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Abstract. The quatedral loop hybridizes the structures of the eight-element quaternion and

dihedral groups. These three loops share the same character table. The quatedral loop provides

a natural example of a nonassociative loop with a well-behaved Frobenius-Schur indicator. The

aim of the current paper is to survey the properties of the quatedral loop, and to identify its

multiplication group. The identification is facilitated by considering the loop as a superloop, and

its multiplication group as a supergroup. Thus, the paper provides a brief summary of these

concepts, and an illustration of their application.

1. Introduction. Among the loops of order 8, the quaternion group Q8 has 6 elements

of order 4, while the dihedral group D4 has 2 elements of order 4. The loop which is the

topic of this paper also has 8 elements, 4 of which have order 4. As a hybridization of the

quaternion group Q8 and dihedral group D4, it is described as the quatedral loop.

The quatedral loop plays a significant role within the combinatorial character theory

of finite loops and quasigroups [7], [10, Ch. 6]. This theory forms a direct extension of the

ordinary character theory of finite groups, without invoking modules. Since the inception

of the theory, no explicit answers to the following basic questions seem to have appeared

in the literature (although some experts have privately been aware of answers to the

first):

Problem 1.1. Is it possible for a loop which is not associative to have the same character

table as a group?

Problem 1.2. Is it possible for a loop which is not associative to have a well-behaved

Frobenius-Schur indicator?
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Now, as shown by Theorem 5.11 and Equation (5.6) in this paper, it transpires that

the quatedral loop, which is not a group, has exactly the same character table as the

quaternion group Q8 and dihedral group D4, and that its unique non-linear character

has Frobenius-Schur indicator 0. In other words, the quatedral loop at once provides

natural positive answers to Problems 1.1 and 1.2.

The main purpose of this paper is to provide a survey of the key properties of the

quatedral loop, which include its decomposition as a superloop. The quatedral loop was

actually discovered as a consequence of an investigation of superloops, superquasigroups

and their multiplication groups [5]. Superloop considerations appear in the proof of the

main new result of this paper, Theorem 5.12, which identifies the multiplication group of

the quatedral loop.

1.1. Plan of the paper. Section 2 provides requisite background material on magmas,

quasigroups, and loops. In view of the subsequent discussion of superstructures, more

care than usual is devoted to the relationship between quasigroups and magmas. For

other topics not treated in Section 2, readers may consult [1, 10, 11].

Since the multiplication group of the quatedral loop is given as a wreath product of

groups, Section 3 provides a summary of the wreath product construction, initially at the

level of monoid actions. This treatment is based on [11, p.40], which follows the account

of the group-theoretical version given in [4, §15]. (Many group-theoretical treatments,

particularly those insisting on left actions, involve inverses, and thus cannot be extended

to monoid actions.)

Section 4 introduces supergroups and superquasigroups, including the treatment of

the multiplication supergroups of superquasigroups. The quatedral loop itself appears in

Section 5. Its previously known properties (from [5]) are surveyed, and the new results,

which include the identification of the multiplication group, are presented.

1.1.1. Notational remark. Algebraic or diagrammatic notation, where functions follow

their arguments (either on the line or as a superfix), is taken as the default option

throughout the paper. This convention, which is followed by classics of non-associative

algebra such as [1], and also implemented in GAP [3], mitigates the inevitable proliferation

of brackets, and enables formulas to be read in natural order from left to right without

backtracking or threading.

2. Quasigroups and loops.

2.1. Magmas and combinatorial quasigroups.

2.1.1. Magmas.

Definition 2.1. A magma M or (M, ·) is a (possibly empty) set M that is equipped

with a binary operation

M ×M → M ; (m,m′) 7→ m ·m′ (2.1)

which by default may be described as multiplication.

Remark 2.2. (a) It is often convenient to denote the product m ·m′ in (2.1) simply by

juxtaposition, as mm′.
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(b) Magmas are sometimes described as binars, or as groupoids in Ore’s terminology (now

abrogated by its alternative use in category theory).

2.1.2. Right and left multiplications. Currying the binary operation in a magma yields

families of unary operations that are parametrized by the elements of the (underlying set

of the) magma.

Definition 2.3. Consider an element q of a magma (M, ∗).
(a) The function

R∗(q) : M → M ;x 7→ xq (2.2)

is known as right multiplication by q. Thus xR∗(q) = x ∗ q.
(b) The function

L∗(q) : M → M ;x 7→ qx (2.3)

is known as left multiplication by q. Thus xL∗(q) = q ∗ x.
The right and left multiplications of a magma (M, ·), in which the multiplication is

often denoted simply by juxtaposition, may be written simply as R(q) and L(q).

Definition 2.4. An element e of a magma (M, ∗) is said to be an identity element if

R∗(e) : M → M and L∗(e) : M → M fix each element of M .

Note that a magma has at most one identity element.

2.1.3. Combinatorial quasigroups.

Definition 2.5. A (combinatorial) quasigroup Q or (Q, ·) is a magma in which the

equation x1x2 = x3 has a unique solution xk in Q, with k ∈ { 1, 2, 3 } ∖ { i, j }, for each
two-element subset { i, j } of { 1, 2, 3 } and for each choice xi, xj of elements of Q.

Lemma 2.6. Let (Q, ∗) be a combinatorial quasigroup.

(a) For each q ∈ Q, the right multiplication (2.2) is bijective.

(b) For each q ∈ Q, the left multiplication (2.3) is bijective.

Proof. It will suffice to prove (a). For the injectivity, suppose that x′R∗(q) = x′′R∗(q)

for x′, x′′ ∈ Q. Then both x′ and x′′ are solutions x to the equation x ∗ q = x′ ∗ q. The
equality x′ = x′′ then follows from the uniqueness condition of Definition 2.5.

For the surjectivity, consider an element y of Q. The existence condition presented

in Definition 2.5 implies that there is a solution x in Q to the equation x ∗ q = y. Then

y = xR∗(q) lies in the image of R∗(q) : Q → Q.

Lemma 2.6 has a converse.

Proposition 2.7. A magma is a (combinatorial) quasigroup if and only if all its left

and right multiplications are bijective.

Proof. The forward (only if) direction is just Lemma 2.6. Conversely, suppose that the

multiplications in a magma (M, ·) are all bijective. We then have the following scheme of

solutions to the various equations of Definition 2.5:

x1 = x3R(x2)
−1 , x2 = x3L(x1)

−1 ,

x3 = x1R(x2) = x2L(x1) ,
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all of which are unique.

2.2. Equational quasigroups and loops.

Definition 2.8. A(n equational) quasigroup Q or (Q, ∗, /, \) is a set Q equipped with

three magma structures:

• multiplication (Q, ∗) ;
• right division (Q, /) ;

• left division (Q, \) ,

such that the labelled identities

w\(w ∗ v) (IL)
= v

(IR)
= (v ∗ w)/w (2.4)

w ∗ (w\v) (SL)
= v

(SR)
= (v/w) ∗ w (2.5)

hold.

Remark 2.9. Note the symmetry of the (unlabelled) identities 2.4 and 2.5 about the

axis through the central elements v.

Proposition 2.10. Consider a (possibly empty) set Q.

(a) If (Q, ∗) is a combinatorial quasigroup, then its magma structure augments to the

structure (Q, ∗, /, \) of an equational quasigroup.

(b) Suppose that (Q, ∗, /, \) is an equational quasigroup. Then its magma reduct (Q, ∗)
is a combinatorial quasigroup.

Proof. (a) By Lemma 2.6, the multiplications of (Q, ∗) are bijective. For elements x, y of

Q, define

x/y = xR(y)−1 and x\y = yL(x)−1 .

The identities of 2.4 and 2.5 are then immediate.

(b) The identity (IR) says that the right multiplication R∗(w) in (Q, ∗) is injective.

The identity (SR) says that the right multiplication R∗(w) is surjective. Thus the right

multiplications of (Q, ∗) are bijective. Symmetrically, the left multiplications of (Q, ∗) are
bijective (compare Remark 2.9). Proposition 2.7 then shows that the magma (Q, ∗) is a
combinatorial quasigroup.

Thanks to Proposition 2.10, one may normally omit the qualifications “combinatorial”

and “equational” when referring to quasigroups, or to the objects of this final definition:

Definition 2.11. A quasigroup is a loop if it has an identity element.

2.3. Multiplication groups. By Proposition 2.7, the right and left multiplications of

a quasigroup (Q, ·) lie inside the group Q! of permutations of the underlying set Q, i.e.,

the group of bijective mappings from Q to Q.

Definition 2.12. Let (Q, ·) be a quasigroup. Then its multiplication group MltQ or

Mlt(Q, ·) is the subgroup

⟨R(q), L(q)|q ∈ Q⟩Q! (2.6)

of Q! generated by all the right and left multiplications of (Q, ·).
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3. Wreath products.

3.1. The wreath product of monoid actions. For sets B and M , recall that the

direct power MB is the set Set(B,M) of functions s : B → M from B to M .

Definition 3.1. Consider (right) monoid actions (A,M) and (B,N).

(a) The set A is described as the set or space of microstates.

(b) The monoid M is described as the microscopic monoid.

(c) The set B is described as the set or space of macrostates.

(d) The monoid N is described as the macroscopic monoid.

(e) The set A×B is described as the (system) state space.

(f) The wreath product monoidM ≀(B,N) is defined to have the underlying setMB×N ,

equipped with

(s, n) · (t, n′) = (b 7→ bs · bnt, nn′) (3.1)

as a monoid product.

(g) The wreath product action

(A,M) ≀ (B,N) =
(
A×B,M ≀ (B,N)

)
is the action of the wreath product monoid on the system state space with

(a, b) · (s, n) = (a · bs, bn) (3.2)

for a ∈ A, b ∈ B, s ∈ MB and n ∈ N .

The terminology of Definition 3.1 is justified as follows.

Lemma 3.2. Consider the context of Definition 3.1.

(a) The product (3.1) is associative.

(b) The product (3.1) has an identity element. Its first component is the constant map

to the identity element of M , while its second component is the identity element of

N .

(c) The wreath product action is a monoid action.

(d) If (A,M) and (B,N) are group actions, then the same is true of their wreath product

(A,M) ≀ (B,N).

(e) If (A,M) and (B,N) are faithful group actions, then the wreath product action of

M ≀ (B,N) on A×B is faithful [4, Satz I.15.3].

(f) If (A,M) and (B,N) are transitive group actions, the wreath product action of

M ≀ (B,N) on A×B is transitive [4, Satz I.15.3].

3.2. The dihedral group of degree 4. In terms of quasigroup theory, the dihedral

group D4 of degree 4 and order 8 is defined algebraically as the multiplication group

Mlt (Z/4,−) of the quasigroup of integers (or integer residues) modulo 4 under the non-

associative operation of subtraction [10, Ex. 2.2], [11, p.56].

Again, writing C2 for (the regular permutation representation of) the multiplicative

group C2 =
(
{±1 } , ·

)
, the (defining permutation representation of the) group D4 also

appears as C2 ≀ C2, namely as a Sylow 2-subgroup of the symmetric group S4 [2], [4,

Hilfsatz I.15.5].
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In preparation for the description of the multiplication group of the quatedral loop to

be given in Theorem 5.12, it is worthwhile to relate these two descriptions of the dihedral

action D4, obtaning a similarity between the multiplication group action of Mlt (Z/4,−)

and the wreath product action of C2 ≀ C2 on C2 × C2.

The identification of the sets is

Z/4 → C2 × C2; 0 7→ (1, 1) , 1 7→ (1,−1) , 2 7→ (−1, 1) , 3 7→ (−1,−1) .

This assignment corresponds to the respective binary representations

00, 01, 10, 11

when the cyclic group C2 is written additively on the set { 0, 1 }. The identification of the

generating permutations is

R−(1) = (0 3 2 1) 7→
(
(1, 1) (−1,−1) (−1, 1) (1,−1)

)
;

L−(1) = (0 1)(2 3) 7→
(
(1, 1) (1,−1)

)(
(−1, 1) (−1,−1)

)
.

Thus, if the image of R−(1) is the element (r, x) for some r : C2 → C2 and x ∈ C2, a first

application of (3.2) implies solution of the equation

(1, 1) · (r, x) = (1 · 1r, 1x) !
= (−1,−1) ,

whence x = −1 and r : 1 7→ −1. Completion of the assignment requires the satisfaction

of

(−1,−1) · (r,−1) =
(
− 1 · (−1)r, (−1)(−1)

) !
= (−1, 1) ,

so that r : − 1 7→ 1, and R−(1) is represented by

({
1 7→ −1

−1 7→ 1

}
,−1

)
. In turn, L−(1) is

represented by

({
1 7→ 1

−1 7→ 1

}
,−1

)
in C2 ≀ C2.

Remark 3.3. The identification between the sets Z/4 and C2 × C2 is not arbitrary. For

example, one might attempt the identification

Z/4 → C2 × C2; 0 7→ (1, 1) , 1 7→ (−1, 1) , 2 7→ (−1,−1) , 3 7→ (1,−1)

based on the popular view of D4 as the group of symmetries of the square

{ (1,±1), (−1,±1) } ,

trying to realize the rotation(
(1, 1) (−1, 1) (−1,−1) (1,−1)

)
counterclockwise by a right angle. The first application of (3.2) would imply solution of

the equation

(1, 1) · (r, x) = (1 · 1r, 1x) !
= (−1, 1) ,

leading to x = 1 and r : 1 7→ −1. The next application of (3.2) would then imply solution

of the equation

(−1, 1) · (r, 1) =
(
− 1 · 1r, 1

) !
= (1,−1) ,

which is impossible.
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4. Superquasigroups.

4.1. Supersets and parity.

Definition 4.1. Consider a set S.

(a) The set S becomes a superset when it is equipped with a specified disjoint union

decomposition

S = S0 ⊎ S1 (4.1)

in which the respective uniands are identified as the even part S0 and odd part S1.

(b) Elements x of S0 are described as having even parity : |x| = 0.

(c) Elements x of S1 are described as having odd parity : |x| = 1.

(d) If T0, T1 are respective subsets of the even and odd uniands S0, S1 from (4.1), then

T = T0 ⊎ T1 is said to be a supersubset or subsuperset of S.

Remark 4.2. (a) Equivalently, one may define a superset S to be the domain of a parity

function

pS : S → Z/2;x 7→ |x| . (4.2)

Then, we have Sr as the inverse image p−1
S { r } for r = 0, 1. Note the consistency with

Definition 4.1(c),(d).

(b) A categorical approach to supersets (from which we refrain in this paper) would start

from (4.2), regarding it as an object of the slice category of sets over Z/2.

4.2. Supermagmas and supergroups.

Definition 4.3. (a) Suppose that (the underlying set of) a magma S is a superset

S = S0 ⊎ S1. Suppose that whenever x and y are elements of S, then their product x · y
has

|x · y| = |x|+ |y| (4.3)

with addition modulo 2. Then S is said to be a supermagma.

(b) A supergroup is a group whose magma reduct is a supermagma.

Remark 4.4. The condition (4.3) of Definition 4.3 says that the parity function (4.2)

is a magma homomorphism to the additive group of residues modulo 2. Thus, within a

supermagma, the even part forms a submagma.

Lemma 4.5. Let S be a supermagma.

(a) Each idempotent element of S is even.

(b) If a supermagma has an identity element, then it is even.

Proof. It suffices to note the instance |e| = |e|+ |e| of (4.3) for each idempotent element

e of S.

Example 4.6. Consider the symmetric group Sn = X! on the set X = { 0, . . . , n− 1 }
of finite cardinality n. It becomes a supergroup Sn = An ⊎ An(0 1). The even subgroup

is the alternating group An.
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4.3. Superquasigroups. In §2.2, it was noted that a quasigroup Q may be defined as

a set carrying three compatible magma structures: multiplication (Q, ·), right division

(Q, /), and left division (Q, \). In particular, a group is Boolean (i.e., elementary abelian

of exponent 2) if and only if all three of these magma structures coincide.

Definition 4.7. (a) A superquasigroup Q is a set Q carrying a superset structure whose

parity function

pQ : Q → Z/2;x 7→ |x|

is a quasigroup homomorphism from Q to the Boolean group (Z/2,+). In particular, the

domain Q of the quasigroup homomorphism pQ is a quasigroup.

(b) A superloop is a superquasigroup which is a loop.

Within the context of Definition 4.7, Lemma 4.5 has two immediate consequences.

Lemma 4.8. (a) The identity of a superloop is even.

(b) An idempotent superquasigroup has no odd elements.

4.4. Superfunctions between supersets.

Definition 4.9. Suppose that f : T → T ′; t 7→ tf is a function from (the underlying set

of) a superset T to (the underlying set of) a superset T ′. Its graph Gr f = { (t, tf ) | t ∈ T }
is (the underlying set of) a supersubset of the superproduct T ×̂T ′ of T with T ′.

(a) The even part f0 of f is the function f0 : T → T ′ with graph Gr f0 =
(
Gr f

)
0
.

(b) The odd part f1 of f is the function f1 : T → T ′ with graph Gr f1 =
(
Gr f

)
1
.

(c) The decomposition of (the graph of) f into the disjoint parts

f0|T0 : T0 → T ′
0 ; f0|T1 : T1 → T ′

1 ; (4.4)

f1|T0
: T0 → T ′

1 ; f1|T1
: T1 → T ′

0 (4.5)

makes f a superfunction.

(d) The function f is even if Gr f1 is empty.

(e) The function f is odd if Gr f0 is empty.

4.5. Multiplication supergroups. The multiplication group of (the underlying quasi-

group of) a superquasigroup becomes a supergroup.

Lemma 4.10. Suppose that Q = Q0 ⊎Q1 is a superquasigroup.

(a) If q is an element of Q0, then R(q) : Q → Q and L(q) : Q → Q are even functions.

(b) If q is an element of Q1, then R(q) : Q → Q and L(q) : Q → Q are odd functions.

(c) The set {R(q), L(q) | q ∈ Q } has a decomposition

{R(q), L(q) | q ∈ Q } = {R(q), L(q) | q ∈ Q0 } ⊎ {R(q), L(q) | q ∈ Q1 }

as a superset.

Proof. (a) Suppose that q is even. Consider an element x of Q.

(i) If x is even, then xq and qx are even. Thus

R(q) : Q0 → Q0 and L(q) : Q0 → Q0 .
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(ii) If x is odd, then xq and qx are odd. Thus

R(q) : Q1 → Q1 and L(q) : Q1 → Q1 .

By comparison with (4.4) from Definition 4.9, it is then apparent that R(q) and L(q) are

even functions.

(b) Suppose that q is odd. Consider an element x of Q.

(i) If x is even, then xq and qx are odd. Thus

R(q) : Q0 → Q1 and L(q) : Q0 → Q1 .

(ii) If x is odd, then xq and qx are even. Thus

R(q) : Q1 → Q0 and L(q) : Q1 → Q0 .

By comparison with (4.5) from Definition 4.9, it is then apparent that R(q) and L(q) are

odd functions.

(c) now follows from (a) and (b).

Theorem 4.11. Suppose that Q = Q0 ⊎ Q1 is a superquasigroup. The multiplication

group MltQ of the quasigroup Q becomes a supergroup

MLTQ = (MLTQ)0 ⊎ (MLTQ)1 (4.6)

in which (MLTQ)0 is the set of even functions in MltQ, while (MLTQ)1 is the set of

odd functions in MltQ.

Proof. It must be shown that the sets occuring in the decomposition (4.6) account for

all the elements of the multiplication group. In other words, for each function

f : (Q0 ⊎Q1) → (Q0 ⊎Q1)

in the multiplication group, either Gr f0 is empty or Gr f1 is empty. If Q1 is empty, then

f |Q0
: Q0 → Q0 from (4.4) is the only option, so MltQ = (MLTQ)0 and the matter is

settled.

Otherwise, suppose that the parity homomorphism p : Q → (Z/2,+) is surjective.

Then by the results of [10, §2.2], there is a well-defined surjective homomorphism

Mlt p : MltQ → Mlt (Z/2,+) ∼= (Z/2,+)

of groups, extending the surjective parity map

{R(q), L(q) | q ∈ Q } → Z/2;R(q) 7→ |q|, L(q) 7→ |q|

of the superset

{R(q), L(q) | q ∈ Q } = {R(q), L(q) | q ∈ Q0 } ⊎ {R(q), L(q) | q ∈ Q1 }

from Lemma 4.10(c) [10, (2.12)]. Thus (MLTQ)r = (Mlt p)
−1 { r } for r ∈ Z/2, verifying

(4.6) in this case.

Definition 4.12. If Q is a superquasigroup, the supergroup MLTQ of Theorem 4.11

will be described as the multipication supergroup of the superquasigroup Q.
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Remark 4.13. Suppose that Q is a superquasigroup of finite order. By Definition 2.12,

the multiplication group of Q is a group of permutations of the set Q. It is important

to note that the parity of an element of the multiplication supergroup MLTQ does not

have to match its parity as a permutation (even or odd in the usual sense) according to

Example 4.6. For instance, the even permutation (5.7) below is an odd element of the

multiplication supergroup in which it appears.

5. The quatedral loop and its multiplication group.

5.1. The quatedral (super)loop.

Definition 5.1. The quatedral (super)loop S is the loop given by the multiplication

table
S 1 i −1 −i e ie −e −ie

1 1 i −1 −i e ie −e −ie

i i −1 −i 1 ie e −ie −e

−1 −1 −i 1 i −e −ie e ie

−i −i 1 i −1 −ie −e ie e

e e ie −e −ie 1 −i −1 i

ie ie −e −ie e −i −1 i 1

−e −e −ie e ie −1 i 1 −i

−ie −ie e ie −e i 1 −i −1

. (5.1)

Its decomposition as a superloop is { 1, i,−1,−i } ⊎ { e, ie,−e,−ie }.

The loop is not commutative, since in the table (5.1), we have

(ie)i = −e ̸= e = i(ie) .

The loop is not associative, since no nonabelian group of order 8 has 4 elements of order

4. More directly, we have

[e(ie)]i = [−i]i = 1 ̸= −1 = e[−e] = e[(ie)i]

to break the associative law.

The quatedral loop is listed as NilpotentLoop(8,116) in the LOOPS package [9] of

GAP [3]: compare Theorem 5.4(b) below. We have

1 7→ 1 , 2 7→ e , 3 7→ i , 4 7→ ie , 5 7→ −1 , 6 7→ −e , 7 7→ −i , 8 7→ −ie

as the assignment of elements from the representation in GAP [12].

5.2. Properties of the quatedral loop. Recall that the inner mapping group of a

loop is the stabilizer of its identity element within its multiplication group.

Proposition 5.2. In the quatedral loop S with multiplication table (5.1), the subgroup

⟨(i − i), (ie − ie), (e − e)⟩S! (5.2)

of S! generated by the given transpositions is the inner multiplication group InnS.
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Proof. Using the notation of [1, IV.1(1.5)],[10, §2.8], we have

T (i) = R(i)L(i)−1 = (ie − ie) ,

T (ie) = R(ie)L(ie)−1 = (i − i) , and

R(i, ie) = R(i)R(ie)R
(
i(ie)

)−1
= R(i)R(ie)R(e)−1

= (e − e)(i − i)(ie − ie) .

Other inner mappings lie within the displayed group (5.2).

Corollary 5.3. The multiplication group of the quatedral loop S has order 64.

Proof. The group (5.2), the stabilizer of 1 in the loop multiplication group, has order 8.

Since the full multiplication group acts transitively on the loop of order 8, it has order

8× 8 = 64.

Theorem 5.4. [5, Th. 4.22] Consider the quatedral loop S along with its multiplication

table (5.1).

(a) The (Hasse diagram of the) subloop lattice is

S

⟨i⟩

::uuuuuuuuuu

⟨ie⟩

OO

⟨−1⟩ × ⟨e⟩

eeJJJJJJJJJJJ

⟨−1⟩

OO ::uuuuuuuuu

ddIIIIIIIII

⟨−e⟩

OO

⟨e⟩

ccGGGGGGGGGG

⟨1⟩

OO ;;wwwwwwwwwww

ddJJJJJJJJJJ

(where the normal subloops are boxed). In particular, each proper subloop is a group.

(b) The quatedral loop S is nilpotent of class 2, with coincident derived loop and center

Z(S) = ⟨−1⟩.
(c) The central quotient S/Z(S) of the loop is the Boolean group C2

2 of order 4.

(d) The loop is power-associative, but not di-associative.

(e) The loop does not have the right or left inverse property. In particular, it does not

have the right or left Bol property.

5.3. Conjugacy classes of the quatedral loop. Recall that the (loop) conjugacy

classes of a loop are the orbits of its inner mapping group.

Proposition 5.5. The list

Γ1 = { 1 } ,Γ2 = {−1 } ,Γ3 = {±e } ,Γ4 = {±i } ,Γ5 = {±ie } (5.3)

displays the loop conjugacy classes of the quatedral loop.



12 JONATHAN D. H. SMITH

Proof. This result is an immediate consequence of Proposition 5.2.

Now, recall that A-loops are loops where each inner mapping is an automorphism.

Certainly, groups are A-loops. On the other hand, we have the following.

Lemma 5.6. The quatedral loop is not an A-loop.

Proof. Note [i(ie)]η = eη = −e ̸= e = i(ie) = iη(ie)η for the inner mapping η = (e e).

The following definitions extend the usual group definitions [6, p.263]. They become

more subtle for loops which are not A-loops.

Definition 5.7. Consider a finite, power-associative loop Q.

(a) An element x of Q is real if it is conjugate to its inverse x−1.

(b) A conjugacy class of Q is real if each of its elements is real.

Lemma 5.8. In the context of Definition 5.7, each element x of order 2 in Q is real.

Each conjugacy class of the quaternion group Q8 and dihedral group D4 is real.

Thus, the following proposition displays a further analogy between these groups and the

quatedral loop.

Proposition 5.9. Each conjugacy class of the quatedral loop S is real.

Proof. Each non-identity element of the quatedral loop has order 2 or 4. In the first case,

the reality is an immediate consequence of Lemma 5.8. In the second case, it may be

observed from the multiplication table (5.1) that the inverse of each element x of order

4 is −x. The relevant conjugacy classes from (5.3), namely Γ3 and Γ4, are then both of

the required form {±x }.

Remark 5.10. In the combinatorial character theory of quasigroups [7], [10, Ch. 6], a

more general version of conjugacy class “reality” is available. The quasigroup conjugacy

classes of a finite quasigroup Q with multiplication group G are the orbits of G in its

diagonal action on the direct square Q × Q of Q. An element x of a loop with identity

element 1 may then be described as real if the pairs (1, x) and (x, 1) lie in the same

quasigroup conjugacy class. If Q is a finite power-associative loop, this condition holds

for an element x of Q that is real in the sense of Definition 5.7. Indeed, if xα = x−1 for

some α ∈ InnQ, then (1, x)αR(x) = (1, x−1)R(x) = (x, 1).

5.4. Character table of the quatedral loop.

Theorem 5.11. [5, Th. 4.23] The character table of the quatedral loop coincides with the

character table of the dihedral and quaternion groups.

Proof. By Theorem 5.4(b)(c), the abelianization of the loop S of order 8 is the Boolean

group C2
2 , which is also the abelianization of Q8 and D4. Thus, each of these three loops

has 4 linear characters, leaving room for just one non-linear character, of dimension 2.

The loop conjugacy class decomposition (5.5) of the quatedral loop exactly matches

the conjugacy class decompositions of the groups Q8 and D4. By [8, Th. 5.2] or [10,

Th. 7.10], it then follows that all three loops have the same character table.
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The common character table of D4, Q8 and S is

Γ1 Γ2 Γ3 Γ4 Γ5

λ0 1 1 1 1 1

λ1 1 1 −1 1 −1

λ2 1 1 1 −1 −1

λ3 1 1 −1 −1 1

ρ 2 −2 0 0 0

The distinction between the dihedral and quaternion groups emerges when one computes

the Frobenius-Schur indicator

ιρ =
1

8

∑
x∈G

ρ
(
x2

)
of the nonlinear character ρ [6, §23].

For the quaternion group, we have

ιρ =
1

8

{ 1︷︸︸︷
2 +

−1︷︸︸︷
2 +

other order 2︷ ︸︸ ︷
0× 2 +

order 4︷ ︸︸ ︷
6× (−2)

}
=

1

8
{2 + 2− 12} = −1 , (5.4)

reflecting the faithful (one-dimensional) representation Q8 ↪→ H of Q8 over the division

ring H of quaternions.

For the dihedral group, we have

ιρ =
1

8

{ 1︷︸︸︷
2 +

z︷︸︸︷
2 +

other order 2︷ ︸︸ ︷
4× 2 +

order 4︷ ︸︸ ︷
2× (−2)

}
=

1

8
{2 + 2 + 8− 4} = 1 (5.5)

with the central involution z, reflecting the faithful real representation of the group D4

by symmetries of the square convex hull of {±(1, 0),±(0, 1) }.
Now, for the quatedral loop, with the conjugacy class decomposition as given in the

proof of Theorem 5.11, we have

ιρ =
1

8

{ 1︷︸︸︷
2 +

−1︷︸︸︷
2 +

other order 2︷ ︸︸ ︷
2× 2 +

order 4︷ ︸︸ ︷
4× (−2)

}
=

1

8
{2 + 2 + 4− 8} = 0 , (5.6)

interpolating exactly between the two values (5.4), (5.5) of ιρ for the groups. At the time

of writing, there is no meaningful interpretation of this computation within the known

theory of linear loop and quasigroup representations extending the theory of linear group

representations, as presented, say, in [10, Chs. 10–12].

5.5. The multiplication group.

Theorem 5.12. Consider the quatedral loop S as a loop and superloop.

(a) The even part (MLTS)0 of the multiplication supergroup of the quatedral (super)loop

is C2
2 ≀ C2.

(b) The full multiplication group MltS of S is C2 ≀ C2
2 .
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Proof. (a) Inspection of the multiplication table (5.1) reveals that the multiplication

supergroup has

L(−1) = (1 − 1)(i − i)(e − e)(ie − ie)

as an even element. From Proposition 5.2, it follows that

⟨(1 − 1), (i − i), (ie − ie), (e − e)⟩S!
∼= C4

2

is a subgroup of the even part of MLTS. By Corollary 5.3, we have
∣∣(MLTS)0

∣∣ = 32.

Amongst the groups of order 32, with a faithful transitive permutation representation of

degree 8, containing C4
2 as a subgroup, the only example is C2

2 ≀ C2 [2].

(b) The even subgroup C2
2 ≀ C2 of MLTS has 19 involutions [2], and is contained as a

subgroup of index 2 in MltS. Now MltS is a group of order 64, with a faithful transitive

permutation representation of degree 8, containing C2
2 ≀C2 as a subgroup. The only groups

with these properties are C2
2 ≀ C4 and C2 ≀ C2

2 , the former only containing 19 involutions

[2]. In other words, C2
2 ≀ C4 would have no room for any odd involutions. Thus, since

MLTS does contain the odd involution

T (i)R(e) = (ie − ie)(1 e)(−1 − e)(i ie − i − ie)

= (1 e)(−1 − e)(i ie)(−i − ie) , (5.7)

the only possibility for MltS is C2 ≀ C2
2 .

In order to give a concrete interpretation of Theorem 5.12(b), along the lines of the

identification of Mlt
(
Z/4,−

)
with the wreath product C2 ≀C2 in Section 3.2, we implement

C2 and C2
2 as the groups

C2 1 −1

1 1 −1

−1 −1 1

and

C2
2 1 i e ie

1 1 i e ie

i 1 1 ie e

e e ie 1 i

ie ie e i 1

in their regular representations. For x ∈ C2
2 , we interpret the element ±x of S as (±1, x)

in the state space C2×C2
2 of the wreath product. The form ⟨1s, is, es, (ie)s⟩ will be used to

describe a function s : C2
2 → C2. We then have the implementations of the five members
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of a generating set of MltS as follows:

R(i) =
(
(1, 1) (1 i) (−1, 1) (−1, i)

)(
(1, e) (1 ie) (−1, e) (−1, ie)

)
=

(
⟨1,−1, 1,−1⟩ , i

)
;

L(i) =
(
(1, 1) (1 i) (−1, 1) (−1, i)

)(
(1, e) (1 ie)

)(
(−1, e) (−1, ie)

)
=

(
⟨1,−1, 1, 1⟩ , i

)
;

R(e) =
(
(1, 1) (1, e)

)(
(−1, 1) (−1, e)

)(
(1, i) (1 ie) (−1, i) (−1, ie)

)
=

(
⟨1, 1, 1,−1⟩ , e

)
;

R(ie) =
(
(1, 1) (1 ie) (−1, 1) (−1,−ie)

)(
(1, e) (−1 i) (−1, e) (1, i)

)
=

(
⟨1, 1,−1,−1⟩ , ie

)
;

L(ie) =
(
(1, 1) (1 ie) (−1, 1) (−1,−ie)

)(
(1, e) (−1 i)

)(
(−1, e) (1, i)

)
=

(
⟨1,−1,−1,−1⟩ , ie

)
,

noting R(e) = L(e).
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[12] P. Vojtěchovský, private communication.


	Introduction
	Plan of the paper

	Quasigroups and loops
	Magmas and combinatorial quasigroups
	Equational quasigroups and loops
	Multiplication groups

	Wreath products
	The wreath product of monoid actions
	The dihedral group of degree 4

	Superquasigroups
	Supersets and parity
	Supermagmas and supergroups
	Superquasigroups
	Superfunctions between supersets
	Multiplication supergroups

	The quatedral loop and its multiplication group
	The quatedral (super)loop
	Properties of the quatedral loop
	Conjugacy classes of the quatedral loop
	Character table of the quatedral loop
	The multiplication group


