.22)

+v5 · [e1, e2] ⊗ [e3, e4]. (5.23)

Proposition 5.7. Let E be a Lie triple system. Suppose that V is a T (E ⊗E)/J-
module. Then the comtrans algebra structure V � E given by the commutator

[v1 ⊕ e1, v2 ⊕ e2, v3 ⊕ e3] = (v1 · (e2 ⊗ e3) − v2 · (e1 ⊗ e3)

+ v3 · (e2 ⊗ e1 − e1 ⊗ e2)) ⊕ [e1, e2, e3], (5.24)

along with the projection π : V ⊕E → E, forms a representation π : V � E → E of
E in the variety L of Lie triple systems.

Proof. Given Corollary 4.3, it remains to check that the commutator (5.24) satis-
fies the identity (5.1). Using Lemmas 5.3–5.6, it will be shown that the respective
coefficients of the module elements vi on each side of the identity (5.1) are congruent
modulo J .

Coefficients of v1. Using (5.4), (5.9), (5.14), and (5.19), it must be shown that
modulo J ,

e2 ⊗ [e3, e4, e5] = e2 ⊗ e3 ⊗ e4 ⊗ e5 − e2 ⊗ e4 ⊗ e3 ⊗ e5 − e2 ⊗ e5 ⊗ [e3, e4].

Since the right-hand side reduces to e2 ⊗ [[e3, e4], e5], the equality follows from the
containment of (5.3) in J .

Coefficients of v2. The argument is similar to that used for v1.

Coefficients of v3. Using (5.6), (5.11), (5.16), and (5.21), it must be shown that
modulo J ,

−e4 ⊗ e5 ⊗ [e1, e2] = −[e1, e2] ⊗ e4 ⊗ e5 + [e1, e2, e4] ⊗ e5 + e4 ⊗ [e1, e2, e5]
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or

[e1, e2, e4] ⊗ e5 + e4 ⊗ [e1, e2, e5] = [e1, e2] ⊗ e4 ⊗ e5 − e4 ⊗ e5 ⊗ [e1, e2].

The right-hand side of this latter equation may be rewritten as

[e1, e2] ⊗ e4 ⊗ e5 − e4 ⊗ [e1, e2] ⊗ e5 + e4 ⊗ [e1, e2] ⊗ e5 − e4 ⊗ e5 ⊗ [e1, e2]

or [[e1, e2], e4]⊗ e5 + e4 ⊗ [[e1, e2], e5], which is congruent modulo J to [e1, e2, e4]⊗
e5 + e4 ⊗ [e1, e2, e5] as required.

Coefficients of v4. The argument is similar to that used for v3.

Coefficients of v5. Using (5.8), (5.13), (5.18), and (5.23), it must be shown that
modulo J ,

[e3, e4] ⊗ [e1, e2] = −[[e1, e2, e3], e4] + [[e1, e2, e4], e3] + [e1, e2] ⊗ [e3, e4]

or

[[e1, e2], [e3, e4]] = [[e1, e2, e3], e4] + [e3, [e1, e2, e4]].

Modulo J , the right-hand side of the latter equation is congruent to
[[[e1, e2], e3], e4] + [e3, [[e1, e2], e4]], which does expand and recollect to [[e1, e2],
[e3, e4]] as required.

Proposition 5.8. Let π : A → E be a representation of E in L, with zero section
∆ : E → A. Let V = π−1{0}. Then V becomes a T (E ⊗ E)/J-module specified by
the basic actions

v · e1 ⊗ e2 = [v, e1∆, e2∆]

for v ∈ V and e1, e2 ∈ E.

Proof. By the results of Sec. 4, V is certainly a T (E⊗E)-module. It remains to be
shown that the module is annihilated by J . Consider the instance of the Lie triple
system identity (5.1) with x1 = v1 ⊕ e1 and xi = 0 ⊕ ei for i > 1. Then the exam-
ination of the coefficients of v1 from the proof of Proposition 5.7 shows that (5.3)
annihilates V . Now consider the instance of the Lie triple system identity (5.1) with
x3 = v3⊕e1 and xi = 0⊕ei for i 	= 3. This time, the examination of the coefficients
of v3 from the proof of Proposition 5.7 shows that (5.2) annihilates V .

6. Varieties of Comtrans Algebras

Let V be a variety of comtrans algebras over a commutative ring R, defined within
the full variety CTR of all comtrans algebras over R by a set

{fi(x1, . . . , xni) = 0 | i ∈ I}
of identities indexed by a set I. Suppose that E is a member of V. As described for
the case of V = CT in [6], the category AR ⊗V/E of representations of E in V is
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equivalent to the category of modules over the universal enveloping algebra UV(E).
Since V is a subvariety of CT, Proposition 2.1 shows that the algebra UV(E) is
a quotient of the algebra UCT(E) specified in Theorem 2.3. In order to specify
UV(E), it remains to determine the ideal JV or J such that

UV(E) ∼= UCT(E)/J.

This is achieved by a form of differential calculus, similar to that used for quasi-
groups in [11]. We use notational conventions analogous to those of classical differ-
ential calculus.

Consider the comtrans algebra UCT(E) � E with structure given by (3.1)
and (3.2). Suppose that f(x1, . . . , xn) is a word in the language of comtrans algebras
over R. Then for 1 ≤ i ≤ n, there are elements

fxi(x1, . . . , xn),
∂

∂xi
f(x1, . . . , xn), or just fxi ,

∂f

∂xi
(6.1)

of UCT(E) such that

f(dx1 ⊕ x1, . . . , dxn ⊕ xn) =
n∑

i=1

dxi
∂

∂xi
f(x1, . . . , xn) ⊕ f(x1, . . . , xn) (6.2)

for dxi in UCT(E) and xi in E. As in calculus, it may be convenient to write df

for the UCT(E)-component of (6.2). The algebra elements (6.1) are known as the
partial derivatives of f with respect to xi.

There are rules to compute the partial derivatives, analogous to the familiar
rules of calculus. Constants from R differentiate to zero. For variables xi and xj ,

∂xi

∂xj
= δij .

For elements c1 and c2 of F , and words f1, f2, linearity means

∂

∂xi
(c1f1 + c2f2) = c1

∂f1

∂xi
+ c2

∂f2

∂xi
.

Now consider the words u = u(x1, . . . , xl), v = v(y1, . . . , ym), and
w = w(z1, . . . , zn), with mutually disjoint sets {x1, . . . , xl}, {y1, . . . , ym}, and
{z1, . . . , zn} of arguments.

Proposition 6.1 (Commutator rules). If

f(x1, . . . , xl, y1, . . . , ym, z1, . . . , zn) = [u, v, w],

then

fxi(x1, . . . , xl, y1, . . . , ym, z1, . . . , zn)

= uxi(x1, . . . , xl)K(v(y1, . . . , ym), w(z1, . . . , zn)), (6.3)

fyj(x1, . . . , xl, y1, . . . , ym, z1, . . . , zn)

= −vyj (y1, . . . , ym)K(u(x1, . . . , xl), w(z1, . . . , zn)), (6.4)
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and (with abbreviated notation)

fzk
= wzk

M(v, u) (6.5)

for 1 ≤ i ≤ l, 1 ≤ j ≤ m, and 1 ≤ k ≤ n.

Proof. Apply the commutator definition (3.1) to the computation of df ⊕ f =
[du ⊕ u, dv ⊕ v, dw ⊕ w].

Proposition 6.2 (Translator rules). If

f(x1, . . . , xl, y1, . . . , ym, z1, . . . , zn) = 〈u, v, w〉,
then

fxi = uxiR(v, w), (6.6)

fyj = −vyj (L(u, w) + R(w, u)), (6.7)

and

fzk
= wzk

L(v, u) (6.8)

for 1 ≤ i ≤ l, 1 ≤ j ≤ m, and 1 ≤ k ≤ n.

Proof. Use the translator definition (3.2) to produce the computation of df ⊕ f =
〈du ⊕ u, dv ⊕ v, dw ⊕ w〉.

If the words u, v, or w share a repeated argument, then the derivative of f with
respect to that argument is just the sum of the individual derivatives as given by the
commutator rules (6.3)–(6.5) or the translator rules (6.6)–(6.8). Thus, for example,

∂

∂y
[y, x, y] =

∂

∂y
〈y, x, y〉 = L(x, y) + R(x, y) = M(x, y) + K(x, y).

Theorem 6.3. Let R be a commutative ring. Let V be a variety of comtrans alge-
bras over R, defined within the full variety CTR of all comtrans algebras over R by
identities

{fi(x1, . . . , xni) = 0 | i ∈ I}
indexed with a set I. Let E be a member of V. Let J be the ideal of UCT(E)
generated by the set{

∂fi

∂xj
(e1, . . . , eni)

∣∣∣∣ i ∈ I, 1 ≤ j ≤ ni, e1, . . . , eni ∈ E

}
.

Then UV(E) is the quotient of UCT(E) by J .

For monic algebras or Lie triple systems, Theorems 4.2 and 5.1 may be viewed
as special cases of Theorem 6.3. Another example appears in the final section below.
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7. Form Algebras

An important application of comtrans algebras is the algebraization of bilinear
forms directly on a space, without the exponential blowup of dimension exhibited
by Clifford algebras, for example. Suppose that β is a bilinear form on a module E

over a commutative ring R. Then a comtrans algebra CT(E, β) is defined on E by

[x, y, z] = yβ(x, z) − xβ(y, x)

and

〈x, y, z〉 = yβ(z, x) − xβ(y, z)

(see [7]). This comtrans algebra has the properties that

[z, y, x] + 〈y, z, x〉 ∈ zR (7.1)

and

〈x, y, z〉 ∈ xR + yR. (7.2)

If R is a field, then a comtrans algebra of dimension at least 3 over R is obtained as
CT(E, β) from a bilinear form β on E if and only if the conditions (7.1) and (7.2)
are satisfied [7, Theorem 4.1].

The conditions (7.1) and (7.2) imply comtrans algebra identities.

Proposition 7.1. Let β be a bilinear form on a module E over a commutative ring
R. Then CT(E, β) satisfies the identities

[[z, y, x] + 〈y, z, x〉, z, u] = 0 (7.3)

and

[[〈x, y, z〉, x, y], 〈y, x, y〉, u] = 0. (7.4)

Proof. The identity (7.3) follows from (7.1) and left alternativity. For (7.4), note
that (7.2) and left alternativity imply

[〈x, y, z〉, x, y] ∈ [y, x, y]R.

The comtrans identity allows the containment to be rewritten as

[〈x, y, z〉, x, y] ∈ 〈y, x, y〉R,

from which (7.4) follows by left alternativity.

Definition 7.2. Members of the variety P of comtrans algebras that satisfy the
identities (7.3) and (7.4) are known as pre-formed algebras.

For a vector space E over a commutative ring R, equipped with a bilinear form
β, Theorem 7.5 below specifies the universal enveloping algebra of CT(E, β) in the
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variety PR of pre-formed algebras over R. The proof requires a couple of lemmas,
derived using the calculus of Sec. 6.

Lemma 7.3. In CT(E, β), set

c(x, y, z, u) = [[z, y, x] + 〈y, z, x〉, z, u].

Then

cx = (K(z, y) − R(z, y))K(z, u),

cy = (R(z, x) − K(z, x))K(z, u), and

cz = (β(y, x) − β(x, y) − M(y, x))K(z, u),

while cu = 0.

Lemma 7.4. In CT(E, β), set

s(x, y, z, u) = [[〈x, y, z〉, x, y], 〈y, x, y〉, u].

Then

sx = [R(y, z) + β(y, z)] · K(x, y)[β(y, y)K(x, u) − β(x, y)K(y, u)],

sy = −(β(z, x) + L(x, z) + R(z, x))K(x, y)[β(y, y)K(x, u) − β(x, y)K(y, u)],

sz = L(y, x) · K(x, y)[β(y, y)K(x, u) − β(x, y)K(y, u)],

while su = 0.

Theorem 7.5. Let R be a commutative ring. Let E be an R-module, equipped with
a bilinear form β. Let V = (E⊗E)⊕ (E∧E)⊕ (E⊗E). Let J be the ideal of T (V )
generated by the sets

{(K(a, x) − R(a, x))K(a, u) | a, x, u ∈ E}, (7.5)

{(β(x, y) − β(y, x) − M(x, y))K(z, u) |x, y, z, u ∈ E}, (7.6)

{L(y, x)K(x, y)[β(y, y)K(x, u) − β(x, y)K(y, u)] |x, y, u ∈ E}, (7.7)

{[β(z, x) + L(x, z) + R(z, x)]K(x, y)[β(y, y)K(x, u)

− β(x, y)K(y, u)] |x, y, z, u ∈ E}, (7.8)

and

{[β(y, z) + R(y, z)]K(x, y)[β(y, y)K(x, u) − β(x, y)K(y, u)] |x, y, z, u ∈ E}.
(7.9)

Then UP(CT(E, β)) is isomorphic to the quotient of the tensor algebra on V by J .
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Proof. In the notation of Lemmas 7.3 and 7.4, the defining identities (7.3) and (7.4)
for P are written as

c(x, y, z, u) = 0 and s(x, y, z, u) = 0.

The desired result then follows as a relatively direct application of Theorem 6.3.
The generating set (7.5) corresponds to the derivatives cx and cy. The generating
set (7.6) corresponds to the derivative cz , while (7.7) corresponds to sz and (7.8)
corresponds to sy. Finally, (7.9) corresponds to sx.
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