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Regular orbits in powers of permutation representations

By

JONATHAN D. H. SMITH

Abstract. Let (Q,G) be a faithful permutation representation of a finite group G . Sup-
pose that the G-set Q has t distinct non-zero marks. In a permutation representation ana-
logue of a theorem of Brauer on linear representations, it is shown that the direct power
(Q, G)t of (Q, G) contains a regular orbit. As a corollary, the probability that a random
element of Qr lies in a regular orbit of (Q, G)r is shown to tend to 1 exponentially fast
as r tends to ∞. Further, knowledge of the rate of convergence is equivalent to knowledge
of the second largest value of the character of the linear permutation representation.

1. Introduction. Let G be a finite group. A G-set (Q, G) or permutation representation of
the group G consists of a set Q, together with a (right) action of G on Q via a homomorphism

G → Q! ; g → (q → qg)(1.1)

from G into the group Q! of all permutations of the set Q. The G-set (Q, G) may be construed
as an algebra of unary operations on the set Q. For a positive integer r, the direct power
(Q, G)r of this algebra is the G-set Qr with diagonal action

g : (q1, . . . , qr) → (q1g, . . . , qr g)(1.2)

of the elements g of G. Suppose that the G-set (Q,G) is faithful [i.e. (1.1) injects]. This paper is
concerned with the appearance of regular orbits of G [i.e. G-sets G → G! ; g → (h → h · g)

using the multiplication · of G] as subalgebras of powers (Q, G)r of (Q, G). Theorem B
below shows that as r increases, the probability of a random element of Qr lying in a regular
orbit tends to 1 exponentially fast. Furthermore, knowledge of the rate of convergence is
equivalent to knowledge of the second largest value of the character of the linear permutation
representation.

As proved here, Theorem B is a corollary of Theorem A, a permutation representation
analogue of a theorem of Brauer about complex linear representations. Burnside [4, Ch. XV,
Th. IV] showed that, given a faithful complex linear representation ρ of G, every irreducible
representation of G appears as a constituent of a tensor power ρ ⊗ . . .⊗ ρ of ρ. Brauer [3]
(cf. [1, Theorem I.6.3], [5, Satz V 10.8]) refined Burnside’s result to show that, if the character
of ρ takes on at most t distinct values, then each irreducible representation of G already
appears as a constituent of one of the first t tensor powers of ρ. Now the complex linearization
of the regular permutation representation of G includes all the irreducible complex linear
representations of G as constituents. Thus for a permutation representation, the appearance
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of a regular orbit is the analogue of the appearance of all the irreducible linear representations
as constituents of a linear representation. In place of the t distinct values of the character
of a linear representation ρ, Theorem A requires t distinct non-zero values for the mark
of a subgroup K of G in the faithful permutation representation (Q, G) of G. Under this
condition, Theorem A guarantees that the direct power (Q, G)t contains a regular orbit.
The proof of Theorem A uses the same Vandermonde determinant technique that Brauer
used. Since permutation representations are sometimes viewed as “linear representations
over GF(1)”, Section 3 summarizes Theorem A as “Brauer’s Theorem in characteristic 1”.

The constant c appearing in the estimate of Theorem B is given in terms of the mark table
of the group G. Section 2 recalls the Burnside algebra techniques required for the formulation
of the probability of lying in a regular orbit in a power of a permutation representation.

2. Permutation representations and Burnside algebras. For a finite group G, let G denote
the variety of right G-sets, considered as a category with homomorphisms (G-equivariant
maps) as morphisms. Given G-sets A and B, their disjoint union A + B provides a coproduct
in G and their direct product A × B provides a product in G. The empty G-set is the initial
object of G , while the singleton G-set {1} or 1 is a terminal object of G. For a G-set A,
let [A] denote the isomorphism class of A in G. Let A+(G) be the set of G-isomorphism
classes of finite G-sets. It becomes a commutative, unital semiring (A+(G), +, ·, 0, 1) under
[A] + [B] = [A + B], [A][B] = [A × B], 0 = [ ] and 1 = [1] (cf. [8, §1.1]).

For a subgroup H of G, there is a restriction functor ↓G
H : G → H; (A, G) → (A, H). The

restriction functor is right adjoint to an induction functor ↑G
H : H → G [7, I §2.8 and III §3]. The

induced action 1 ↑G
H may be realized as the set H \ G = {Hx|x ∈ G} with action g : Hx → Hxg

of elements g of G. An arbitrary G-set (A, G) breaks up as the disjoint union A = 

X∈A/G
(X, G)

of irreducible G-subsets (X, G), the orbits of G on A. The set of G-orbits on A is written here
as A/G. Each orbit (X, G) is isomorphic to 1 ↑G

H for the stabilizer H = {g ∈ G|xg = x} of an
element x of X. Let Sb G denote the lattice of subgroups of G. The inner automorphism group
Inn G of G acts on Sb G by conjugation. For subgroups H and K of G, one has 1 ↑G

H = 1 ↑G
K

iff the orbits H Inn G and K Inn G coincide [5, Aufg. I 23)c)]. Let

{Hi | 1 % i % s}(2.1)

be a set of representatives for the orbits of Inn G on Sb G, ordered so that |Hi | % |Hj | for
i % j.

Define the mark function

A+(G) → QSbG; [A] → 

H → ∣

∣H


1, A ↓G
H

∣

∣



(2.2)

(cf. [4, §180]). Since the right adjoint ↓G
H preserves coproducts, (2.1) is an additive homo-

morphism. Now
∣

∣G


1 ↑G
H, A


∣

∣ = ∣

∣H


1, A ↓G
H


∣

∣(2.3)

by the adjointness between restriction and induction. Since |G(1 ↑G
H, A × B)| =

|G(1 ↑G
H , A)| · |G(1 ↑G

H, B)|, the mark function (2.2) is also a multiplicative homomorph-
ism. Indeed, it is also injective [2, pp. 70–1] [8, Prop. I.2.2], so A+(G) is identified with
its image under (2.2). The Q-subalgebra of QG generated by A+(G) is called the (rational)
Burnside algebra B(G) of G.
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For a G-set Q, the mark function of [Q] is specified by the row vector


∣

∣G


Hj \G, Q

∣

∣

∣

∣1 % j % s


(2.4)

of marks of Q. The mark table of G is the s × s matrix B whose i-th row is the vector of
marks of the G-set Hi \ G [4, §180] [6, p. 8]. The matrix B is lower triangular with non-zero
diagonal entries (whence the injectivity of the mark function). Let

B−1 = [aij |1 % i, j % s](2.5)

be the inverse of the mark table.

3. Brauer’s Theorem in characteristic 1. Let G be a non-trivial finite group. Let (Q, G)

be a faithful permutation representation of G of degree |Q| = n.

Theorem A. Suppose that (Q, G) is a faithful permutation representation of G having ex-
actly t distinct non-zero marks. Then the t-th power (Q, G)t of the permutation representation
(Q, G) contains a regular orbit.

P r o o f. Let the vector of marks of Q be

f = [ f1, . . . , fs].(3.1)

Then the vector of marks of Q j is [ f j
1 , . . . , f j

s ], so the vector of multiplicities of isomorphism
classes of orbits of Q j is [ f j

1 , . . . , f j
s ]B−1. In particular, the number of regular orbits in Q j is

the first component of this vector, namely
s



i=1
f j
i a j1.(3.2)

Suppose that

{ f1, . . . , fs} = {n = n0 > . . . > nt = 0}.(3.3)

For 0 % i < t, define

xi = {a j1 | f j = ni}.(3.4)

In particular, note

x0 = a11 = 1/|G| :(3.5)

since Q is faithful, f j = n implies j = 1. Suppose that (Q, G)t were to contain no regular
orbit. Since (Q, G)t contains (diagonal) copies of (Q, G) j for 1 % j < t, it would follow that
none of the (Q, G) j for 1 % j % t would contain any regular orbit. Now by (3.2) and (3.4),
the number of regular orbits in (Q, G) j is

x0n j
0 + x1n j

1 + · · · + xt−1n j
t−1.(3.6)

One would thus obtain the homogeneous system

x0n1
0 + x1n1

1 + · · · + xt−1n1
t−1 = 0

x0n2
0 + x1n2

1 + · · · + xt−1n2
t−1 = 0

. . .

x0nt
0 + x1nt

1 + · · · + xt−1nt
t−1 = 0

(3.7)
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of linear equations in x0, x1, . . . , xt−1. Since the Vandermonde determinant

det


n j+1
i

∣

∣0 % i, j < t
 = n0n1 . . . nt−1



0%k<l<t
(nl − nk)(3.8)

is non-zero, one would then have the contradiction x0 = 0 to (3.5). 
R e m a r k. There are other approaches to the proof of Theorem A, e.g. using the ideas

underlying the greedy algorithm of Blaha [2]. The approach adopted here, using the argument
of Brauer [3], is designed to facilitate the estimates in the following section.

4. Probability of a regular orbit. Throughout this section, the hypotheses and notation of
Section 3 are maintained. Consider the sequence (Q, G)r , for r = 1, 2, . . . , of powers of the
faithful permutation representation (Q, G) of G. For each r, consider the uniform distribution
on Qr . Theorem B below shows that as r increases, the probability of a random element of Qr

lying in a regular orbit tends to 1 exponentially fast. The first part of the theorem gives an
estimate of the probability for each r, while the second part shows that knowledge of the rate
of convergence is equivalent to knowledge of the second largest permutation character value.

Theorem B. Let Q be a faithful permutation representation of G of degree n. Suppose that
the second largest value of the permutation character π of Q is m.

(a) There is a positive constant c such that, for each positive integer r, the probability Pr of
a random element of Qr lying in a regular orbit of (Q, G)r differs from one by at most
c


m
n

r
.

(b) The probability Pr satisfies

lim
r→∞(1 − Pr)

1
r = m

n
.

P r o o f. Suppose that π(g) = m for some element g of G. Then m = n1, the mark of g,
since the mark of any given subgroup H of G is not greater than the marks of the subgroups
K of H . By (3.5) and (3.6), the number of regular orbits of Qr is

|G|−1nr + x1nr
1 + · · · + xt−1nr

t−1.(4.1)

For 0 % i % t, define pi = ni/n. In particular, p1 = m/n. By (3.3), one has

1 = p0 > p1 > . . . > pt = 0.(4.2)

The probability Pr that a random element of Qr lies in a regular orbit is given by

Pr = 1 + |G|. x1 pr
1 + x2 pr

2 + · · · + xt−1 pr
t−1



,

with coefficients xi as in (3.4). Then

1 − Pr =
m

n

r |G|.
∣

∣

∣

∣

x1 + x2



p2

p1

r

+ · · · + xt−1



pt−1

p1

r ∣

∣

∣

∣

.(4.3)

Define

c = |G|
t−1


i=1
|xi |.(4.4)

Use of (4.2) and the triangle inequality on (4.3) yields (a). Taking the limit of the r-th root of
each side of (4.3) yields (b). 

A c k n o w l e d g e m e n t. The author is grateful to anonymous referees for many helpful
suggestions concerning this paper.
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