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Abstract
Smith, J.D.H., Quasigroups and quandles, Discrete Mzthematics 109 (1992) 277-282.

Two connexions between quasigroups and quandles are established. In one direction, Joyce’s
homogeneous quandle construction is shown to yield a quasigroup isotopic to the loop
constructed by Scimemi on the set of ¢-commutators of a group automorphism ¢. In the other
direction, the universal multiplication group construction of quasigroup theory is extended to
quandles. The group of a knot becomes the universal right multiplication group of the knot
quandle.

0. Introduction

A quasigroup (Q, -) is a set Q equipped with a binary multiplication - such
that. in the equation

x-y=z, 0.1)

knowledge of any two of x, y, z specifies the third uniquely. It follows that for
each element x of Q, the right multiplication

R(x):Q—Q;y—>y x 0.2)
and left midtiplication
L(x):Q—Q;y—x-y (0.3)

are permutations of Q. From the standpoint of universal algebra, the definition
(0.1) is rather awkward, since it (implicitly) involves quantifiers. An equivalent
[8, p. 117] definition of a quasigroup (Q, -, /,\) may be given as a set O equipped
with three binary operations, namely multiplication, right division, and left
division respectively, such that the identities

(ER): (x/y)-y=x,
(UR): (x-y)ly=x
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(EL): x - (x\y) =y,
(UL): x\(x-y)=y
are satisfied. Note that identity (ER) expresses the surjectivity of the right
multlpllcatlon R(y): 0 — O, while (UR) expresses its injectivity.
set
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namely multiplication and right division, such that the identities (0.4) are
satisfied. Thus each right multiplication (0.2) is a permutation of Q. If each right
multiplication is also an automorphism of the algebra (Q, -, /), then the right
quasigroup (Q, -, /) is said to be rigat distributive. Note that automorphisms of

(0.5)
\V-C)

erationc
ratoens,

(0, -) are automatically automorphisms of (0, /).
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A right quasigroup is said to be tdempotent if each singleton in Q is a
subalgebra of (Q, -), and hence also a subalgebra of (0, -, /). In [3], idempotent
right distributive right quasigroups were defined dlrectly and studied under the

name quandies. The purpose of the curreni paper is to emphasize the point of
view that quandles are right quasigroups. The connections and analogies betwen
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quasigroups and quandles are used in two directions.

In the first part, Joyce’s representation of quandles as coset classes [3, §7] is
used to shed new iight on a construction of Scimemi [6] which in turn arose from
Glauberman's work [2] on the solubility of certain loops of odd order and
Lazard’s relationship [5] between Lie rings and nilpotent groups. In the second
pait, a standard construction from quasigroup theory, the universal multiplication
group [8, Section 2.4), is carried over to quandle theory in order to give a
concrete interpretation to a group that Joyce defined abstractly {3, §6] in terms of

ganaratare and ralatinne Thic intarnrciatinn tichteane the rala
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knot groups and knot quandles that was part of the original motivation for
studying quandles.

1. Commutators of autemorphisms

Let @ be an automorphism of a group G. For an element x in G, the
commutator [@, x1 denotes the element o{x  Yx of G. {The not A racnonds
SuUkiniiulawvl l(}l, Jl.] uuuuu,a I.llC blClllblll !’/\A }A Ul \ pLuC llUlal.lUll bU IDDPUIIUD

to the usual group commutator of @ and x in the holomorph of G.) Set
[@. G]1={[@. x]| x € G}. If G is of prime power order coprime to the order of ¢
[6, Theorem 1], or if - is an involution and square roots may be extracted in G

a3

{6, 83], Scimemi defines a loop (j@, G}, °) by
xy € C(@)(xey). (.1)

ricic Tg{@) is the fiacd puiai set of @. Recail that a Ioop is a quasmroup with an
idos tity slomont o0 ciich that Dl — 7 (.Y — 1 C,...-..n..,. P T T an ane of tho

EACTTETEL Yy CiCinITIEE © DSuvia tllal n\c) = L\C} = 1. JCIMCcii a \,uuauuuuuu lD Onic O1 I,IIC
basic components of an extremely interesting programme examining relationships
between the Feit~Thompson Theorem, the Burnside Problem, and Baker—

Campbell-Hausdorff formulae.
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On the other hand, if @ is again an automorphism of a group G, then Joyce
12 871 Anfinac a nanandla (7 1\ ke
lJ, sll uviuivo a quauuu— \U, » l} Uy
x-y =)oyl
—lzs_\r_ —1 (1.2)
xly=@  (xX)le”, ¥y}
If H is a subgroup of C;(@), then x — Hx induces a quandle structure on the set
H\G of right cosets of H in G. This q‘ua“ldie {H\G; @) is homogeneous, in the
sense that its automorphism group is transitive. Each homogeneous quandle is
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constructed in this way [3, Theorem 7.1].
The main result of this section, Theorem 1, gives a general condition on a

group automorphlsm under which Scimemi’s construction works. In the same

context JbeCD construction builds a quauunc which is actuaiiy a quaSigroup.

Then Scimemi’s loop and Joyce’s quasigroup are principally is otopic. Recall that

a principal isotopy (a, B):(A, -)— (A, °) between two binary multiplication
structures (A, -) and (A4, °) on a set A is a pair (a, B) of bijections of A such that

a(x)°B(y)=x-y (1.3)
for all x, y in A.

Theorem 1. Let @ be an automorphism of a group G such that Cs(@) is finite and
has [@, G] as a right transversal. Then

xy € Co(@)(xoy) (1.4)
defines a loop ([@, G}, ), while
oo, vle Ca(o)x - v) (1.5)
TNT/LT? /1 UNT /V v AS 7
Al eene o ssondat Aicsushhestines mrsrroseyszs £l v M1 N\ mssmrnsemallsy fontnmin tn tho Tane
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Proof. The bijection [@, G]— Co(@)\G; x+— Cs(@)x yields an isomorphism of
(lg, G], -) with the homogeneous quandle (Cs(@)\G; @). Since [@, G] is a right
transversal to CG((p), it follows that the left multiplication L(1): Co(tp)—> Co(@);
y '—rlq/, _y] is lllJCbllVC, and thus b unjcuuvc u_y the finiteness of C \,(-\v.y;

Since the quandle is homogeneous, all its left multiplications (P.3) then have to

be invertible, and the quandle becomes a quasigroup ([¢, G}, -). By (1.4) and

(1.5), one has @(x)°[@, y]=x-y. Thus (@, L(1)):([®, G], )= ([¢, G],°) is a
principal isotopy. As a principal isotope of the quasigroup (@, Gj, -), the omary

multinbicatinn ([ (71 n\ itself b
v
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identity element. O

Remark 1.1. A notable instance of Theorem 1 is obtained on iaking G iv be iic
multiplication group (as below) of a finite commutative Moufang loop of
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exponent 3, and @ to be conjugation (within the permutation group o
undefi’y’ir‘ set of th
x—x""! of the commutative Moufang loop. Then (1.4) recovers the commutative
Moufang loop, while (1 S) yields the totally syrnmetric distributive quasigroup
associated with a Hall triple system. See [1} and [7].

S S . P ane) ey, ¢l P T RGN
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2. Knot groups and quandies

For a quasigroup Q, the subgrcup (R(x). L(x)|x € Q) of the permutation
group Q! of the set O generated by all the right and left multiplications (0.2),

(0.3) is called the (combinatorial) multiplication group G = Mit Q of Q [8, Section
21). If Q is a subquasigroup of a quasigroup P, then the subgroup
{Rp(x), Lp(x) | x € Q) of the permutation group P! of the set P generated by all
the relative right and left muitiplications Rp{(x): P— P; y—yx and Lp(x):P— P;

v xy for x restricted to Q is called the relative mulnnhr'nnnn group Mlt.. O of O

way AL & SRSITINANRS RN a3 LQIC0 133¢ FERQREY saegsraliseslns V&7 V2ip X Oy X

in P. Finiliy, if Q lies in a variety V of quasigroups. O may be identified with its
image in the coproduc. Q[X] of Q with the free V-quasigroup (X ) on a singleton
‘indeterminate’ X. Then th mversal multzphcanon group G= U(O V) of Q m

7. A O3 s L s}_
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One usually writes !?Lt:) fi

muitiplication group piays an lmportan role in the representatlon thecery of
quasigroups [8, Chapter 3]. Moreover, the assignment of universal multiplication
groups gives a functor from the category V of ¥-quasigroups and homomorph-

Icneg tha pratagary of orciing vhaorane tha accigrmant e lalo

DD I.U lllb \.au,s\ny Oi prouuapo, wiicrcas l.ll\. AdIDIEIIIICII Uf CUIIIUIIlalUlin
multiplication groups does not. The mappings R(x)— Rp(x) and L(x)~ Lp(x)
induce a homomorphism from G onto any relative multiplication group of Q in a
V-quasigroup P, in particular onto the combinatorial multiplication group G.
Thus the composite homomorphism G — G— Q! gives a naturai permutation

renrecentation of G on 0O

representation of G on 0.

For a quandle Q, the right multiplications are permutations, so one may
analogously define the right multiplication group G = RMlt Q of Q to be the
subgroup (R(x)|xe Q) of Q! Joyce [3,85] called thic group the ‘inner
automorphism group’ of A. Exteading the analogy, one may define a relative right

muitiplication group R Mlt;. OQ for QO a subquandle of P, and then a universal right

Fritales el Ll of UL &% Il p Le S Lol 8 v CAIZU AL AX & wsand 1oGi 1igiie

multiplication group G = RU(Q; W) for a quandle Q in a variety W of quandles.
The argument of [8, Sectior 2.3] carries over to show that Q embeds in the
correspondmo coproduct Q[X ] Let K denote the variety of all quandles

\ TL. e

.
)
1,

=

this section, Theorem 2 beicw, identifies
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Theorem 2. Let Q be a quandle. Let A be the group generated by the set
{d | q € Q} subject to the relations

g r=F"'Gr 2.1

for q.r in Q. Then the mappings §— R(q) induce an isomorphism of A with
RU(Q; K).

Proof. For x in Q[X], one has (x-r)R(g-r)=(x-r)-(q-r)=(x-q)-r=
(x-r)R(r)"'R(q}R(r). Thus RU(Q:;K) is an image of the group A via the
mappings §+— R(q). Conversely, it will be shown that the group A in turn is a
homomorphic image of RU(Q; K) under R(q)-—wi. showing that the groups are
in fact isomorphic as claimed.

For a group H, let Hl =(H, -, /) denote the quandle on H with x -y =y~ 'xy
and x/y=yxy~'. (Joyce [3, Definition 1.2] writes ‘ConjH" for HJ.) The
mappings g — ¢ for ¢ in Q induce a quandle homo:morphism n:Q0— A/ |3, §6].
Applying the universal right multiplication group functor yields a group
homomorphism

RU(n;K):RU(Q; K)— RU(AJ; K) 2.2)
mapping R(q) to R(G) for q in Q. Now let C denote the free product (or
coproduct in the category of groups and homomorphisms) of A with the free
group ZX on the singleton {X}. The group A embeds into C, so the quandie AJ
embeds into CJ. The relative right multiplication group M Mit., AJ is a quotient
of RU(AJ; K) via R(a)— Ry(a) for a in A. Since Ry(ab) = R¢(a)R4(b) for a,
b in A, the group R Mli, AJ is generated by {R(7) | g € @}. Thus R Mit, AJ
is a quotient of U(Q:;K) via the composite of RU(7n; K) with RU(AJ; K)—
R Mit, AJ. It remains to be shown that A is isomorphic to R Mlt.; AJ, via the
surjective group homomorphism

Re:*A— RMlt; AJ; av— Rey(a). (2.3)
But if Rc,(a)=1 for a in A, then a~'Xa = XR,(a) =X e ZX Na~'ZXa. By the
structure of free products of groups [4, Corollary 4.1.5 and Lemma 4.1} it follows
that aeANZX ={1}. Thus (2.3) is an isomorphism. The composite
RU(Q; K)— RU(AJ; K)— R Mlt; A]— A maps R(q)— R(3)— Rc(§)—§, as
required. [

Joyce [3, §14] associates a quandle Q(K) to a knot K. It is a complete invariant
for tame knots [3, Corollary 16.3].

Corollary 2.1. For a knot K embedded tamely in the 3-sphere S*, the knot group
m,(S* — K) is isomorphic to the universal right multiplication group RU(Q(K); K)
of the knot quandle.

Proof. For Q =Q(K) in Theorem 2, the knot group is isomorphic to A
[3,815). O
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