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Quasigroups, right quasigroups and category coverings
T.S. R. Fuap AnD J. D. H. SMITH

Dedicated to the memory of Alan Day

Abstract. The category of modules over a fixed quasigroup in the category of all quasigroups is
equivalent to the category of representations of the fundamental groupoid of the Cayley diagram of the
quasigroup in the category of abelian groups. The corresponding equivalent category of coverings, and
the generalization to the right quasigroup case, are also described.

0. Introduction

The theory of quasigroup modules, or quasigroup representation theory, is
equivalent to the representation theory of quotients of group algebras of certain
groups associated with quasigroups; namely the stabilizers in the so-called universal
multiplication groups (cf. [9, 336]). Fundamental groupoids originally were used as
invariants of topological spaces. (See e.g. [1, 6.5.10]). It is also a fact that covering
spaces of a topological space can be classified by their fundamental groupoids (see
e.g. [1, §91). Generalizations of fundamental groupoids and coverings in the directed
graph case are given in [4, pp. 67 and 97]. Another interpretation of quasigroup
modules, namely as representations of the fundamental groupoid on the Cayley
diagram [9, 213] of the quasigroup in the category of abelian groups, is given here.
The equivalent coverings are obtained using [4, 30]. Generalizations to right
quasigroups in the sense of [8] (compare the “right groupoids” of [3]) involve the
path category (cf. [4, §3]) of the Cayley diagram of the right quasigroup.

1. Quasigroups and groupoids

A quasigroup can be considered either as a not-necessarily finite Latin square or
as a not-necessarily associative group (not necessarily containing an identity element).
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234 T.S. R. FUAD AND J. D. H. SMITH ALGEBRA UNIV.

DEFINITION 1.1. [9, 116]. A quasigroup Q is a set @ with three binary
operations -, /, and \ called respectively multiplication, right division, and left
division such that these operations satisfy the following axioms:

(ER): (x[y) -y =x;
(UR): (x - y)[y = x;
(EL): x - (x\y) =y;
(UL): x\(x " y) =y

A right quasigroup Q is a set Q with two binary operations -, and /, satisfying
(ER) and (UR). (The names (ER), (UR), (EL) and (UL) stand respectively for
Existence of a solution involving Right division, Uniqueness of the solution
involving Right division, and similarly for Left division.)

DEFINITION 1.2. [Cf. 5, I1.6]. Let C be a category and let ¢ be an object of
C. The comma category of C over ¢ has as its objects all C-morphisms f: ¢’ — ¢ and
as its morphisms from f: ¢’ - ¢ to g: ¢” — ¢ all C-morphisms 8: ¢’ — ¢” such that the
diagram
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commutes. This category will be denoted by C/c.

An example of a comma category is Q/qg, the variety of all quasigroups Q over
a fixed quasigroup Q.

DEFINITION 1.3. [Cf. 6]. Let Q be a quasigroup and Q be the variety of all
quasigroups. A Q-module in Q is an abelian group in L/Q (the comma category of
Q over Q), i.e. an object 4 — Q of Q/Q equipped with Q/Q-morphisms Oy: @ — A4,
—:1A—A, and +:4x,4->A such that the abelian group identity diagrams
commute. A Q-module morphism f: 4 - B between Q-modules in Q is a Q/Q-
morphism such that +f=(fx,f)+, —f=f—, and 0,f=0,. The category
AR (Q/Q) of Q-modules in Q has @-modules in @ as its objects and Q-morphisms
between them as its morphisms.

An object of AR (Q/Q) can be considered as a quasigroup A4 which has a
self-centralizing congruence « such that 4~ Q (via a natural isomorphism) [9, 317
and 318].
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DEFINITION 1.4. Let Q be a quasigroup. Then the Cayley diagram Cay (Q)
of Q is a directed graph with vertex set @, and labelled arcs. For each x and y in
0O, there is an arc <{x, R(y),xy> from x to xy, labelled R(y), and an arc
{x, L(y), yx) from x to yx, labelled L(y).

Quasigroups can be considered as generalizations of groups. Another general-
ization of a group in the categorical sense is a groupoid.

DEFINITION 1.5. A groupoid is a category such that all its morphisms are
invertible.

DEFINITION 1.6. The fundamental groupoid on a directed graph X, denoted
n(X), is the free groupoid on the graph X, i.e. the codomain of a graph map
i: X - n(X), such that for every groupoid C and graph map j: X — G, there exists a
unique groupoid map 7: n(X) — G such that the diagram

X s w(X)
| |
G — G
tg
commutes.

An easy characterization of the fundamental groupoid n(X) on a graph X has
been given in [4, Ch. 8].

DEFINITION 1.7. Given two categories C, and C,, the category C{2 of
representations of C, into C; has all functors P: C,— C; as its objects and all
natural transformations between them as its morphisms.

Notice that if C, is a groupoid, then groupoid representations of C, into C, are
the same as category representations of C, into C;. The category U< for
example is the category of all representations of the fundamental groupoid on the
Cayley diagram of Q into the category U of abelian groups. Another example is the
category U of representations of a group G into the category of abelian groups.

2. Abelian coverings

Coverings of the fundamental groupoid on a graph X arise naturally in analogy
with coverings of a topological space.

DEFINITION 2.1. Let G and G’ be two groupoids. Let ¥(G) denote the set of
objects (vertex set) of G, and let G denote the sets of all morphisms in G with
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source j € V(G). G’ covers @G if there exists a category map ¢: G’ — G such that for
every i € V(G"), the restriction ¢;: G« — G,,» of ¢ is bijective.

DEFINITION 2.2. An abelian covering of the fundamental groupoid on
the Cayley diagram of a quasigroup Q is a covering map ¢: E —»nCayQ such
that:

(i) For every ¢ in Q, the inverse image of ¢ under ¢ in £, viz. EY, is an abelian

group.

(ii) For every morphism « from ¢ to s in nCayQ, the map E?: E9—»E*; v > w

(here w is the target of the unique cover of a with starting point v) is an
isomorphism.

DEFINITION 2.3. The category of abelian coverings of the fundamental grou-
poid on the Cayley diagram of a fixed quasigroup Q is the subcategory of the
comma category of groupoids & over nCayQ with objects all abelian covers of
nCayQ and morphisms all &/aCayQ morphisms 9: E; —» E, from ¢,: E, —nCayQ
to ¢,: E, —»nCayQ such that for every g in Q, the restriction 6| g? of 6 to Elisa
homomorphism of abelian groups into E3. We will denote this category by
AbCov(.

An easy characterization of an element of 4AbCovQ is given by the following
proposition.

PROPOSITION 2.4. Let Q be a non-empty quasigroup. Suppose we are given a
covering ¢: E —nCayQ of nCayQ such that the following statements are true:
(i) there exists an r in Q such that the inverse image of r under ¢ in E, namely
E'={veEpo =r}, is an abelian group;
(ii) for every morphism a from r to r in nCayQ, the map E* E" - E"; v — w (here
w is the unigue cover of a with starting point v) is a homomorphism. Then ¢
is an object of AbCovQ.

Proof. (i) We claim that Vg € Q, E4 is an abelian group. Let b € [rCay(],,, then
EPE?™'. Er— E". If b is the unique cover of b with starting point v € E” and target
v’ e E9, while =1 is the unique cover of »~! with starting point v’ and target
v" ¢ E”, then bb~" is the unique cover of bb~' =1, = 1,0, so that v" =v, i.e. E®is
a bijection. Defining vE® - wE® = (v - w)E”? in E? makes E? an abelian group. This
product is well-defined, since if v; E® = v, E¢, w, E* = w, E¢ for ¢ €[nCay()],,, then
(v, - w)E? = v E® - w E® = 0, E¢ - w, E° = (v, - w,)E*, which proves (i).

To prove (ii) of Definition 2.2, from (i) it is clear that E? is an isomorphism
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Vb e[nCayQ],,. Let a=>b"'d where be[nCayQl],, and de[nCayQ],. Then
E¢=E"'?=E*'Eis an isomorphism, since E*”' and E“ are. O
Notice also that ap ~' = {(m, n) € E7 x ES{/mE® =n} is an abelian group by the
isomorphism E*, ie. these pairs form a subgroup of E4 x E” isomorphic with E?
and E".

3. Multiplication groups

The structure of a quasigroup implies that the mappings Ry(9): Q = Q; x — xq
and Ly(q): Q = Q; x — gx are permutations of the set Q for each g € Q.

DEFINITION 3.1. If P is a subquasigroup of the quasigroup @, then the
relative multiplication group Mlt, P of P in Q is the permutation group generated by
{Ry(p), Lo(p)|p € P}. In the case P = Q, we simply call the permutation group the
(combinatorial) multiplication group MIt Q, and we may write R(g) for R,(q).

An important relative multiplication group is MIty O, where Q =Q =1, the
coproduct of Q with the free quasigroup I on one generator x in the variety Q of
all quasigroups.

DEFINITION 3.2. The universal multiplication group U(Q, L) of Q in Q is the
relative multiplication group of Q in Q. We will use the notation R(g) and L(q)
respectively for Rg(g) and L3(g) for g € Q.

THEOREM 3.3. Given a quasigroup Q, the universal multiplication group |
G =U(Q, Q) is the free group on {R(q), L(g)|q € O}.

Proof. In the Cayley graph Cay(Q), consider the subgraph (xé) consisting of all
vertices lying in the orbit xG of x under G, and of all arcs between these vertices
labelled ﬁ(q) or L~(q) for some ¢ in Q. Note that (xé) is (weakly) connected. If there
is a circuit in (xG~) starting at a vertex xE( Pis- - gm), its labels form a product

Fq,,....q,) st xE(pi.....p )@, ..., q.) =xE(p,,...,p,). By [9, 236], it
follows that F(g,,...,q,) = 1.

_ Because F (q1,---,49,) 18 a product of labels, we can assume
Fq,,...,q,) =TI, i}, (h;,) where h,e{q,,...,q,},j;=R or L k;= +1, with

the following conventions:

if =Rk, =1, then iig = R(h,);
if =R k;=—1, thenm, ,=R'(h);
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ifj,=L k=1, then iy, =L(h);
if jy=L k,=—1, then i, _,=L"'(h).

Suppose the circuit is not trivial. Then we can assume further than S > 1 (since
S=0=F= 1), and F is in “reduced form”, i.e. there is no i such that Ji=Jiv1s
k;=—k;, 1, and h,=h; ;. From F= 1, we have xﬁ(q,-, ..., q,) =x. Now x is in
“normal form” [3, 2.1] in Q * I, so that there exists a reduction chain

U=xF>U-U— - ->U =x

[3, T2.2]. Now, Q =<q € Q|q:b9, = g5 if g:bq, = g5 in Q) is a set of closed relations
for Q with b € {*,/, \} (in the sense of [3, 1.3]), so that O« I =<{g € O, x|q,bq, = g5
if ¢:bq,=¢q5 in Q). _

Define a relation < on the set of “components” [3, 1.2] of xF, by z, <z, if z;
is a component of z,. Let m be the “minimal” component of xF such that the
elementary operation U — U, occurs within it. Since the “reduced” form of Fis not
1, the length of m, £(m) =2 (if /(m) =1, m is a generator, so that the elementary
operation is on a generator, a contradiction). So the operation occurs at
m=xTj_, . (h), j=1, not at x IiZ{ /5, (), ie. involving 4,. In cases
(i)—(iv) of elementary reductions [3, 2.1], we will have a contradiction since j, _; =,
and k, ;= —k,. Cases (v) and (vi) are out of consideration since A; is already in
normal form. In case (vu) if we replace (x IT:Z! mi;; e (h:)) - By by z, then z =¢ for
some ¢ € Q so that xF(ql, e g =q I8, mj,-k,-(h ) € Q, but x € Q, a contradic-
tion. Hence the circuit is trivial.

A left action of G on (xG) is defined by letting F (ql, ..oy, in G send the arc
<xE(p1, e Pw)y D), xE(py, . . . ,pm)D(q)> to <xF(q1, cen)” ‘E(pl, s Pm)s
D(q), xF(ql, R 3 1E( DPire s pm)D(q)> where D(q) denotes R(q) or L(q) Sup-
pose that a vertex x@(pl, ..., Dy 1s fixed by an element F(ql, ey q,) of G. Then
XE(py, ..., pm) =xF(qy, ... ,~qn) 1E(p1, ..., P,), whence xF(ql, ey Gy) =X BX
[9, 236] with m =0, we have F(q,, - .., q,) = 1. Thus no non-identity element of G
leaves a vertex of (xG~) fixed.

Now suppose that an arc <xE(p1, e s Po)s R(q) xE(pl, - ,p,,,)]i(q)} of (x@)
is inverted by F(ql, coesqy) In G, so that xF(q,, ..., )~ 1E(p1, e D) =
XE(py, ..., pn)R(@) and xF(g;,...,q.) ' E(py, ... P)R(@) =xE(py, - .., P).
Then xE(pi,...,pm)R(@)?*=xE(p,,...,p,.), whence R(g)>=1 by [9, 236]. In
particular xq - ¢ = x. Consider the quasigroup (Q,-,/,\) defined on the set of
rationals Q by r-s =2r +s,rls = —9)/2, and r\s =5 —2r for r, s in Q. Define
fi Q- Q; g—0. Since {0} is a subquasigroup of (Q,-,/,\), f is a quasigroup
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morphism. The image of x=(xg)g in Q under f* (x> 1); é —>Q is
1 =(1.0) - 0 =4, an impossibility. Thus no arc of (xG) labelled R(g) is inverted by
an element of G. A flipping argument [9, 115] shows that no arc labelled f(q) is
inverted. Thus G acts freely on (xG~) (in the sense of [7, 1.3.3]). The quotient graph
G\(xG) is a bouquet of circles labelled with the elements of R(Q)UL(Q). By the
Reidemeister Theorem [7, Theorem 1.4] it follows that G is the free group on

RQUL(Q). 0

Let ¢ be a fixed element of Q. Then the category A of representations of the
stabilizer group G, of e in the universal multiplication group G = U(Q, Q) is
equivalent to the category U@ (Q/Q) of Q-modules in Q [9, 236].

4. The equivalence of representations

The aim of this section is to present the key result showing how the category of
Q-modules in Q is equivalent to both the category of representations of the
fundamental groupoid on the Cayley diagram of @ and the category of abelian
coverings of Q.

PROPOSITION 4.1, The stabilizer Gl, is the vertex group of nCayQ at the ver-
tex e.

Proof. Take y =[yq, ¥2, .., ¥, €[nCayQl,., a loop at e.
Then

{e;, R(e;\e; . 1), e,y oOr
(e, R7Ne; 1 \e;), €.1 ) oF
e, L(es1/e;), €0 or
e, L™ (erfeir 1), €1

Vi=

where e, =¢, , =e.
We can denote y; by {e;, m;, (e;, e;,1), e, where j;=R or L and k; = +1,
with the following conventions:
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if =R, k;=1, then mj,.k,.(ei, e;+1) = R(e\e; 1 1);
if =R, k;=—1, then my, (e, e 1) =R7ei \e);
if j=L,k;=1, then mj,-ki(eiyei+1) = L(e;,1/e:);
if jj=L,k;=—1, then m;;(e,e€.,)= L' (e;[e;11).

Let f: [ncayQ]ee —>~G be deﬁned by f([yh Yo, oo ’yn]) = H?=l rﬁ?’:ki(ei’ ei+l):
where 1} (e;, e, ;) € G with the following conventions:

if j =Rk,

Il

1, then 7% (e e:i1) = Rie\eis 1)
if j =Rk, =—1, then M, (ese 1) =R (ei\e);
if =L, k;=1, then i}, (e; e 1) =L(e,. /e);
if j, =L, k,= —1, then m}y (e es1) =L (e;/e;s).

Clearly f'is a well-defined mapping, since if [y1, Y2, -+ -5 P Pic1s Vivas - - - , Vol 18
a simple reduction (ie. y,=y7',) of y (where J;, means y, is omitted), then
v =<e;, mj,»k,—(eia € 1)1, and y, = eisr, My, +1k,+,(ei+1= €;12), € .2y Where
e,.,=¢ and my (ez» €r1) = Jl+1kl+1(el+l’ €12)” . Hence fl(yi,¥2,--->Yi>

yl+1’yl+2’ e ’yn]) Hte’l,z,...,l,z+1,z+2 ,,,,, n} j,-kl-(eza et+1) H?:l j,-kl-(et’ et+1)=f(y)a
where 175 (e, ;1) =m;, e, (€iy 158 e;.») . We can restrict the codomain of f to

be Ge, since e IT7_, ;. (e;, €;.1) =e. Now fis also a homomorphism, since

f(xy) =f([x19x25'--5 m][ylﬂyZ""vynD

m
H el7el+1) Hmjm:/km+,(em+z’em+z+l)

i=1

m n
=<H ﬁ?izi(eisewrl))(n Jm+zm+z(em+”em+l+l))

=/ (),
where
= Ces, M (€5, €01)s €110
and

Yi= <em+ism (em+n em+:+1)s em+i+1>7 with €1 =€ui1 =Cnin+1-

Jm ik < i
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Now f is one to one: Suppose that x is a reduced path in [nCay(),. a
S =f(x1, %2, . . -, m]) = 1p. Then IT7_, #%, (e;, ¢;41) = 15 implies, by the free-
ness of F on {R(g), L(q)lqu} [9, 238], that Jie{l,2,...,n}. 1 (epe,,)=
n, % (€1, €00)7" Applying rg [9, 333], we obtain n,(e,e.) =
P (e €)Y le x;=x71, contradlctlng the reducedness of x. Hence
x =1,,. The homomorphlsm fis also onto, since G, =<T.(9), R.(¢,7), L.(q, N> 19,
244], and T.(q) =/1<e, R(e\g), 9>, (g, L~ \(gle), ]; R.(g,7) =f{e, R(e\), 9>,
{q, R(1), qr>, {qr, R(e\gr) ™', e)); ~L (g.1) =f1<e, L(gle), 4>, {q, L(r),rg>, {rq,L
(rg/e)~', e)]. Hence we conclude G, = [rCayQ]... O

Suppose we have a representation é from G~e to 2. Then using the notation in
[9, 2471, where ple, q) = R(e\e) 'R(e\g), we will define an element Jo =
P: nCayQ — U of A2 as follows:

ple, gz o(e) = M — M ® jle, g9); m — m @ ple, q)

[2, §10.1] or [9, §3.3].

If ae[nCayQ],., then a is written uniquely in the form p(e, q) ~'g.p(e, r)
by taking g, = ple, q)aple,r) '€ G [zCayQ].. by Proposition 4.1, so that
ae: M ® ple, q) > M ® ple, r), an = [p(e, g} ~'(g.0)i(e, r)o], and g, =g,. On ob-
jects, gP =M ® ple, q), so that eP =M ®@ p(e,e) =M ® 1 =M, hence P is well-
defined.

If 1:8,— 6, is a morphism in A%, ie. a CZ-module homomorphism, then
fos oo — o is

M, ®pe,q) > M;®ple,q);  m @ ple,q) —>m f® ple, q)

with  the property that for every g.€ G., (m & ple, Nfag, 8, =
(m f® ple, ))g.0, = (M1 f)g. ® ple, q) = (myg. ® ple, PHfo = (m; ® ple, 9)g.01/2,
that is fug, 6, = g.0, /2, so tht fu is a natural transformation from J;« to d,a. This
leads us to the following proposition.

PROPOSITION 4.2. The category map o gives a functor from ACe 1o W,
Given a representation P: nCayQ — U, define PB = Plicao),.-

_PROPOSITION 4.3. The map f can be extended to a functor from ¢ to
A,

Proof. Take a morphism f: P, - P, in A*“*? under f to /B =f|p 4. Clearly /B
is a morphism in A%, O
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LEMMA 4.4. For each representation P of nCayQ into U, there is a natural
W Cisomorphism h,: P(fa) — P, a collection of -morphisms, one for each object
g of nCayQ:

ZCN #e )P

qPh, M@ ple,q) ——— M ——— 4,

m@ple,qg) = m > mple g)P.

Proof. For every a €[nCay()],,, the following diagram commutes:

qr

qPh,

gPpo —— qP

aPfla l l aP

rPBu —— rp
rPhy,

ie.

- qPhy
M ® ple, q) — Aq

ax = [le.q)a)~ 1 (go DIFe.)] 1 l a = [5(e.q)P1~'go PLie.n)P)

M ® ple, r) —— Ar
rPhp

where a = fle, q)~'g.ple, ), since [m @ (e, QlgPh,a = (mp(e, )P)(ple, )P) ™" x
g.Pple, )P = mg, Ppe, r)P = mg,ap(e, )P = m(g,a)(p(e, No)[ple, o] ~'ple, )P =
[m ® ple, q)]aBalrPh,]. The other direction is proved similarly. O

THEOREM 4.5. The functors o and [ give an equivalence between A% and
QI"CWQ.

Proof. 1t is obvious that «f = 1. To show that B« is equivalent to 1, suppose
f: P, — P, is an W2 morphism, i.e. Vg € O, gf: 4, > 4,
Then the following diagram commutes:

Pyhp,
P, fo ——— P,

B l lf
Pyhp, ’
P,fo —= P,

since [m @ ple, @l afBa)(gP2hp,) = [mple, QP (af Yple, PP,) ™' ® ple, PlaPrhp, =
mple, Q)P (q, 1 )ple, 9)P) "' ble, 9P, = mple, )P\ (qf ) = [m ® file, PUqP hp, )af)-
Analogously, the following diagram commutes:
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-1
Pihp)
P ——— P pa

s l 1/&

Hence the theorem has been proved. O
Summing up all these results, we will have:

THEOREM 4.6. The following categories are equivalent:
(1) AR (Q/Q); (i) A%; (iii) A*“2; (iv) AbCovQ.

Proof. The equivalence between U® (L/Q) and A% is given in [9, 336].
Theorem 4.6 proves the equivalence between A% and A2, For the equivalence

between A2 and A4bhCovQ, we just have to use the corresponding functors
A W2 4bCovQ and A" AbCovQ — W€ as described in [4, 13.30]. O

If we start with an abelian group 4 - Q in Q/Q, then we will get a right
ée-module M=n"'e),ecQ. Applying o, we will get a representation
P:nCayQ —U where A, =M ® ple, q), and ple, Ja: M >M Q@ ple,q); m—>m @
ple, q). If a e[nCayQl,,an: M ® ple, q) > M ® ple,r). Applying A, we have a
covering groupoid ¢: E—nCayQ, where WV(E) =11 ., M,={({v q)lveM,}=
{(m ® ple, q), g)}m e n"'(e)}. This vertex set is exactly the set 4 =1),., M ®
ple, g), of [9, 336], and V(p): V(E) - Q is n: A — Q with operations analogous to
that of [9, 332].

5. The right quasigroup case

The structure of a right quasigroup implies that the mapping R,(g) of Section
3 is a permutation of the underlying set Q at a right quasigroup Q. However, the
corresponding L, (g) need not be a permutation on Q. Let SQ denote the monoid
of all mappings from the set Q into @ with composition as the binary operation.

DEFINITION 5.1. The submonoid of SQ generated by {R(¢), R (), L(g)|q €
Q} is called the multiplication monoid MQ, and the group generated by {R(¢)|g € O}
contained in MQ is called the right multiplication group RMItQ.

DEFINITION 5.2. If P is a right subquasigroup of a right quasigroup Q, then
the relative multiplication monoid MyP of P in Q is the submonoid of MQ

generated by {Ry(p), Ro(p) ™", Lo(p)|p € P}.
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The analogous construction of the Z-universal multiplication monoid
UM(Q, #) of Q in the variety # of all right quasigroups is the relative multiplica-
tion monoid of @ in Q = Q * I, the coproduct in # of Q with the free right
quasigroup on a generator x. We will also have the analogous category A ® %/Q of
@Q-modules in R. Let n: 4 — Q be a Q-module in R. Then there is an %/Q-mor-
phism —:a — A, called subtraction, defined as the following composition:

1x (=) +
*:AXQA —»AXQA——>A.

The kernel of —: & — 4 is a congruence (/o) on o which is a centering congruence
by which a centralizes itself (cf. [9, 315]). Also, we will get analogies to [9, 334] and
[9, 336] as follows:

PROPOSITION 5.3. Let Q be a right quasigroup appearing as a right sub-
quasigroup of a right quasigroup A in R. Then r,: UM(Q,R)->M,Q;
Flg,,....9.)—F,q,-...q,) is a monoid epimorphism from G = UM(Q, R) onto
M, 0.

PROPOSITION 5.4. Let n: A - Q be a Q-module. Identify Q with its image in
A under O. Then for elements a, b of A, one has:

(i) ab=a-bn +an-b;

(ii) alb =albrn —|ar|br - b]/br. ]

The next step is to define the Cayley diagram of a right quasigroup Q.

DEFINITION 5.5. Let Q be a right quasigroup. The Cayley diagram Cay Q of
Q is a directed graph with vertex set Q and labelled arcs. For each x, y in O, there
is an arc {x, R(»), xy)> from x to xy, an arc {x, R~!(y), x/y) from x to x/y, and
an arc {x, L(y), yx) from x to yx. These arcs are labelled R(y), R~!(y) and L(y)
respectively.

We are able to generate a category I;CayQ from CayQ by taking the set Q
as objects and “reduced” paths of CayQ as morphisms. Here “reducedness”
means applying all possible equations <{x, R(}), xy>{xy, R="(y),x>=1 and
(e, R7Y (), x[y><x[y, R(y), x> =1. Consider the groupoid generated by
{{x, R(»), xy>|x, y € @}, which is a subcategory of PCayQ. Tt consists of compo-
nents C; for 7 in an index set I. For each /, pick a representative g, in V(C,). Then
for each g € V(PCayQ), q is connected to exactly one element g of the set {g.liel}
of representatives by a sequence of simple arcs only using the R’s and their inverses.
Let p(g, q) be the reduced path from g to g given by a sequence of labels R*'(x;),
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where x; € Q. Take p(q, ) =1, the empty path at 4. Let (g, g) be the element
corresponding to p(g, q) in UM(Q, R). Then given a Q-module n: 4 — Q in %, we
will get a representation P, = na’ of ﬁCayQ into the category 2 of abelian groups
as follows: gP,={(m q,q):men""(qe)}, p(d, q)o": (m, 4, q) > (m, q,q). If ae
[ﬁCayQ]qr, then a can be rewritten uniquely as a = p(q, q9) ~'[0(q, Q)ap(F, r) ~'p(F, 1),
so that ax’ = p(q, 9o~ '[p(q, @)ap(r, )~ "lp(F, o, where  p(q, q)ap(F,r) '€
[UM(Q, R)]; acts via M ,Q as in Proposition 5.3. Clearly j(g, ¢)ap(F,r)~' is a
homomorphism of abelian groups.

If fi(m:4,-Q)—>(ny:A,—» Q) is a morphism in AR Z/Q, then clearly
fIni (@]l =n5'(g), so that fu': Py=ma' »>ma =P, defined by qP,—qP,;
(m, g, q) — (f(m), g, q), is an abelian group homomorphism.

PROPOSITION 5.6. The assignment o' is a functor from A& R/Q to UPCarQ,
Proof. Clearly for every a e [I;CayQ]q,, the diagram

afy
P — qP,

ab l l aPy

rP,——rP,
7fa
commutes, since (m, §, g)gfa')aP,) = (f(m), , g)aP,) = (mf1p(G, 9)ap(F, r)~'In,,
F, 1) = (mlp(q, Q)ap(F, r) ' £, 7, 1) = (mlp(q, Qap(r, r) 'Iny, 7, )(rfa) = (m, g, g) x
(aPy)(rfx). The other conditions to be a functor are satisfied by o trivially. |

Suppose on the other hand that we have a representation P from fCayQ into
the category U of abelian groups. Let PB": 4 — Q, where

[s]

V= ) I1lIgP

gelailiclt gelq]
={(m 4, 9lgelgl ge{gliel}}

Here [gq] is the path component of ¢ in the groupoid generated by
{<x R(y), xydlx,ye 0}, and  (m g, q)Pf'=gq. Define (m, 4, q) (7 r)=

[mp(d, ) <a, R(r), qr >p(ar, gr) =" +np(F, 1) {r, L(q), qr>p(Gr, qr) ', gr, ¢l and
(m, g4, q)[(n, 7, 1) = (mp(q, 9) — np(F, 1)<r, L(q[r), 451{q, R~\(r), q/r>p(q]r, q/r) ",
qlr, qlr). Also define maps 0p: 0—A4; g—1(0,4,q9) (“zero”), —:A4-4,

(m, q,q) = (—m, q,q) (“negation”), and +:4x,4—4; ((m, 4§, q), " q,q)+—
(m +n, g, q) (“addition”). Then it is easy to see that Pf’ is a Q-module in R.

Let f: P, — P, be a morphism in YL ie. Vq e Q, qf: qP, —qP, is given such
that, for every « e[I;CayQ] the diagram

qrs
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af
qP,— qP,

aPq l l aP,

rP,——rP,
"

commutes. Define

SB (P =my: Ay = Q) = (Pof' =7y 4, = Q);
(ms q5 q) and (mp(q, q)P1qu(q, q)_1P2> q_a C])

PROPOSITION 5.7. The assignment B gives a functor from A2 o
AR %/ Q.

Proof. Tt is an easy exercise to show that fB’ is a right quasigroup homomor-
phism which commutes with O,, —, and +. Furthermore, it is trivial that

(/@B =fP g and 15" =1. O

LEMMA 5.8. For each Q-module n: A — Q in A&, there exists an (AR A/Q)-
natural isomorphism g.: (n: A > Q) = (naf: A’ — Q) given by restrictions n~'(q) —
g x {G} x {g}; m—(mp(g, g)n~", G, q). (Note that indices have been omitted
from the notation here for clarity.)

Proof. The map =ng. is a right quasigroup homomorphism, since for m e
ng) and nen~'(r) we have mmnen~'(qr) and m/nen~'(g/r), so that
mng, - nugy = (mp(g, Pr ", g, q) - (np(#, )", 7, r) = [mp(q, @)n ~' p(q, q)ma<gq, R(r),
qryp(gr, gr) "'ro + np(F, yn = p(F, rymadr, L(q), qr >p(gr, qr) ~'na, gr, qr] = (Im<q,
- R(r), gr) + nlr, L(q), qr)lp(@r, qr) ~'=, Gr, qr) = (mnp(qr, gr)n ", gr, qr) = (mn)ng_,
using Proposition 5.4 (i). Similarly, using Proposition 5.4 (ii), one can show
mng. nng. = (min)ng.. Clearly g’ is an W %/Q morphism, since it commutes
with +, —, and 0,. An analogous result is valid for g, O

LEMMA 5.9. Given a representation P from ﬁCayQ to the category U of abe-
lian groups, there exists a natural isomorphism h,: P — Pfa, defined by

qP - qP x {q} x {q}, m — (mp(q, )P, §, @)

Proof. Suppose a € [PCayQl,.. Then a = p(§, q) '[p(d, q)ap(F, ) ~'1p(7, 1), so
that afa = p(g, g)o ~'[p(q, Qap(r, r)~'1p(F, )a. The diagram

th}, _ _
qP —— GP x {4} x {q}
aP afa

rP——— 7P x {F} x {r}
rPhy,
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commutes, since #(qPh,)apa) = (tp(G, 9P, g, g)(afx) = (tp(q, 9P ~'5(d, q)ap x
# ) ~", /) =pG 9P " (p(g, q)ap(F, r) )P, 7, r) = t(aP)(rPh,). The penultimate
equality here holds since the action of 3(g, )ap(r, )" in [UM(Q, R)], is via M ,Q
by Proposition 5.3, which is the same as that of p(g, g)ap(r, r)P. Analogously, the
diagram
Ph—1
aP (@} x (@} " P

afa a

7P x {F} x {r} —;:Ph,’,*—])rP

commutes. ]

THEOREM 5.10. The functors o’ and ' give an equivalence bewteen U Q (#]Q)
and NP2,

Proof. If f: (ny: 4, > Q) > (n,: 4,— Q) is a morphism in A®Z/Q, then the
diagram

T18n,
n —— mof

s 1 l fu

T, —— Mo
287,
commutes, since m(r,g'm ) faB] = (mp(g. ni', 4, PLAB] = (mp(q, P13, 4, ) =
(mf,p(df, af )m5 ", 4, @) = (mf,p(G, @n5 ', G, @) = mf(ngy,). Analogously, the dia-
gram

&l
mof ——m

s l lf

ol —— 7,
g3

commutes. It is an easy exercise to show that for each morphism f: P, - P,, in

A2 the diagram

Hp H!
Py — P floa — P,

fl 1flifx lf
Py— P, fa " P,

P2 P2

commutes. 0
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Note that if Q is a quasigroup, and n: 4 - Q is a Q-module in L, then by
forgetting the left division structure, we will have a Q-module #: 4 — Q@ in #. The
construction of a’ and f’ specializes in the case of quasigroups, in the sense that the
following diagrams commute:

AS(YQ) —> WHL AR (DYQ) < W

F F F F

QI@(%/Q) TQIIBCayQ Q[@(%/Q) TQIISC’WQ

AS (YY) -~ W A (Q/Q) £ wwe

(N S &

AR (R/Q) — AP@C AR (RQ) —— AP
o i

Here 7 is the functor that gives the equivalences of A X (Q/Q) with A%, while F
and F’ are forgetful functors.
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