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Quasigroups, right quasigroups and category coverings 

T. S. R. FUAD AND J. D. H. SMITH 

Dedicated to the memory of Alan Day 

Abstract. The category of modules over a fixed quasigroup in the category of all quasigroups is 
equivalent to the category of representations of the fundamental groupoid of the Cayley diagram of the 
quasigroup in the category of abelian groups. The corresponding equivalent category of coverings, and 
the generalization to the right quasigroup case, are also described. 

O. Introduction 

The theory of quasigroup modules, or quasigroup representation theory, is 
equivalent to the representation theory of quotients of group algebras of certain 
groups associated with quasigroups; namely the stabilizers in the so-called universal 
multiplication groups (cf. [9, 336]). Fundamental groupoids originally were used as 
invariants of topological spaces. (See e.g. [1, 6.5.10]). It is also a fact that covering 
spaces of a topological space can be classified by their fundamental groupoids (see 
e.g. [ 1, w Generalizations of fundamental groupoids and coverings in the directed 
graph case are given in [4, pp. 67 and 97]. Another interpretation of quasigroup 
modules, namely as representations of the fundamental groupoid on the Cayley 
diagram [9, 213] of the quasigroup in the category of abelian groups, is given here. 
The equivalent coverings are obtained using [4, 30]. Generalizations to right 
quasigroups in the sense of [8] (compare the "right groupoids" of [3]) involve the 
path category (cf. [4, w of the Cayley diagram of the right quasigroup. 

1. Quasigroups and groupoids 

A quasigroup can be considered either as a not-necessarily finite Latin square or 
as a not-necessarily associative group (not necessarily containing an identity element). 
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DEFINITION 1.1. [9, 116]. A quasigroup Q is a set Q with three binary 
opera t ions . ,  /, and \ called respectively multiplication, right division, and left 
division such that these operations satisfy the following axioms: 

(ER):  ( x / y )  . y = x;  

(UR): ( x .  y ) / y  = x;  

(EL): x (x~v) = y; 

(UL): x \ ( x .  y)  = y. 

A right quasigroup Q is a set Q with two binary operat ions. ,  a n d / ,  satisfying 
(ER) and (UR). (The names (ER), (UR), (EL) and (UL) stand respectively for 
_Existence of a solution involving -Right division, _Uniqueness of the solution 
involving _Right division, and similarly for _Left division.) 

DEFINITION 1.2. [Cf. 5, II.6]. Let C be a category and let c be an object of 
C. The comma category of C over c has as its objects all C-morphisms f :  c' ---, c and 
as its morphisms from f :  c' ~ c to g: c" ~ c all C-morphisms 0: c' --, c" such that the 
diagram 

0 
C r > C" 

C > C 
lc 

commutes. This category will be denoted by C/c. 

An example of a comma category is g/q, the variety of all quasigroups ~ over 
a fixed quasigroup Q. 

DEFINITION 1.3. [Cf. 6]. Let Q be a quasigroup and Q be the variety of all 
quasigroups. A Q-module in Q is an abelian group in Q/Q (the comma category of 
!~ over Q), i.e. an object A ~ Q of Q/Q equipped with ~/Q-morphisms OQ : Q ~ A, 
- :  A ~ A, and + : A x Q A ~ A such that the abelian group identity diagrams 
commute. A Q-module morphism f :  A ~ B  between Q-modules in ~ is a Q/Q- 
morphism such that + f = ( f x e f ) + ,  - f = f - ,  and 0 Q f = 0 Q .  The category 
9.1 | (Q/Q) of Q-modules in Q has Q-modules in Q as its objects and Q-morphisms 
between them as its morphisms. 

An object of 9.1| can be considered as a quasigroup A which has a 
self-centralizing congruence ~ such that A ~ -~ Q (via a natural isomorphism) [9, 317 
and 318]. 
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D E F I N I T I O N  1.4. Let Q be a quasigroup. Then the Cayley diagram Cay (Q) 
of Q is a directed graph with vertex set Q, and labelled arcs. For  each x and y in 
Q, there is an arc (x ,R(y) ,xy)  from x to xy, labelled R(y), and an arc 
(x, L(y), yx)  from x to yx, labelled L(y). 

Quasigroups can be considered as generalizations of  groups. Another general- 
ization of a group in the categorical sense is a groupoid. 

DEF INI TI ON 1.5. A groupoid is a category such that all its morphisms are 

invertible. 

DEF INI TI ON 1.6. The fundamental groupoid on a directed graph X, denoted 
re(X), is the free groupoid on the graph X, i.e. the codomain of a graph map 
i: X--* ~z(X), such that for every groupoid C and graph map j :  X ~ G, there exists a 
unique groupoid map z: re(X) ~ G such that the diagram 

i 
x > ~ (x )  

l 
G , G 

tG 
commutes. 

An easy characterization of the fundamental groupoid ~(X) on a graph X has 
been given in [4, Ch. 8]. 

D E F I N I T I O N  1.7. Given two categories C~ and C2, the category C c2 of 
representations of  C2 into C1 has all functors P: C2 ~ C~ as its objects and all 
natural transformations between them as its morphisms. 

Notice that if C2 is a groupoid, then groupoid representations of C 2 into C1 are 
the same as category representations of C2 into C1. The category 9.1 ~cayQ for 
example is the category of all representations of the fundamental groupoid on the 
Cayley diagram of Q into the category 9.I of abelian groups. Another example is the 
category 9.1 G of representations of a group G into the category of  abelian groups. 

2. Abelian coverings 

Coverings of the fundamental groupoid on a graph X arise naturally in analogy 
with coverings of a topological space. 

DEF INI TI ON 2.1. Let G and G' be two groupoids. Let V(G) denote the set of 
objects (vertex set) of G, and let Gj. denote the sets of all morphisms in G with 
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source j ~ V(G). G' covers G if there exists a category map ~0: G' ~ G such that for 
every i ~ V(G'), the restriction q~i: G'z. --, Gg~. of (p is bijective. 

DEFINITION 2.2. An abelian covering of the fundamental groupoid on 
the Cayley diagram of a quasigroup Q is a covering map q): E--,zcCayQ such 

that: 
(i) For every q in Q, the inverse image of q under ~o in E, viz. Eq, is an abelian 

group. 
(ii) For  every morphism a from q to s in ~CayQ, the map Eq: E q ~ ES; v ~ w 

(here w is the target of the unique cover of a with starting point v) is an 
isomorphism. 

DEFINITION 2.3. The category o f  abelian coverings of the fundamental grou- 
poid on the Cayley diagram of a fixed quasigroup Q is the subcategory of the 
comma category of groupoids ffi over z~CayQ with objects all abelian covers of 

rcCayQ and morphisms all ~b/gCayQ morphisms 0: E~ ~ E2 from (Pl: E1 ~ rcCayQ 

to q~2: E 2 - ' ~ C a y Q  such that for every q in Q, the restriction 0leg of 0 to E q is a 
homomorphism of abelian groups into E q. We will denote this category by 

AbCovQ. 

An easy characterization of an element of AbCovQ is given by the following 

proposition. 

PROPOSITION 2.4. Let  Q be a non-empty quasigroup. Suppose we are given a 

covering cp: E ~ ~CayQ o f  ~zCayQ such that the following statements are true: 

(i) there exists an r in Q such that the inverse image o f  r under ~o in E, namely 

E r = {v ~EIv~ p = r}, is an abelian group; 

(ii) for  every morphism a f rom r to r in ~CayQ, the map Ea: Er--* Er; v ~ w (here 

w is the unique cover o f  a with starting point v) is a homomorphism. Then (p 

is an object o f  AbCovQ. 

Proof. (i) We claim that Vq ~ Q, E q is an abelian group. Let b e [7cCayQ]rq, then 
EbE b- 1: E r --. E r. If 5 is the unique cover of b with starting point v ~ E ~ and target 
V ' E  E q, while /7 -1 is the unique cover of b-1 with starting point v' and target 
v" e E  ~, then b-b --1 is the unique cover of bb -1 = lr = lye0, so that v " =  v, i.e. E b is 
a bijection. Defining vE b . wE b = (v .  w)E b in E q makes g q an abelian group. This 
product is well-defined, since if Vl E b =  v2E C, Wl g o =  W2 g c  for c C [nCayQ]rq, then 
(V 1 " w l ) g  b ~- Vl E b  " w1 E b  = v2E c" w2E C = (v2 " w2)E c, which proves (i). 

To prove (ii) of Definition 2.2, from (i) it is clear that E b is an isomorphism 



Vol. 35, 1 9 9 6  Quasigroups, right quasigroups and category coverings 237 

Vb ~ [~CayQ]rq. Let a = b - l d  where b ~ [rcCayQ]~q, and d ~ [zrCayQ]~. Then 
E ~ -- E b-la = Eb- IE  ~ is an isomorphism, since E b-J and E a are. [] 

Notice also that aq) -~ = {(m, n) ~ E q x E~[mE ~ = n} is an abelian group by the 
isomorphism E a, i.e. these pairs form a subgroup of E q • E r isomorphic with E q 
and E r. 

3. Multiplication groups 

The structure of a quasigroup implies that the mappings RQ(q): Q ~ Q; x ~ xq  

and LQ(q): Q --* Q; x ~ qx are permutations of the set Q for each q ~ Q. 

DEFINITION 3.1. If P is a subquasigroup of the quasigroup Q, then the 
relative multiplication group MltQP of P in Q is the permutation group generated by 
{RQ(p), L Q ( p ) ~  ~ P}.  In the case P = Q, we simply call the permutation group the 
(combinatorial) multiplication group Mlt Q, and we may write R(q) for RQ(q). 

An important relative multiplication group is Mlt~)Q, where Q = Q . / ,  the 
coproduct of Q with the free quasigroup I on one generator x in the variety !~ of 
all quasigroups. 

DEFINITION 3.2. The universal multiplication group U(Q, ~ )  of Q in !~ is the 
relative multiplication group of Q in Q. We will use the notation /~(q) and/~(q) 
respectively for R~(q)  and L~(q)  for q ~ Q. 

THEOREM 3.3. Given a quasigroup Q, the universal multiplication group 

= U(Q, ~ )  is the f ree  group on {/~(q), L(q)lq ~ Q}" 

Proof. In the Cayley graph Cay(Q), consider the subgraph (x(~) consisting of all 
vertices lying in the orbit x(~ of x under G, and of all arcs between these vertices 
labelled/~(q) or L(q) for some q in Q. Note that (xG) is (weakly) connected. If there 
is a circuit in (xG) starting at a vertex x E ( p ~ , . . .  ,Pro), its labels form a product 
/~(q, . . . . .  q,,) s.t. x E ( p ,  . . . . .  pm)F(q, . . . .  ,q , )  =x/~(pl . . . . .  p,,). By [9, 236], it 
follows that ff(q~ . . . . .  qn) = 1. 

Because F(q~ . . . . .  q,)  is a product of labels, we can assume 
if(q, . . . . .  qn) =l-IS-, r~j,k,(hi) where hi~  {q~ . . . .  , q ,} , j~ = R  or L,k~ = _+1, with 
the following conventions: 

ifj~ = R, ki = 1, then rhRi = R(hi); 

i f j i = R ,  k i = - l ,  thenrh R ~=R-J(h~); 
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i f  ji  = L,  ki = 1, then rhrl =/~(he); 

i f  j i  = L,  k e =  - 1 ,  then rrtL_ 1 =/~-l(hi) .  

Suppose the circuit is not trivial. Then we can assume further than S > 1 (since 

S = 0 ~ / 7 =  1), and /7  is in "reduced form", i.e. there is no i such that je =Ji+l ,  

ke = -k i+~,  and hi =he+l .  From i f =  1, we have xff(qe . . . . .  q,) = x .  Now x is in 
"normal form" [3, 2.1] in Q * I, so that there exists a reduction chain 

U = x ~  U ,  ~ U 2 ~ "  " ' - ~  Uk = x 

[3, T2.2]. Now, Q = ( q  ~ Q]qlbq2 = q3 i f q lbq2  = q3 in Q)  is a set of closed relations 
for Q with b E {.,/, \} (in the sense of [3, 1.3]), so that Q �9 I = ( q  ~ Q, x]qlbq2 = q3 

if qlbq2 = q3 in Q).  
Define a relation < on the set of "components" [3, 1.2] of xff,  by Zl _< z2 if z~ 

is a component of z2. Let m be the "minimal" component of x f f  such that the 
elementary operation U ~ U1 occurs within it. Since the "reduced" form of ff is not 
1, the length of m, E(m) _> 2 (if f(m) = 1, m is a generator, so that the elementary 
operation is on a generator, a contradiction). So the operation occurs at 

m=xH~=lrh~j~k i (h i ) ,  j > l ,  not at x H~2~m~jiki(he), i.e. involving hz. In cases 
(i) - ( iv)  of elementary reductions [3, 2.1], we will have a contradiction since Jr- 1 = Jt 
and kt_ 1 - -k~. Cases (v) and (vi) are out of consideration since hj is already in 
normal form. In case (vii), if we replace (x t-~ Hi= 1 mjiki(hi)) " ht by z, then z = q for 
s o m e q ~ Q s o t h a t x f f ( q l , ,  q~) = q HS=~+l �9 . ,  mjiki(hi) ~ Q, but x E Q, a contradic- 

tion. Hence the circuit is trivial. 
A left action of G on (xG) is defined by letting f f (ql ,  �9 . . ,  qn) in G send the arc 

( x E ( p ~  . . . . .  Pro), D(q),  xE(p~ . . . . .  p ~ ) D ( q ) )  to ( x f f ( q l , . . . ,  q ~ ) - l ~ ( p , , . . . ,  p~) ,  

D(q),  x f f (ql  . . . . .  q , ) - ' E ( P l , "  " ,P~)D(q)  ) ,  where/~(q) denotes/~(q) or/~(q). Sup- 
pose that a vertex x E ( p l , . . . ,  Pm) is fixed by an element if(q1, �9 � 9  q , )  of G. Then 

xE(p~ . . . .  ,Pm) = Xff(ql ,  " " " , q n ) - ~ E ( p l ,  " " " ,P~), whence x f f (q l ,  . . . , q , )  = x. By 
[9, 236] with m --- 0, we have f f (ql ,  �9 �9 q~) = 1. Thus no non-identity element of 

leaves a vertex of (xG) fixed. 
Now suppose that an arc ( x E ( p l  . . . . .  Pro), R(q),  x E ( p l  . . . . .  p ~ ) R ( q )  ) of (xG) 

is inverted by i f ( q 1 , . . .  ,q~) in G, so that xf f (q l  . . . . .  q , ) - @ ( p ~  . . . . .  p~ )  = 

x E ( p i  . . . . .  pm)R(q)  and x f f ( q l , . . . ,  q , )  @ ( p ~ , . . .  , p ~ ) R ( q )  = x E ( p l  . . . . .  p~) .  

Then x E ( p l , . . . , p ~ ) R ( q ) Z = x E ( p l  . . . .  , p~) ,  whence /~(q)2=l  by [9, 236]. In 
particular x q . q  = x. Consider the quasigroup ( Q , . , / ,  \)  defined on the set of 
rationals Q by r . s  = 2 r  + s ,  r/s = ( r  - s ) / 2 ,  and r \ s  = s  - 2 r  for r , s  in Q. Define 
f :  Q ~ Q; q ~ 0. Since {0} is a subquasigroup of ( Q , . , / ,  \), f is a quasigroup 
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morphism. The image of x = ( x q ) q  in Q under f , ( x ~ - * l ) ;  Q ~ Q  is 
1 = (1.0) - 0 = 4, an impossibility. Thus no arc of  (xG) labelled/~(q) is inverted by 
an element of  G. A flipping argument [9, 115] shows that no arc labelled /~(q) is 
inverted. Thus G acts freely on (xG) (in the sense of [7, 1.3.3]). The quotient graph 
G\(xG) is a bouquet of circles labelled with the elements of R(Q)UL(Q). By the 
Reidemeister Theorem [7, Theorem 1.4] it follows that G is the free group on 

Let e be a fixed element of Q. Then the category 9.i de of representations of the 
stabilizer group (~e of e in the universal multiplication group (~ = U(Q, ~)  is 
equivalent to the category 91| (g /Q)  of Q-modules in ~ [9, 236]. 

4. The equivalence of representations 

The aim of  this section is to present the key result showing how the category of 
Q-modules in s is equivalent to both the category of  representations of  the 
fundamental groupoid on the Cayley diagram of Q and the category of abelian 
coverings of  Q. 

PROPOSITION 4.1. The stabilizer Ge is the vertex group of  ~CayQ at the ver- 
tex e. 

Proof. Take y = [Yl, Y2 . . . .  Yn] ~ [r~CayQ]ee, a loop at e. 
Then 

I (ei, R(ei\e,+l), ei+l) or 

Y, = ~(e i ,  R-l(ei+l\ei) ,  el+l) or 

/ ( e i ,  L(ei+l/ei), el+l) or 

L (ei, L-l(ei/ei+ 1), ei+l ), 

where e 1 = e n + l = e. 
We can denote Yi by (ei, mjiki(ei, ei+ 1), ei+l), where Ji = R or L and ki = +_ I, 

with the following conventions: 
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i f  ji = R, k~ = 1, then  rnj, k~(ei, ei+l)  = R(ei \e~+l);  

if j~ = R, k, = - 1, then  mj~k~(e~, el+l)  = R-~(ei+~\e~);  

if j~ = L,  k i = 1, then  mj,~(e~, ei+~ ) = L(e~+l/ei);  

i f j i  = L, k i = - 1, then  m~,(e i ,  ei+ 1) = L - l ( e i / e i+  1). 

Let  f :  [ztCayQ]ee ~ G be def ined by  f ( [ Y l ,  Y 2 , ' ' ' ,  Y,]) = I17=1 m~j,k,(ei, ee+l) ,  
where  m~jgk~(e~, ei+ 1) e G wi th  the  fo l lowing  conven t ions :  

if  Ji = R, k i 

i f  Ji = R, k i 

if  Ji = L,  k i 

i f  Ji = L,  k, 

= 1, then  rh~j~k~ (el, ei + 1 ) = R(e i \e i  + 1); 

= -- 1, then  rh~j~ki(ei, ei+ 1) = .R- l (e i+ , \ e i ) ;  

= 1, then  m~i.ki(ee, e ,+ l )  = L ( e i + , / e i ) ;  

= - 1 ,  then  rh~j~ki(ei, ei+l)  = L - l ( e i / e i + l ) .  

Clear ly  f i s a  wel l -def ined m a p p i n g ,  since if  [Yl, Y2 . . . . .  33i, 33i+ 1, Y~+ 2, " �9 " , Yn] is 
a s imple  r e d u c t i o n  (i.e. Yi =Y7+~1) o f  y ( w h e r e  fii m e a n s  y~ is omi t t ed ) ,  t hen  

Yi = (el,  rnj,ki(ei, ei+ 1), ei+ l ) ,  a n d  Yi+ 1 = (ei+ 1, mji + lk, +1 (el+ 1, ei+2), e i+2 )  whe re  
e i + 2 = e i  a n d  mj,k,(ei, ei+l)  = m j ~ + ~ < + l ( e i + l , e i + 2 )  -1. H e n c e  f [ ( Y l , Y a , . . . , Y i ,  
Yi+l, Y i + 2 , . . . ,  Yn]) =Ht~{1,2....2,,#1,,+2 ...... } m~i,k,(e,, e,+ 1) =l-In=l m~j,k,(e,, et+ 1) = f ( Y ) ,  
whe re  m~j,k,(e,, e~+ 1) = mj,+'27'k, +~(ei+l, el+2) 1. W e  can  res t r ic t  the  c o d o m a i n  o f f  to  

be  Ge, since e HT= 1 r~'fk, (e~, ei + 1) = e. N o w  f is also a h o m o m o r p h i s m ,  since 

f ( x  " y)  = f ( [ x l ,  x 2 . . . . .  Xm]{Yl, 22 . . . . .  Yn]) 

i = 1  i = 1  

)Ca ) = n~.,~(ei, e i+,)  rnjm+~km+~(em--i, em+i--1) 
i = 1  

= f ( x ) f ( y ) ,  

where  

xi = (ei ,  nj, k,(ei, ei+ 1), ei+l ) 

a n d  

Yi = (em+i ,  mj , , , . i  k . . . .  (era+i, em+i+l),  em+~+l),  with  el = e m + l  = e m + ~ + l .  
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Now f is one to one: Suppose that x is a reduced path in [TrCayQ]~ and 
f (x )  =f( [x l ,  x2 . . . . .  Xm]) = 1~. Then I17= 1 n ~  (e;, ei+ l) = 10 implies, by the free- 
hess o f F  on {R(q) ,L(q)[qeQ} [9, 238], that 3 i e {1 ,2  . . . . .  n}. n~.iki(ei, ei+l)= 
nj~+~+l(ei+~,ei+2) -~. Applying r o [9, 333], we obtain n~k,(ei, e i+l)= 
nj~+~,+,(e~+~, e~+2) -I, i.e. x~ =x;-l~, contradicting the reducedness of x. Hence 
x = lee- The homomorphismf i s  also onto, since Ge = (Te(q), R~(q, r), s r)) [9, 
244], and 57~(q) = f [ ( e ,  R(e\q), q) ,  (q, L-l(q/e) ,  e)]; /~(q, r) = f [ ( e ,  R(e\q), q),  
(q, R(r), qr),  (qr, R(e\qr)-~, e)]; Le(q, r) = f [ ( e ,  L(q/e), q) ,  (q, L(r), rq), (rq,L 
(rq/e)-1 e)]. Hence we conc lude  ae  ~-- [~zCayQ]ee. [] 

Suppose we have a representation 6 from Ge to 9.1. Then using the notation in 
[9, 247], where ~(e ,q )=R(e \ e ) - lR (e \q ) ,  we will define an element 6 ~ =  
P: rcCayQ ~ 9.I of 9V c"ye as follows: 

fi(e, q)a: 6(e) = M ~ M | ~(e, q); m ~-+ m | fi(e, q) 

[2, w or [9, w 
If  a ~[zcCayQ]q~, then a is written uniquely in the form fi(e, q)-lge~(e,r ) 

by taking g~=~(e,q)a~(e,r)- l~Ge=[nCayQ]~e by Proposition 4.1, so that 
ao:: M | fi(e, q) ~ M | fi(e, r), aa = [fi(e, q)a]-l(ge~)[~(e, r)a], and geO~ = ge"  On ob- 
jects, qP = M | fi(e, q), so that eP = M | ~(e, e) = M | 1 = M, hence P is well- 
defined. 

If  f :  6~--+32 is a morphism in 9.Ig% i.e. a Ge-module homomorphism, then 
f~: 61~ --+ 62~ is 

M l | 1 7 4  ml |  ~--~mlf| 

with the property that for every ge ~ Ge, (ml | r q))f~ge62 = 
( m l f  | fi(e, q))ge62 = (mlf)ge | fi(e, q) = (m~g e | fi(e, q))f~ = (ml | fi(e, q))ge6~f~, 
that is f~ge62 = ge6lfo~, SO tht f~ is a natural transformation from ~ c~ to ~2~. This 
leads us to the following proposition. 

PROPOSITION 4.2. The category map c~ gives a functor from 9.I ~ to 9.1 ~cayQ. 

Given a representation P: rcCayQ ---, 9.I, define Pfl = P[[~CayQ]ee" 

PROPOSITION 4.3. The map fl can be extended to a functor from 9ff c"yQ to 
9A~e 

Proof  Take a morphismf:  P1--+/'2 in N~cayQ under fl t o f f l  =f[p,~. Clearly ffl 
is a morphism in 9.16e. [] 



242 7". S. R. F U A D  A N D  J. D. H. SMITH A L G E B R A  UNIV.  

LEMMA 4.4. For each representation P of gCayQ into ~,  there is a natural 
9.I'C"yQ-isomorphism hp" P(f~) --+ P, a collection of 2[-morphisms, one for each object 

q of  7zCayQ: 

[~(e, qJcq 1 ~(e, q)P 
qPhp : M | iS(e, q) - -  > M ~ Aq 

m | ~(e, q) ~ m ~-~ m~(e, q)P. 

Proof For every a c [ItCayQ]qr , the following diagram commutes: 

qehp 
qPfcc , qP 

rPfo: - - - - ,  rp 

i.e. 

M | ~(e, q) qVh% Aq 

a~: [j(e,q)~] i(ge~)[~(o,q)] I l a :  [j(e,q)p]-ige p[fi(e,r)P], 

M | 5(e, r) - , Ar 
rPhp 

where a = fi(e, q)- lg~(e ,  r), since [m | q)]qPhpa = (m~(e, q)P)(~(e, q)P)- '  • 
gePfi(e, r)P = rngeP~(e, r)P = mg~ccfi(e, r)P = rn(g~c~)(~(e, r)a)[fi(e, r)0~]- 1iS(e, r)P = 
[m | fi(e, q)]af~[rPhp]. The other direction is proved similarly. [] 

THEOREM 4.5. The functors :c and f give an equivalence between 9A de and 
~[7~CayQ. 

Proof It is obvious that e f  = 1. To show that fie is equivalent to 1, suppose 
f :  P1 "---~ P2 is an 21 ~c"y~ morphism, i.e. Vq e Q, a,f: Alq ~A2q. 

Then the following diagram commutes: 

P~ fe  Pj hp I _ - - + p ~  

P2hP 2 
P2 flO~ - - ~  P2 

since [m | fi(e, q)](qffoO(qP2he2) = [m~(e, q)P, (qf)(~(e, q)P2)-' | fi(e, q)]qPzhp2 = 
rn~(e, q)Pl (q, f)(~(e,  q)P2) - 'fi(e, q)P2 = rn~(e, q)P1 (qf) = [rn | fi(e, q)](qP1 hpj )(qf). 

Analogously, the following diagram commutes: 
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P1 -t'lh~~ Plfl ~ 

s I I s'~ 
P2 > P2/~ 

P2hp I 

Hence the theorem has been proved. [] 

Summing up all these results, we will have: 

THEOREM 4.6. The following categories are equivalent: 
(i) 9JQ(!,~/Q); (ii) 9AGe; (iii) 9X~CaYO; (iv) AbCovQ. 

Proof The equivalence between ~I|163 and Nde is given in [9, 336]. 
Theorem 4.6 proves the equivalence between 92[ c~ and 91 ~cay~ For the equivalence 
between 9,1 ~c~yQ and AbCovQ, we just have to use the corresponding functors 
A: 9A ~c'y~ ~ AbCovQ and A': AbCovQ ~ 92( ~c~y~ as described in [4, 13.30]. [] 

If we start with an abelian group A-* Q in g/Q, then we will get a right 
Ge-module M=rc l(e),e~Q. Applying ~, we will get a representation 
P: rcCayQ ~ ~ where Aq = M | fi(e, q), and fi(e, q)c~: M ~ M | fi(e, q); m ~-*m | 
fi(e, q). If  a ~[~CayQ]qr, ae: M|  q) ~ M |  r). Applying A, we have a 
covering groupoid q): E-~ rtCayQ, where V(E) = IIq~o M q = {(v, q)l v e Mq } = 
{(m| ere l(e)}. This vertex set is exactly the set A = U q ~ o M |  
~(e, q), of [9, 336], and V(cp): V(E) ~ Q is rt: A --, Q with operations analogous to 
that of [9, 332]. 

5. The right quasigroup case 

The structure of a right quasigroup implies that the mapping RQ(q) of Section 
3 is a permutation of the underlying set Q at a right quasigroup Q. However, the 
corresponding Lo(q) need not be a permutation on Q. Let SQ denote the monoid 
of all mappings from the set Q into Q with composition as the binary operation. 

DEFINITION 5.1. The submonoid of SQ generated by {R(q), R-l(q), L(q)[q e 
Q} is called the multiplication monoid MQ, and the group generated by {R(q)]q e Q} 
contained in MQ is called the right multiplication group RMltQ. 

DEFINITION 5.2. If  P is a right subquasigroup of a right quasigroup Q, then 
the relative multiplication monoid MQP of P in Q is the submonoid of MQ 
generated by {RQ(p), RQ(p) -1, LQ(p) ~o e P}. 
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The analogous construction of the N-universal multiplication monoid 
UM(Q, ~)  of Q in the variety N of all right quasigroups is the relative multiplica- 
tion monoid of Q in Q = Q . / ,  the coproduct in N of Q with the free right 
quasigroup on a generator x. We will also have the analogous category 92 | N/Q of 
Q-modules in R. Let ~: A ~ Q be a Q-module in R. Then there is an N/Q-mor- 
phism - :  ~ ~ A, called subtraction, defined as the following composition: 

1 x ( - )  + 
- : A  XQA ~ A •  ~ A. 

The kernel of - :  e ~ A is a congruence (e [c~) on ~ which is a centering congruence 
by which ~ centralizes itself (cf. [9, 315]). Also, we will get analogies to [9, 334] and 
[9, 336] as follows: 

PROPOSITION 5.3. Let Q be a right quasigroup appearing as a right sub- 
quasigroup of a right quasigroup A in R. Then r A : U M ( Q , R ) ~ M A Q ;  
F(ql . . . . .  qn) ~-~ FA(ql . . . .  , q,) is a monoid epimorphism from G = UM(Q, R) onto 
MAQ. 

PROPOSITION 5.4. Let n: A --* Q be a Q-module. Identify Q with its image in 
A under O. Then for elements a, b of A, one has: 

(i) a b  = a . b ~  + a n .  b ;  

(ii) a/b = a/bn - [a~/b~z . b]/brc. [] 

The next step is to define the Cayley diagram of a right quasigroup Q. 

DEFINITION 5.5. Let Q be a right quasigroup. The CayIey diagram Cay Q of 
Q is a directed graph with vertex set Q and labelled arcs. For  each x, y in Q, there 
is an arc (x, R(y), xy )  from x to xy, an arc (x, R- l (y) ,  x / y )  from x to x/y, and 
an arc (x, L(y), y x )  from x to yx. These arcs are labelled R(y), R - l ( y )  and L(y) 
respectively. 

We are able to generate a category fiCayQ from CayQ by taking the set Q 
as objects and "reduced" paths of CayQ as morphisms. Here "reducedness" 
means applying all possible equations ( x , R ( y ) , x y ) ( x y ,  R - l ( y ) , x ) = l  and 
(x, R - l ( y ) , x / y ) ( x / y , R ( y ) , x )  = 1. Consider the groupoid generated by 
{(x, R(y), xy)tx, y ~ Q}, which is a subcategory of ffCayQ. It consists of compo- 
nents Ci for i in an index set L For  each i, pick a representative qi in V(Ct). Then 
for each q E V(PCayQ), q is connected to exactly one element 0 of the set {qi I i ~ I} 
of representatives by a sequence of simple arcs only using the R's and their inverses. 
Let p(O, q) be the reduced path from q to q given by a sequence of labels R+1(xj), 
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where xj ~ Q. Take p(c7, c])= 1, the empty path at q- Let fi(O, q) be the element 
corresponding to p(O, q) in UM(Q, R). Then given a Q-module ~: A --, Q in ~ ,  we 
will get a representation PA = ~Z~' of  fiCayQ into the category 93[ of  abelian groups 
as follows: qPA = {(m, q, q): m ~ ~-l(qe)}, p(t], q)c(: (m, ~], q) ~-~ (m, q, q). I f  a 
[fiCayQ]qr, then a can be rewritten uniquely as a = p(~, q) ~[p(O, q)ap(f, r) -1]p(f, r), 
so that  ae '  = p(O, q)c~-t[fi(q, q)~Tfi(?, r)-l]p(f ,  r)~, where fi(q, q)~Tfi(f, r) ~ E 
[UM(Q, R)]oe acts via MAQ as in Proposit ion 5.3. Clearly fi(O, q)~7~(?, r) -1 is a 
homomorphism of  abelian groups. 

I f  f :  (r~l: A 1--*Q) ~ ( ~ :  A 2 ~ Q )  is a morphism in 9.1| then clearly 
f [~ (q ) ]~_n21(~] ) ,  so that  fe ' :P~=~lC(--*n~e'=Pa, defined by q P ~ q P z ;  
(m, ~, q) ~ (f(m), q, q), is an abelian group homomorphism.  

PROPOSITION 5.6. The assignment c~' is a functor from 9,1 | N/Q to 9.I Fc~yQ. 

Proof. Clearly for every a ~ [fiCayQ]qr, the diagram 

eft, 
qP~ ~ qP~ 

a~ I l~e~ 

rP~ ~ rP~ 
~f~, 

commutes, since (m, gl, q)(qfe')(aP2) = (f(m), q, q)(aP2) = (mf[~(~], q)6fi(f, r) ~]r~2, 
f, r) = (m[fi(O, q)~cS(f, r )- l lg~f,  f, r) = (m[fi(~], q)t~fi(f, r)-1]~1, ~=, r)(rfcO = (m, (~, q) x 
(aP l)(rfc O. The other conditions to be a functor are satisfied by ~' trivially. [] 

Suppose on the other hand that we have a representation P from fiCayQ into 
the category ~1 of  abelian groups. Let Pfl': A ~ Q, where 

0 HOP 
0 e {qili ~ I} q �9 [q] 

= {(m, c], q)]q ~ [t]], ~ e {c]i[i E l } } .  

Here [c]] is the path component  of  q in the groupoid generated by 
{ (x ,R (y ) , xy ) l x ,  y ~ Q } ,  and (m,~],q)Pfl'=q. Define (m,g],q).(n,f ,r)  = 
[mp(~], q) (q, R(r), qr)p(g?r, qr) -i + np(f, r) (r, L(q), qr)p(~tr, qr) -1, (tr, qr] and 
(m, q, q) /(n, f, r) = ([mp(~], q) - np(L r) (r, L(q /r), q)] (q ,  R l(r), q /r) p(-~,  q /r) -1, 
q/r,q/r). Also define maps O o : Q ~ A ;  q~-~(O,g?,q) ("zero"),  - : A - * A ;  
(m, q, q) ~ ( - m, t], q) ("negat ion") ,  and + : A x Q A ~ A; ((m, ~, q), (n, q, q)) 
(m + n, ~7, q) ("addi t ion") .  Then it is easy to see that  P/~' is a Q-module in R. 

Let f :  P1 -'+P2 be a morphism in NFCayO, i.e. Vq e Q, qf: qP~ ~qP2 is given such 
that, for every a ~ [fiCayQ]qr, the diagram 
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q/ 
qP1 ' qP2 

rP 1 , rP 2 
rf 

commutes. Define 

f~t: (Plfl '  = gl"  AI --+ Q) -+ (P2fi' = ~z2:A2 --+ Q); 

(m, q, q) ~-~ (mp(q, q)Plqfp(4, q) -1P2, q, q). 

PROPOSITION 5.7. The assignment fl' gives a functor from 9.1 ~cayQ to 

Proof. It is an easy exercise to show that ffl '  is a right quasigroup homomor-  
phism which commutes with 0o,  - ,  and +. Furthermore,  it is trivial that  

( f .  g)fl' =f f i ' .  gfi' and lfi '  = 1. [] 

L E M M A  5.8. For each Q-module ~: A--+Q in ~ ,  there exists an (9.1| 
natural isomorphism g'~: (re: A --+ Q) --+(gefl: A'--+ Q) given by restrictions ~z-l(q) --+ 

-l(q) • {4} • {q}; m ~-+ (mp(q, q)~- l ,  q, q). (Note that indices have been omitted 
from the notation here for clarity.) 

Proof. The map gg'~ is a right quasigroup homomorphism,  since for m E 
zc-l(q) and n src-l(r) we have mnerc-l(qr)  and m/ner~-l(q/r),  so that  
m~g'~ . nrcg'~ = (mp(q, q)~ 1, q, q) " (np(f, r)g-1 ~, r) --- [rap(q, q)~-lp(q, q)~e(q, R(r), 
qr)p(4r, qr)- l rcc~ + np(f, r)~- l p(f, r)~e (r, L(q), qr)p(4r, qr)- 1~,  4r, qr] = ([m (q, 

e(r), qr ) + n(r, L(q), qr )]p(4r, qr) -In, 4r, qr) = (mnp(4r, qr)7c-1, 4r ' qr) = (mn)rcg'~, 
using Proposition 5.4 (i). Similarly, using Proposition 5.4 (ii), one can show 
mrcg',/ngg'~ =(m/n)zcg'~. Clearly g'~ is an 9.1| morphism, since it commutes 
with + ,  - ,  and 0Q. An analogous result is valid for g , - l .  [] 

L E M M A  5.9. Given a representation P from fiCayQ to the category 9.I of  abe- 
lian groups, there exists a natural isomorphism h 'p:P~Pf la ,  defined by 
qP --+ 4P x {q} x {q}, m ~-+ (mp( 4, q)P 1, q, q). 

Proof. Suppose a e [fiCayQ]q~. Then a = P(q, q)-l[P(q, q)ap(/, r) -~]p(/, r), so 
that  afle = P(q, q)a:l[p(q, q)ap(f, r)-1]p(f, r)c~. The diagram 

qi,h~ 
qP , 4 P  x {4} • {q} 

~ 1 
rP , • • {r} 

rPh) 
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commutes, since t(qPh'p)(afl~) = (t~(~], q)P-1, ~, q)(afl~) = (t~(gl, q)P-~P((t, q)a~ x 
(f, r) -1, f, r) = (tfi(~, q)e-~(P(gl, q)ap(f, r)-*)P, ~, r) = t(aP)(rPh'p). The penultimate 
equality here holds since the action of fi(~, q)@(f, r)-1 in [UM(Q, R)]qe is via MA Q 
by Proposition 5.3, which is the same as that of p((t, q)ap(L r)P. Analogously, the 
diagram 

qPh'p- 1 

OP • {0} x {c]} , qP 

fP • 2 1 5  =}- , r P  
r P h ) -  1 

commutes. [] 

THEOREM 5.10. The functors ~' and fl' give an equivalence bewteen 9.I | ( ~,/ Q) 
and 9,1 #cayQ. 

Proof  If  f :  (/171" A1-+Q) --+(/172: A2--+Q) is a morphism in 9 , I |  then the 
diagram 

~1 g~ t 
7171 ~ /[1 0{~ 

/17 2 ~ /17 2 ~fl  
=2gs 2 

/17 -1  commutes, since rn(/[lg'/[1)[fo~fl] = (mp(~, q)/[F 1, q, q)[f~fl] = (rnp(~, q) i f0, q, q) = 
m (mfqp(qJ;, qf)/[2 ~, ~, q) = (mfqp(q, q)/[2', gt, q) = ~f(/[2g=2). Analogously, the dia- 

gram 

g;5 I 
/ [ I  0~/~ ) 7l"1 

/17 2 0~j~ ) /17[ 2 
g,~ i 

commutes. It is an easy exercise to show that for each morphism f:  P1 ~P2, in 
9.I ecapQ, the diagram 

PI t ~  Plfl  O~ h~ll , P1 

1 1" 
P2 ' P2fl O: ' P2 

hh 2 h~-  2 I 

commutes. " [] 
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Note that if Q is a quasigroup, and re: A ~ Q is a Q-module in !~, then by 
forgetting the left division structure, we will have a Q-module re: A -+ Q in N. The 
construction of ~' and/3' specializes in the case of quasigroups, in the sense that the 
following diagrams commute: 

~|  ~,  9.I '~~ 9.I| [~-' !~I ~c"yo 

9.1 | (N/Q) +---92( icayQ ~I| (y2/Q) > 9~ i C a y Q  

9.I @ ( !~/ Q) ~ +  9.1 "cOyQ ~ @ ( ~ / Q )  [~-'  92UCoyQ 

9.I |  ,9.1 -~c"ye PIG(N/Q), 9.1 icaye 
ct' t~' 

Here r is the functor that gives the equivalences of g[ | (g/Q) with N&, while F 
and F' are forgetful functors. 
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