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Abstract 

Smith, J.D.H., Quasigroups and quandles, Discrete Mathematics 109 (1992) 277-282. 

Two connexions between quasigroups and quandles are established. In one direction, Joyce’s 
homogeneous quandle construction is shown to yield a quasigroup isotopic to the loop 
constructed by Scimemi on the set of @-commutators of a group automorphism @ In the other 
direction, the universal multiplication group construction of quasigroup theory is extended to 
quandles. The group of a knot becomes the universal right multiplication group of the knot 
quandle. 

0. Introduction 

A q~~~igr~~~p (Q, -) is a set Q equipped with a binary multiplication - such 
that. in the equation 

x-y=%, (0. I) 

knowledge of any two of x, y, z specifies the third uniquely. It follows that for 
each element x of Q, the right multiplication 

R(x):Q-+Q;y-y-x (O-2) 

and left mi.dtiplicatioYt 

L(x):Q+Q;y-x-y (0.3) 

are permutations of Q. From the standpoint of universal algebra, the definition 
(0.1) is rather awkward, since it (implicitly) involves quantifiers. An equivalent 
[8, p. 1171 definition of a quasigroup (QP -, /, \) may be given as a set Q equipped 
with three binary operations, namely muftipiication, right division, and left 
division respectively, such that the identities 

(ER): (x/y) - y = x, 

(UR): (x - y)/y =x 
(0.4) 
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and 
(EL): x l (x\y) = y, 

(UL): x\(x l y) =y 
(0.5) 

are satisfied. Note that identity (El?) expresses the surjectivity of the right 
multiplication R(y) : Q + Q, while (UR) expresses its injectivity. 

A right quasigroup (Q, l , I) is a set Q equipped with two binary operations, 
namely multiplication and right division, such that the identities (0.4) are 
satisfied. Thus each right multiplication (0.2) is a permutation of Q. If each right 
multiplication is also an automorphism of the algebra (Q, ., /), then the right 

quasigroup (Q, 0, /) is said to be right distributive. Note that automorphisms of 
(Q, 0) are automatically automorphisms of (Q, /). 

A right quasigroup is said to be idempotent if each singleton in Q is a 
subalgebra of (Q, l ), and hence also a subalgebra of ((2, a, /). In [3], idempotent 
right distributive right quasigroups were defined directly and studied under the 
name quandles. The purpose of the current paper is to emphasS<e the point of 
view that quandles are right quasigroups. The connections and analogies betwen 
quasigroups and quandles are used in two directions. 

In the first part, Joyce’s representation of quandles as coset classes [3, $71 is 
used to shed new light on a construction of Scimemi [6] which in turn arose from 
Strruberman’s work [2] on the solubility of certain loops of odd order and 
Lazard’s relationship [5] between Lie rings and nilpotent groups. In the second 
pai t, a standard construction from quasigroup theory, the universal multiplication 
group [8, Se&ion 2.41, is carried over to quandle theory in order to give a 
concrete interpretation to a group that Joyce defined abstractiy ]3, $61 in terms of 
generators and relations. This interpretation tightens the relationship between 
knot groups and knot quandles that was part of the original motivation for 
studying quandles. 

1. commuiators of au~omorphi!5ms 

Let q be an automorphism of a group G. For an element x in G, the 
commutator [cp, x] denotes the element ~(x-‘)x of G. (The notation coTresponds 
to the usual group commutator of Q, and x in the holomorph ot G.) Set 

]% Gl= {[9T 1 I x x E G}. If G is of prime power order coprime to the order of pi 
(6, Theorem 11, or if is an involution and square roots may be extracted in G 
[6, $31, Scimemi defines a loop ([cp, G], 0) by 

XY E GAo)(x "Y ). (l-1) 
;it=,e. *‘7,,-(y) ib hh c IcyA~~ y”;“; set ot CjT. ~:ecs:t &at a loop is a quasigroup with an 
ide@v element e such that R(e) = L(e) = 1. Scimemi’s construction is one of the 
basic components of an extremely interesting programme examining relationships 
between the Feit-Thompson Theorem, the Burnside Problem, and Baker- 
Campbell-Hausdorff formulae. 
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On the other hand, if q is again an automorphism of a group G, then Joyce 

[3, $71 defines a quandle (G, 0, /) by 

If H is a subgroup of C,(q), then x H Hx induces a quandle structure on the set 
H\G of right cosets of H in G. This quandle (H\G; q) is homogeneous, in the 
sense that its rcltomorphism group is transitive. Each homogeneous quandle is 
constructed in this way [3,Theorem 7.11. 

The main result of this section, Theorem 1, gives a general condition on a 
group automorphism under which Scimemi’s construction works. In the same 
context Joyce’s construction builds a quandle which is actually a quasigroup. 
Then Scimemi’s loop and Joyce’s quasigroup are principally isotopic. Recall that 
a principal isofopy (a, 6) : (A, a)-, (A, 0) between two binary multiplication 
structures (A, 0) and (A, 0) on a set A is a pair ( CV, p) of bijections of A such that 

for all x, y in A. 

Theorem 1. Let cp be an n _uto,morphism of a group G such that Cc(~) is finite and 
has [q,, G] as a right transversal. Then 

XY E C&)(XOYJ (1.4) 

defines a loop ([ cp, G], o), while 

QWk Yl E CcW(x - Y) (I-5) 

defines a right distributive quasigroup ([go, G], -) principally isotopic to the loop 

(1% Cl, O)- 

Proof. The bijection [q, G]- C&)/G; x I+ Cc;( Q~)X yields an isomorphism of 
([cp, G], -) with th e h omogeneous quandle (C,&)\G; 9). Since [q, G] is a right 
transversal to C,(q), it follows that the left multiplication L(1) : C,(q)* C,(q); 
y - [cp, y] is injective, and thus bijective by the finiteness of C,(q). 

Since the quandle is homogeneous, all its left multiplications (0.3) then have to 
be invertible, and the quandle becomes a quasigroup ([cp, G], -). By (1.4) and 

(1.5) one has &)o[Q),Y] =X my. Thus (q, L(1)): ([q, G], -)-, ([q G], 01 is a 
principal isotopy. As a principal isotope of the quasigroup ([q, G], m), the binary 
multiplication ([q, G], 0) itself becomes a quasigroup, and indeed a loop with 1 as 
identity element. Cl 

Remark 1.1. A notable instance of Theorem 1 is obtained on caking G to be iilt 

multiplication group (as below) of a finite commutative Moufang loop of 



exponent 3, and QD to be conjugation (within the permutation group of the 
underlying set of the commutative Moufang loop) by the inversion mapping 

X@-?x+ of the commutative Moufang loop. Then (1.4) recovers the commutative 
%loufang loop, while (1.5) yields the totally symmetric distributive quasigroup 
associated with a Hall triple system. See [l] and [7]. 

For a quasigroup Q, the subgroup (R(x). L(x) 1 x E Q) of the permutation 
group Q? of the set Q generated by all the right and left multiplications (O-2), 
(0.3) is called the (combinatorial) multiplication group G = Mlt Q of Q (8, Section 
2.1). lf Q is a subquasigroup of a quasigroup P, then the subgroup 
(&(x). t&) 1 x E Q) of the permutation group P! of the set P generated by all 
the relative right and left multiplications R&) : Pd P; y ‘-*y-r and LP(x) : P ---, P; 
v -xy for x restricted to Q is called the relative multiplication group Mlt, Q of Q 
in P_ Finiliy, if Q lies in a variety V of quasigroups. Q may be identified with its 
image in the coproducr Q[X] of Q with the free V-quasigroup (X ) on a singleton 
‘indeterminate* X. Then the universal mdtiplicatim group e = U[Q; V) of Q iI1 
Vis defined to be the relative multiplication group of Q in Q[X] [8, Section 2.31. 

One usually writes R(x) for R vI_ul(x), and similarly L(x). The universal 
muitiplication group piays an important role in the representation theory of 
quasigroups (8, Chapter 31. Moreover, the assignment of universal multiplication 
groups gives a functor from the category V of V-quasigroups and homomorph- 
isms to the category of groups. whereas the assignment of combinatorial 
multiplication groups does not. The mappings I?(x) * Rp(x) and t(x) H LP(x) 
induce a homomorphism from c onto any relative multiplication group of Q in a 
V-quasigroup P, in particular onto the combinatorial multiplication group G. 
Thus the composite homomorphism G - G- Q! gives a natural permuration 
representation of c on Q. 

For a quandle Q, the right multiplications are permutations, so one may 
analogously define the right multiplication group G = R Mlt Q of Q to be the 
subgroup (R(x) 1 x E Q> of Q!. Joyce [3, $51 called thic, group the ‘inner 
automorphism group’ of A. Exterlding the analogy, one may define a relative right 
multiplication group R Mlt, Q for Q a subquandle of P, and then a universal right 
multiplication group G = RU(Q; W) f or a quandle Q in a variety W of quandles. 
The argument of [I%, Section 2.3) carries over to show that Q embeds in the 
corresponding coproduct Q[XJ. Let K denote the variety of all quandles 
(‘Kwandles’). The main result of this section, Theorem 2 beiow, identifies 
RUQ; K) as being a group that Joyce [3. $6) defined abstractly in terms of 
generators and relations. Joyce called this group ‘Adconj Q’, while Winker (9, 
Definition 5. i. I] called it ‘Tonj Q’. 



Theorem 2. Let Q be a quandle. Let A be the group getlerated by the set 
(q 1 q E Q} subject to the relations 

Fr = f-‘qF (2.1) 

for q, r irz Q. Tllen the mappitgd ? w l?(q) imke au isornorphisnl of A with 

RU(Q;K). 

Proof. For x in Q[X], one has (x l r)d(q l r) = (x . r) l (q l r) = (x - q) - r = 
(x .r)l?(r)-‘l?(q$(r). Thus RU(Q; K) is an image of the group A via the 
mappings (? -l?(q). Conversely, it will be shown that the group A in turn is a 
homomorphic image of RU(Q; K) under f?(q) wg, showing that the groups are 
in fact isomorphic as claimed. 

For a group H, let HJ = (H, a, /) denote the quandle on H with x . y = y - ‘xy 
and x/y = yxy-*. (Joyce [3, Definition 1.21 writes ‘Conj H’ for HJ.) The 
mappings q I+ q for q in Q induce a quandle homo&norphism q : Q + A.! j3, $6). 
Applying the universal right multiplication group functor yields a group 
homomorphism 

RU(~,I;K):RU(Q;K)-*RU(AJ;K) (2.2) 

mapping l?(q) to R(q) for q in Q. Now let C denote the free product (or 
coproduct in the category of groups and homomorphisms) of A with the free 
group ZX on the singleton {X}. The group A embeds into C, so the quandle AJ 
embeds into CJ. The relative right multiplication group M Mlt,, AJ is a quotient 
of RU(AJ; K) via R(a) H R,,(a) for a in A. Since R&ab) = RcY(a)RcY(b) for a, 
b in A, the group R Ml icy AJ is generated by {R,,(q) 1 q E Q}. Thus R Mit,, AJ 
is a quotient of U(Q; K) via the composite of RU(q;K) with RU(AJ;K)+ 
R Mlt,, AJ. It remains to be shown that A is isomorphic to R Mlt,, AJ, via the 
surjective group homomorphism 

Rc- -A + R Mlt,, AJ; a I+ R&a). (2.3) 

But if Rc,(a) = 1 for a in A, then a-‘Xa = XR&a) = X E HX n a-‘ZXa. By the 
structure of free products of groups [4, Corollary 4.1.5 and Lemma 4. l] it follows 
that Q E A n iiT = { 1). Thus (2.3) is an isomorphism. The composite 

RU(Q; K)+ RU(AJ; K)-+ R Mlt,, AJ + A maps I?(q) I+ I?(q) H R,,(g) I-+ g, as 

required. Cl 

Joyce [3, $141 associates a quandle Q(K) to a knot K. It is a complete invariant 
for tame knots [3, Corollary 16.31. 

Corollary 2.1. For a knot K embedded tamely in the 3-sphere S’, the knot group 
n,(S’- K) is isomorphic to the universal right multiplication group RU(Q(K); K) 
of the knot quandle. 

Proof. For Q = Q(K) in Theorem 2, the knot group is isomorphic to A 

[3, 0151. 0 
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