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ABSTRACT. By analogy with Stirling numbers, tri-restricted numbers of the
second kind count the number of partitions of a given set into a given number
of parts, each part being restricted to at most three elements. Tri-restricted
numbers of the first kind are then defined as elements of the matrix inverse
to the matrix of tri-restricted numbers of the second kind. A new recurrence
relation for the tri-restricted numbers of the second kind is presented, with a
combinatorial proof. Tn answer to a problem that has remained open for several
years, it is then shown by determinantal techniques that the tri-restricted
numbers of the first kind also satisfy a recurrence relation. This relation is
used to obtain a reciprocity theorem connecting the two kinds of tri-restricted
number.

1. INTRODUCTION

For non-negative integers n and k, a tri-restricted k-partition of an n-set is a
partition in which cach of the k parts has at most 3 clements. The tri-restricted
number M3(n,k) or an of the second kind is defined to be the number of tri-
restricted k-partitions of an n-set. By comparison, the Stirling number S,(n, k) of
the second kind counts the total number of (unrestricted) k-partitions of an n-set
{1, 2.66]. Then, just as Stirling numbers S1(k, n) of the first kind may be defined as
elements of the matrix inverse to the matrix of Stirling numbers of the second kind,
the tri-restricted number M3 (k,n) of the first kind is the (k,n)-entry of the matrix
inverse to the matrix [a, x| of tri-restricted numbers of the second kind. The top
left 6 x 6 corner of the matrix of tri-restricted numbers of the second kind is

10 0 0 0 0

11 0 0 0 O

1 3 1 0 0 0
(1.1) 0 7 6 1 0 0f°

0 10 26 10 1 O

0 1



while the corresponding part of the inverse matrix is

1 0 0 0 0 0
-1 1 0 0 0 0
2 -3 1 0 0 0
(1.2) -5 11 —6 1 0 0
10 —45 35 -10 1 0
35 175 =210 85 -—15 1
Thus M3(5,2) = —45, for example. Unlike the case of Stirling numbers, succes-

sive subdiagonals of the matrix [M$(k,n)] do not alternate in sign — note the
positivity of the bottom left entry of (1.2), for example. This anomalous sign
behavior is an obstacle to any potential combinatorial interpretation of the “un-
signed” tri-restricted numbers (—1)¥+" M3 (k, n) of the first kind analogous to the
interpretation of (—1)¥+"8(k, n) as the number of permutations of & symbols with
n cycles.

Tri-restricted numbers were originally defined analytically in [2]*, as part of a
series of papers looking at the corresponding bi-restricted or Bessel numbers (coef-
ficients in Bessel polynomials [3}), and the multi-restricted numbers [4]. Theorem
5.4 of (4] gave a recurrence relation for multi-restricted numbers of the second kind,
analogous to two-term recurrence relations for the Stirling numbers of the second
kind [1, 3.29(ii)] or Bessel numbers [4, (2.5)]. For the case of tri-restricted numbers,
this recurrence relation specializes to the relation

(13) M3(n+1,k+1) = M3(n, k) + (k+ )M3(nk + 1) — (g) M3(n—3,k).
Recalling the recurrence relation

(1.4) So(n+ Lk+1) =8(n k) + (k + 1)Sy(n, k + 1)

for Stirling numbers of the second kind, one may regard the third term of the right
hand side of (1.3) as a correction appropriate to the additional restriction on the
parts of the partitions counted by the tri-restricted numbers of the second kind.

The discovery of (1.3) naturally raised the problem of finding a recurrence rela-
tion for tri-restricted numbers of the first kind. However, repeated attempts to find
such a recurrence based on (1.3) met with only limited success, even though (1.3)
seems quite natural as a suitably modified version of (1.4). Thus the first result of
the current paper, Theorem 2.1, presents a new recurrence relation

Min+1,k+1)=
(’5) M3(n, k) + (’;) M3(n—1,k) + (;‘) M3(n—2,k)

for the tri-restricted numbers of the second kind. The proof of Theorem 2.1 is
purely combinatorial. The main result, Theorem 3.3, then derives a corresponding

Un that paper, where the connection with Stirling numbers was still secondary, the “kinds”
were interchanged from the current and now established usage. (But for criticism of this usage,
see the conclusion of (7].) To minimize any possible confusion, here we avoid the notation T(n, k)
of {2].



recurrence relation
n

M3(k,n) = (O)Mf(k +1n+1)

+<"“1L 1)Mf(k +1n+2)

+<n;2)M13(k +1n+3)
for the tri-restricted numbers of the first kind.? One of the key ideas underlying
the linear-algebraic proof of Theorem 3.3 is the use of Cramer’s Rule to identify the
tri-restricted numbers of the first kind as appropriately signed determinants of tri-
restricted numbers of the second kind (compare [5, p. 157), [6]). As a consequence
of Theorem 3.3, the final section of the paper derives a Reciprocity Theorem for
Tri-restricted Numbers, namely

(=)™ M (n, k) = M3 (~k, —n),

as an analogue of the reciprocity relation (—1)*+¥S,(n, k) = S3(—k, —n) for Stirling
numbers [6] [7, (2.4)].

2. RECURRENCE RELATION OF THE SECOND KIND
By convention, set M3(n, k) =0if n < 0and k& > 0.

Theorem 2.1. For n, k > 0, one has
(2.1) Min+1,k+1)=

(g) M3(n, k) + (T) M3(n—1,k) + (Z) M3(n —2.k).

Proof. The left hand side of (2.1) is the number of tri-restricted (k + 1)-partitions
of an (n+ 1)-set S = {sg,...,8,}. Denote the element sg of S as special. The
tri-restricted (k + 1)-partitions of S are divided into three mutually disjoint types,
according to whether the special element sg has 0, 1, or 2 companions in the parti-
tion. The respective terms on the right hand side of (2.1) then count the number
of partitions of each of these types. The binomial coefficient (’C‘) counts the choices
of csets {s;;, | 1 < j < ¢,1 <145 < n} of companions (for ¢ = 0,1 or 2), and for
each such choice, the corresponding tri-restricted number M3(n — ¢, k) counts the
number of tri-restricted k-partitions of the set S\ {so,si,,...,s:} of remaining
elements. O

Corollary 2.2. The recurrences (1.3) and (2.1) are equivalent.

Proof. Along with the (redundant) boundary conditions

1 ifn=k,
0 ifn<k;
2.2 M3(n, k) = '
(2:2) 2(n,k) 0 ifn>0k<0;
0 ifn=0,k<0,

2of course, if one wished to use this relation as a true recurrence for iterative generation
of a table of tri-restricted numbers of the first kind, one could regard it as an expression for
M3(k + 1,7+ 3) in terms of M3(k,n), M3(k+ 1,n+ 1), and MP(k + 1,n + 2).



the recurrences (1.3) and (2.1) both serve to define the general tri-restricted num-
bers M3(n, k) of the second kind for general natural numbers n and k. Thus each
recurrence, chosen as the defining recurrence, implies the other. ]

3. RECURRENCE RELATION OF THE FIRST KIND

Throughout this section, £ and n are integers with k¥ > n > 1, while a, .
denotes the tri-restricted number of the second kind and the recurrence relation
(2.1) provides

n n
(3.1) Uil k4l = Gk + (l)an,k + (2>an—1,k-

Since the unimodular matrices of tri-restricted numbers of the first and sec-
ond kinds are mutually inverse, Cramer’s Rule specifies the tri-restricted number
M3(5,m) of the first kind as the (j, m)-cofactor of the transposed matrix of tri-
restricted numbers of the second kind. In other words, defining b; . as the deter-
minant of the submatrix of tri-restricted numbers of the second kind obtained by
deleting the m-th row and j-th column, one has the relation

(3.2) M (k,n) = (=1)F+ by ..
The following lemma gives a more compact form of by,

Lemma 3.1. Fork>n>1,

Anitin 1 0 e 0
Ant2n  Ani2n+l 1
(3.3) bin = 0
Gk—_1;n Ck_1n41 Ck—1p42 .- 1
Qk.n Cknit1 Gk ni2 cee Ok k-1

Proof. The principal k x k submatrix of the matrix of tri-restricted numbers of the
second kind is

[ 1 0 0 07
% 1 0

* 0

1 0 0 0

@n1 Gn2 ... Gnn—l 1 0 0 0
* Qniln 1 0 0 0

* Ani2n Cni2n+l 1 : 0

0 0

* Ck-1n  Qk-1nt+l Ok-lnt2 --- 1 0

L« * Qk.n Qi nt1 Qnt2 .- Qrgx—1 1]



Deleting the n-th row and k-th column, and then taking the determinant, one

obtains by ,, as

(3.4)

1 0

* Qn+l,n 1

¥ Gpni2,n Oniy2n+l
¥ Gk—1gn Ck-1n+1
* Qg n Ak nt1

which reduces to (3.3).

Ak k-1

O

The technical result is known as the Sweeping Lemma, for the way in which the
change n + 1 — n in the second index of the column elements is gradually swept
down to the bottom. Note the accompanying change in the first indices, producing
a longer consecutive run of these.

Lemma 3.2. Forr > 2,

(3.5)

Any) T
Ani2,n

Untr—1,n
Anirt+intl
Gn4r4+2,n+1

(22798 1,n
Ani2n

Antr—1n
Gnirn
Ontr+2,n+1

1

An42,n41

Antr—1n+1
Cngriln+2
Uniri2n42

1
Ant2n+l

Antr—1,n+1
Gntrn+tl
Anir+2,n42

Proof. By the recurrence relation (3.1), each element @, ,11, 4541 in the (n47)-th
row of the left hand side can be replaced with a sum of three terms

n+r
Antrmts + 1 an+r—1,n+s +

> Cnir—2,n+s-



for any 8 =0,1,2,...,r, i.e. the (s + 1)-th column of the left hand side becomes

QApyr—2n+ts

Ontr—1n+s

Gnirnts t+ (n-li'r)an+r—1,n+s + (";r)aﬂ+r—2,n+s )
Cntri2m+s+1

Subtracting ("1") times the (r — 1)-th row and (*}") times the (r — 2)-th row
from the r-th row then reduces this version of the left hand side to the right hand
side. a

Theorem 3.3. The tri-restricted numbers of the first kind satisfy the recurrence
relation

(3.6) M3(k,n) = (g) M3k+1,n+1)

+(”“1L 1) M3k + 1 +2)

+(";“2)Mf(k+ 1n+3).
Proof. Applying the recurrences (3.1)

n+2
Cni3ntl = Qny2n + (n + 2)an+l,n + ( )

2
and
(3.7 @ni3nt2 = Gnt2ni1 + (n+2) +0
to the first two terms in the second row of the determinant
An42,n+1 1 0 ¢ P 0
Gni3n+l  Gnidni2 1 0 0
Anidntl Qnidnt2 Gnidn+3 1 e 0
(38) bk+1,n+1 = . . .
Gkn+1 Gk n+2 Okn+3 Gkintd - 1
Gk+1n+1 Gk+in+2  Qk+1n43  Gkiintd oo @kilk

(along with the decomposition 1 = 1+ 0+ 0), one obtains this determinant as a
sum of

Gni2ni1 1 0 0
Qn42,n Ani2,n+1 1 0
(3.9) Anigntl Onidnt2 Gnidne3d 1 ol
Qni42,n+1 1 0 0
(3 10) (n + 2)(1“4_1," n+4+2 0 0

Qnidnil Ontdn+2 Onidnez 1 ..o >



and

Ant2,n+1 1 0 0
5 0 0 0

(3-13) Gnidntl Onidnt2 Onianss 1 ...

ie (3.8) = (38.9) + (3.10) + (3.11). Applying the recurrence (3.1)
(312) An42n+l = C0niln + (n + 1)

(along with 1 = 1+ 0) to the top row of (3.9), and simplifying, reduces it to a sum
of

Cntln 1 0 0
Cn42.n An4+2n+1 1 0
(313) Antantl Gntdn+2 Cnidnts 1
and
1 0 0 0
0 Qnt2nd1 1 0 N
(3.14) (n+1)o Gnidnt2 Cniames 1 ..o

ie. (3.9) = (3.13) + (3.14). Applying the same recurrence (3 12) to (3.10), and
again simplifying, reduces it to a sum of

Qntin 1 0 0
(n+2)any1,n n+2 0 0
(3.15) Qnidntl Qnidnt? CGnydn+s 1
and
1 0 0 0
(3.16) 0 n+2 0 0

(n+1) 0 antan+2 Oniants 1

Since (3.15) is zero, this sum is reduced to (3.16) alone, i.e. (3.10) = (3.16). The
last determinant (3.11) reduces to —("';2)bk+1_,,+3 in the form

Ont4,n43 1 0
(3.17) (

n+2
- 9 )bk+l,n+3 Ont5,n43 Onisn+d 1

Repeated application of the Sweeping Lemma 3.2 reduces (3.13) to bg,. On the
other hand, use of the recurrence (3.7) enables one to reconstitute (3.14) and (3.16)



1 0 0 0
0 Gnian+2 1 0
(3‘18) (n+ 1) 0 Cnt4n+2 Gnidntd 1 ...»

namely as ("7')bx11,n+2. Collecting this term along with (3.13) (as by ,) and (3.17)
(as —(";Q)bkﬂl,,“) yields the recurrence

n+1 n+2
(319) bk+1',,+1 = bk,n + ( 1 )bk+l,n+2 - ( 2 )bk+1,n+3 .
This reduces to the required form (3.6) on application of (3.2). O

4. MATRIX EXTENSION AND RECIPROCITY

Using the recurrence relation (2.1) for arbitrary integers n and k, together with
the boundary conditions (2.2) (which are redundant, but consistent with the recur-
rence relation), one may extend the matrix of tri-restricted numbers of the second
kind from the SE quadrant to the whole plane. (Alternatively, as an irredundant
boundary condition, one may take M3(n,k) = 0 if n or k is zero together with
M3(0,0) = 1.) The central part of the doubly infinite matrix is displayed as fol-
lows:

1 0 0 00 O0Oj0{0 0 0 O 0 O
15 1 0 0 0 0(0(0 0O 0 0 0 O
8 10 1 6 0 0{0(0 0 0 O 0 O

200 35 6 1 0 0|0Of(0 O O O O O
17 45 11 3 1 0(0)j0 0 O O 0 O
-35 10 5 2 1 1(0j0 0 0 O O O

0 0O 0 00 Oj1{0 0 0 0 O O

0 0 0 0 0 0|0yt O 0 0 0 O

0 0 0 00OJ0f 1T 0 0 0 O

0 0 0 0 060 0jO0|] 3 1 0 0 O

0 0 0 090 O}j0OfO0 7 6 1 0 0O

0 0 0 0 0 0]0|0 10 25 10 1 O

0 0 0 06 0 0j0]J0 10 75 65 15 1

(note that the row and column comprising the irredundant boundary condition
have been ruled off). It appears that the NW quadrant contains a reflected version
of the matrix of “unsigned” tri-restricted numbers of the first kind. Indeed, if one
sets

4.1) bk n = M2{(—n,—k),

then the recurrence relation (3.19) reduces to (2.1). Combining (4.1) with (3.2)
then yields the Reciprocity Theorem for tri-restricted numbers (compare [7, (2.4)]
for the corresponding theorem for Stirling numbers).

Theorem 4.1. For integers n and k,
(42) (—-1)"**M}(n, k) = M3 (~k,~n).



Remark 4.2. In [7, pp. 417-8], Gessel is credited with showing how the reciprocity
theorem for Stirling numbers reduces to a special case of Stanley’s Reciprocity The-
orem for Order Polynomials [8, Prop. 13.2(i)]. It appears that the anomalous sign
behavior of the tri-restricted numbers of the first kind, precluding a combinatorial
interpretation of the corresponding “unsigned” numbers, also precludes a reduction
of Theorem 4.1 to a special case of Stanley’s theorem.
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