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Abstract. Quantum quasigroups and quantum loops are self-
dual objects providing a general framework for the nonassociative
extension of quantum group techniques. Bialgebra reducts of Hopf
algebras are quantum loops, while sufficient conditions are given
for quantum loop structure to augment to a Hopf algebra. The
Moufang-Hopf algebras of Benkart et al., the Hopf quasigroups and
coquasigroups of Klim–Majid, and the coassociative H-bialgebras
of Pérez-Izquierdo (for instance, the universal enveloping algebras
of Sabinin algebras), all form quantum loops. Other quantum
quasigroups offer natural nonassociative extensions of Hopf algebra
constructions: quasigroup algebras, dual quasigroup algebras, and
quantum couples of groups with quasigroups. Further examples
include an algebra of rooted binary trees, and an algebra of skein
polynomials.

This is a preprint version. Please cite the published version as:
J.D.H. Smith, Quantum quasigroups and loops, J. Algebra 456 (2016),
46–75.

Contents

1. Introduction 2
2. Background 3
2.1. Quasigroups and loops 3
2.2. Symmetric monoidal categories 3
2.3. Diagrams 4
2.4. Magmas and bimagmas 6
2.5. Unital structures and Hopf algebras 7
3. Quantum quasigroups and loops 9
3.1. The main definitions 9
3.2. Trivial quasigroups 10
3.3. Combinatorial examples 11
3.4. Quasigroup and loop algebras 14

2010 Mathematics Subject Classification. 16T99, 20N05.
Key words and phrases. Hopf algebra, quantum group, quantum double, quasi-

group, loop, rooted binary tree, skein polynomial, Moufang-Hopf algebra, H-
bialgebra, Sabinin algebra.

1



2 J. D. H. SMITH

3.5. Dual quasigroup and loop algebras 15
3.6. The quantum couple 16
3.7. Linear quasigroups, trees, and Conway algebras 18
4. Quantum loops and Hopf algebras 21
4.1. Hopf algebras as quantum loops 21
4.2. When quantum loops are Hopf algebras 23
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1. Introduction

Over the last few decades, there have been substantial developments
in two parallel extensions of group theory: Hopf algebras (“quantum
groups”) on the one hand (compare [9], for example), and quasigroups
(“nonassociative groups”) on the other (compare [13], for example).
More recently, there have been some initial moves toward a unification
of these two topics [1, 4, 6], although none of the nonassociative objects
proposed up to now have been able to maintain the self-duality of Hopf
algebras.

The aim of the current paper is to introduce a broad, natural, and
self-dual framework for the unification of Hopf algebras and quasi-
groups, namely quantum quasigroups and loops. A quantum quasi-
group (Definition 3.1) is a bimagma (A,∇,∆), with a multiplication
∇ : A⊗A→ A and a comultiplication ∆: A→ A⊗A that are mutually
homomorphic, on which the two dual composites (∆⊗1A)(1A⊗∇) and
(1A ⊗∆)(∇⊗ 1A) are invertible.1 Quantum loops (Definition 3.2) are
biunital versions (A,∇,∆, η, ε) of quantum quasigroups.

Proposition 4.1 shows that the bimonoid reduct (A,∇,∆, η, ε) of a
Hopf algebra (A,∇,∆, η, ε, S) is a quantum loop, while Theorem 4.5
gives sufficient conditions for quantum loop structure to augment to a
Hopf algebra. Corollary 4.2 shows that the Moufang-Hopf algebras of
Benkart et al. [1] are quantum loops, while Corollary 4.3 identifies the
Hopf quasigroups and coquasigroups of Klim and Majid [4] as quan-
tum loops. Again, §4.3 explores the relationships between quantum
loops and the H-bialgebras of Pérez-Izquierdo [6]. In particular, it is
observed (in Example 4.4 and Corollary 4.9 respectively) that the uni-
versal enveloping algebras of Mal’tsev algebras and of Sabinin algebras
(or “hyperalgebras”) form quantum loops.

1Algebraic notation is used here and throughout the paper, with functions to
the right of, or as superfixes to, their arguments. Thus compositions are read from
left to right. These conventions minimize the proliferation of brackets.
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Quantum quasigroups and loops are presented within the general
context of a symmetric monoidal category. In the combinatorial setting
of the category of sets under the Cartesian product, quantum loops
just correspond to loops, while finite quantum quasigroups comprise
quasigroups equipped with an ordered pair of automorphisms (§3.3).
In categories of vector spaces under tensor product, among others, there
are quantum quasigroup and loop extensions of familiar Hopf algebra
constructions, such as group algebras (§3.4), dual group algebras (§3.5),
and the quantum double of a group (§3.6). Quantum quasigroups in the
symmetric monoidal category of abelian groups under the direct sum
are studied in §3.7. These objects include an algebra of rooted binary
trees (Example 3.43), and a “Conway algebra” of skein polynomials of
links (Example 3.44).

Background material on quasigroups and loops, symmetric monoidal
categories, magmas, bimagmas and Hopf algebras is provided in §2. For
concepts and notational conventions not otherwise covered directly in
the paper or its references, readers are advised to consult [14].

2. Background

2.1. Quasigroups and loops. Quasigroups may be defined combi-
natorially or equationally. Combinatorially, a quasigroup (Q, ·) is a
set Q equipped with a binary multiplication operation denoted by ·
or simple juxtaposition of the two arguments, in which specification
of any two of x, y, z in the equation x · y = z determines the third
uniquely. A loop is a quasigroup Q with an identity element e such
that e · x = x = x · e for all x in Q. Groups are examples of loops.
An important nonassociative example is provided by the set of nonzero
octonions under multiplication. Immediate examples of quasigroups
which are not loops are provided by abelian groups under subtraction.

Equationally, a quasigroup (Q, ·, /, \) is a set Q equipped with three
binary operations of multiplication, right division / and left division \,
satisfying the identities:

(2.1)
(SL) x · (x\z) = z ; (SR) z = (z/x) · x ;
(IL) x\(x · z) = z ; (IR) z = (z · x)/x .

If x and y are elements of a group (Q, ·), the left division is given by
x\y = x−1y, with x/y = xy−1 as right division. For an abelian group
considered as a combinatorial quasigroup under subtraction, the right
division is addition, while the left division is subtraction.

2.2. Symmetric monoidal categories. The most general setting for
the structures examined in this paper is a symmetric monoidal category
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(or “symmetric tensor category” — compare [16, Ch. 11]) (V,⊗,1).
The standard example is provided by the category K of vector spaces
over a field K. More general concrete examples are provided by vari-
eties V of entropic (universal) algebras, algebras on which each (funda-
mental and derived) operation is a homomorphism (compare [3, 10]).
These include the category Set of sets, the category of pointed sets,
the category R of (right) modules over a commutative, unital ring R,
the category of commutative monoids, and the category of semilattices.

In a monoidal category (V,⊗,1), there is an object 1 known as the
unit object. For example, the unit object of K is the vector space K.
For objects A and B in a monoidal category, a tensor product object
A ⊗ B is defined. For example, if U and V are vector spaces over K
with respective bases X and Y , then U ⊗ V is the vector space with
basis X × Y , written as {x ⊗ y | x ∈ X, y ∈ Y }. There are natural
isomorphisms with components

αA,B;C : (A⊗B)⊗C → A⊗ (B⊗C) , ρA : A⊗1→ A , λA : 1⊗A→ A

satisfying certain coherence conditions guaranteeing that one may as
well regard these isomorphisms as identities [16, p.67]. Thus the brack-
eting of repeated tensor products is suppressed in this paper, although
the natural isomorphisms ρ and λ are retained for clarity in cases such
as the unitality diagram (2.2) below. In the vector space example,
adding a third space W with basis Z, one has

αU,V ;W : (x⊗ y)⊗ z 7→ x⊗ (y ⊗ z)

for z ∈ Z, along with ρU : x⊗ 1 7→ x and λU : 1⊗ x 7→ x for x ∈ X.
A monoidal category (V,⊗,1) is symmetric if there is a given natural

isomorphism with twist components τA,B : A ⊗ B → B ⊗ A such that
τA,BτB,A = 1A⊗B [16, pp.67–8]. One uses τU,V : x ⊗ y 7→ y ⊗ x with
x ∈ X and y ∈ Y in the vector space example.

2.3. Diagrams. Let A be an object in a symmetric monoidal category
(V,⊗,1). Consider the respective associativity and unitality diagrams

(2.2) A⊗ A⊗ A 1A⊗∇ //

∇⊗1A
��

A⊗ A
∇
��

A⊗ A
∇

// A

and A⊗ A
∇

%%JJJJJJJJJJJ A⊗ 1
1A⊗ηoo

ρA
��

1⊗ A

η⊗1A

OO

λA

// A
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in the category V, the respective dual coassociativity and counitality
diagrams

(2.3) A⊗ A⊗ A A⊗ A1A⊗∆oo

A⊗ A

∆⊗1A

OO

A

∆

OO

∆
oo

and A⊗ A 1A⊗ε //

ε⊗1A
��

A⊗ 1

1⊗ A A

∆

eeJJJJJJJJJJJ

λ−1
A

oo

ρ−1
A

OO

in the category V, the bimagma diagram

(2.4) A
∆

))SSSSSSSSSSSSSSSSS

A⊗ A

∆⊗∆

��

∇
55kkkkkkkkkkkkkkkkk

**TTTTTTTTTTTTTTTTTT A⊗ A

A⊗ A⊗ A⊗ A
1A⊗τ⊗1A

//

44jjjjjjjjjjjjjjjjjj
A⊗ A⊗ A⊗ A

∇⊗∇

OO

in the category V, the biunital diagram

(2.5) 1⊗ 1
∇ // 1 1

η
����������

∆ //1oo 1⊗ 1

η⊗η
��

A⊗ A ∇ //

ε⊗ε

OO

A
∆ //

ε

__>>>>>>>>

A⊗ A
in the category V, and the antipode diagram

(2.6) A⊗ A S⊗1A // A⊗ A

∇

��66666666666666

A
ε //

∆

CC��������������

∆

��66666666666666 1 η
// A

A⊗ A
1A⊗S

// A⊗ A

∇

CC��������������

in the category V, all of which are commutative diagrams. The arrow
across the bottom of the bimagma diagram (2.4) makes use of the twist
isomorphism τA,A or τ : A⊗ A→ A⊗ A.
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2.4. Magmas and bimagmas. This paragraph and its successor col-
lect a number of basic definitions of various structures and homomor-
phisms between them.

Definition 2.1. Let V be a symmetric monoidal category.

(a.1) A magma in V is a V-object A with a V-morphism

∇ : A⊗ A→ A

known as multiplication.
(a.2) Let A and B be magmas in V. Then a magma homomorphism

f : A→ B is a V-morphism such that the diagram

A

f

��

A⊗ A
f⊗f
��

∇oo

B B ⊗B
∇

oo

commutes.
(b.1) A comagma in V is a V-object A with a V-morphism

∆: A→ A⊗ A
known as comultiplication.

(b.2) Let A and B be comagmas in V. A comagma homomorphism
f : A→ B is a V-morphism such that the diagram

B
∆ // B ⊗B

A

f

OO

∆
// A⊗ A

f⊗f

OO

commutes.
(c.1) A bimagma (A,∇,∆) in V is a magma (A,∇) and comagma

(A,∆) in V such that the bimagma diagram (2.4) commutes.
(c.2) Let A and B be bimagmas in V. A bimagma homomorphism

f : A → B is a magma and comagma homomorphism between
bimagmas A and B.

Remark 2.2. (a) Commuting of the bimagma diagram (2.4) in a
bimagma (A,∇,∆) means that

∆: (A,∇)→
(
A⊗ A, (1A ⊗ τ ⊗ 1A)(∇⊗∇)

)
is a magma homomorphism (commuting of the upper-left solid and
dotted quadrilateral), or equivalently, that

∇ :
(
A⊗ A, (∆⊗∆)(1A ⊗ τ ⊗ 1A)

)
→ (A,∆)
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is a comagma homomorphism (commuting of the upper-right solid and
dotted quadrilateral).

(b) If V is an entropic variety of universal algebras (compare [3, 10]),
the comultiplication of a comagma in V may be written as

(2.7) ∆: A→ A⊗ A; a 7→
(
(aL1 ⊗ aR1) . . . (aLna ⊗ aRna )

)
wa

in a universal-algebraic version of the well-known Sweedler notation.
In (2.7), the tensor rank of the image of a (or any such general element
of A⊗A) is the smallest arity na of the derived word wa expressing the
image (or general element) in terms of elements of the generating set
{b ⊗ c | b, c ∈ A} for A ⊗ A. A more compact but rather less explicit
version of Sweedler notation, generally appropriate within any concrete
monoidal category V, is a∆ = aL ⊗ aR, with the understanding that
the tensor rank of the image is not implied to be 1.

(c) As with quasigroups (§2.1), magma multiplication on an object
A of a concrete monoidal category is often denoted by juxtaposition:
(a⊗ b)∇ = ab, or with a · b as an infix notation, for elements a, b of A.

Definition 2.3. Suppose that A is an object in a symmetric monoidal
category V.

(a) A magma (A,∇) is commutative if τ∇ = ∇. Thus if V is
concrete, this may be written in the usual form ba = ab for
a, b ∈ A.

(b) A comagma (A,∆) is cocommutative if ∆τ = ∆. In Sweedler
notation: aR ⊗ aL = aL ⊗ aR for a ∈ A.

(c) A magma (A,∇) is associative if the associativity diagram (2.2)
commutes. In the concrete case, one often writes ab · c = a · bc,
with · binding less strongly than juxtaposition, for a, b, c in A.

(d) A comagma (A,∆) is coassociative if the coassociativity dia-
gram (2.3) commutes. In Sweedler notation: aLL⊗ aLR⊗ aR =
aL ⊗ aRL ⊗ aRR for a ∈ A.

Remark 2.4. In a bimagma (A,∇,∆), the concepts of Definition 2.3
may be applied to the respective magma and comagma reducts of A.

2.5. Unital structures and Hopf algebras.

Definition 2.5. Let V be a symmetric monoidal category.

(a.1) A magma (A,∇) in V is unital if it has a V-morphism η : 1→ A
such that the unitality diagram (2.2) commutes.

(a.2) Let A and B be unital magmas in V. Then a unital magma
homomorphism f : A → B is a magma homomorphism such
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that the diagram

A

f
��

1
ηoo

1
��

B 1η
oo

commutes.
(b.1) A comagma (A,∆) in V is counital if it has a V-morphism

ε : A→ 1 such that the counitality diagram (2.3) commutes.
(b.2) Let A and B be comagmas in V. Then a counital comagma

homomorphism f : A → B is a comagma homomorphism such
that the diagram

B
ε // 1

A

f

OO

ε
// 1

1

OO

commutes.
(c.1) A biunital bimagma (A,∇,∆, η, ε) is a unital magma (A,∇, η)

and counital comagma (A,∆, ε) such that (A,∇,∆) is a bi-
magma, and the biunital diagram (2.5) commutes.

(c.2) A biunital bimagma homomorphism f : A → B is a unital
magma and counital comagma homomorphism between biuni-
tal bimagmas A and B.

Remark 2.6. Joint commuting of the bimagma diagram (2.4) and
biunital diagram (2.5) in a biunital bimagma (A,∇,∆, η, ε) means that
∆: A→ A⊗A is a unital magma homomorphism, or equivalently, that
∇ : A⊗ A→ A is a counital comagma homomorphism.

Definition 2.7. Let V be a symmetric monoidal category.

(a.1) A monoid in V is an associative unital magma in V.
(a.2) Let A and B be monoids in V. Then a unital magma homo-

morphism f : A→ B is a monoid homomorphism.
(b.1) A comonoid in V is a coassociative counital comagma in V.
(b.2) Let A and B be comonoids in V. Then a counital comagma

homomorphism f : A→ B is a comonoid homomorphism.
(c.1) A bimonoid in V is an associative, coassociative, and biunital

bimagma.
(c.2) Let A and B be bimonoids in V. Then a biunital bimagma

homomorphism f : A→ B is a bimonoid homomorphism.
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(d) A Hopf algebra in V is a bimonoid A in V equipped with a
V-morphism S : A → A known as the antipode, such that the
antipode diagram (2.6) commutes.

Remark 2.8. In the Sweedler notation of Remark 2.2, the commuting
of (2.6) becomes

(2.8) aLSaR = aεη = aLaRS

for a ∈ A.

3. Quantum quasigroups and loops

3.1. The main definitions.

Definition 3.1. Consider a symmetric monoidal category (V,⊗,1).
Then a quantum quasigroup (A,∇,∆) in V is a bimagma (A,∇,∆) in
V for which the left composite morphism

(3.1) A⊗ A ∆⊗1A // A⊗ A⊗ A 1A⊗∇ // A⊗ A
and its dual right composite

(3.2) A⊗ A 1A⊗∆ // A⊗ A⊗ A ∇⊗1A // A⊗ A
are both invertible.

Definition 3.2. Suppose that (A,∇,∆, η, ε) is a biunital bimagma in
a symmetric monoidal category (V,⊗,1). If (A,∇,∆) is a quantum
quasigroup in V, then (A,∇,∆, η, ε) is said to be a quantum loop.

Remark 3.3. (a) The concepts of quantum quasigroup and quantum
loop are self-dual.

(b) Quantum loops as presented in Definition 3.2 may be regarded as
answers to the challenge (“However, concrete . . . formulation deserve[s]
further research”) issued by Pérez-Izquierdo in [6].

(c) In the bimonoid context, the left and right composites are often
described as fusion operators or Galois operators.

Since quantum quasigroups and loops are formulated entirely in the
language of symmetric monoidal categories, one immediately has the
following result. (Compare [16, p.86] for the concept of a symmetric
monoidal functor.)

Proposition 3.4. Suppose that (V,⊗,1V) and (W,⊗,1W) are sym-
metric monoidal categories. Let F : V→W be a symmetric monoidal
functor.
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(a) If (A,∇,∆) is a quantum quasigroup in V, then (AF,∇F ,∆F )
is a quantum quasigroup in W.

(b) Suppose that (A,∇,∆, η, ε) is a quantum loop in V. Then
(AF,∇F ,∆F , ηF , εF ) is a quantum loop in W.

Noting that the conditions of (co)commutativity and (co)associativity
are also formulated entirely in the language of symmetric monoidal cat-
egories, one obtains the following.

Corollary 3.5. In the context of Proposition 3.4, validity of any one
of the commutativity, cocommutativity, associativity, or coassociativity
conditions for the quantum quasigroup (A,∇,∆) implies validity of the
corresponding condition for the quantum quasigroup (AF,∇F ,∆F ).

3.2. Trivial quasigroups. Each symmetric monoidal category con-
tains at least one (isomorphism class of) quantum quasigroup or loop.

Lemma 3.6. Let (V,⊗,1) be a symmetric monoidal category. Then
(1, 11, 11, 11, 11) is a quantum loop in V.

Definition 3.7. The quantum loop of Lemma 3.6 is called the trivial
quantum loop in V. Its reduct (1, 11, 11) is called the trivial quantum
quasigroup in V.

It may happen that a nontrivial symmetric monoidal category admits
no nontrivial quantum quasigroups. Define FinSet to be the category
of finite sets and functions between them.

Proposition 3.8. Let (FinSet,+,Ø) be the symmetric monoidal cat-
egory of finite sets under disjoint union. If (A,∇,∆) is a quantum
quasigroup in (FinSet,+,Ø), then it is trivial.

Proof. The comultiplication ∆: A→ A+ A partitions A into two dis-
joint subsets: the respective preimages AL and AR of the first and
second summands of A+ A. Consider the left composite morphism

(3.3) A+ A
∆+1A // A+ A+ A

1A+∇ // A+ A

of (3.1) on (A,∇,∆). Since (3.3) is invertible in FinSet, it is surjective.
In particular, the entire first summand A of the codomain of (3.3)
lies in the image of (3.3). This forces the image of the restriction
∆: AL → A + A to include the entire first summand of its codomain,
which in turn forces AL = A. Dual consideration of the right composite
(3.2) on (A,∇,∆) forces AR = A. Thus |A| = |AL|+ |AR| = |A|+ |A|
and |A| = 0. �
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3.3. Combinatorial examples. In this section, the basic symmetric
monoidal category (V,⊗,1) is taken to be (Set,×,>), the category
of sets with the Cartesian product × and singleton set > = {1} (a
terminal object of Set), with the twist symmetry

τ : A×B → B × A; (a, b) 7→ (b, a)

and identifications such as ρA : A × > → A; (a, 1) 7→ a. In order to
facilitate reference to the diagrams of §2.3, the direct product of two
sets A and B will be written in monoidal category notation as A⊗B,
while an ordered pair (a, b) ∈ A × B will be written as an element
a ⊗ b of A ⊗ B, of tensor rank 1. In this case, the Sweedler notation
∆: A → A ⊗ A; a 7→ aL ⊗ aR of Remark 2.2(b) corresponds directly
with a pair of functions L : A→ A; a 7→ aL and R : A→ A; a 7→ aR.

Lemma 3.9. If (A,∆, ε) is a counital comagma in Set, then the co-
multiplication is the diagonal embedding ∆: a 7→ a⊗a. Conversely, the
diagonal embedding on each set A yields a cocommutative, coassociative
counital comagma (A,∆, ε) in Set.

Corollary 3.10. Quantum loops and counital quantum quasigroups in
(Set,×,>) are cocommutative and coassociative.

The lemma leads to a direct identification of quantum loops and
counital quantum quasigroups in Set.

Proposition 3.11. Consider the category Set of sets and functions,
with the symmetric monoidal category structure (Set,×,>).

(a) Counital quantum quasigroups in Set are equivalent to quasi-
groups.

(b) Quantum loops in Set are equivalent to loops.

Proof. (a): Let (A,∇,∆, ε) be a counital quantum quasigroup in Set.
By Lemma 3.9, the left composite function (3.1) takes the form

(3.4) a⊗ b �∆⊗1A // a⊗ a⊗ b �1A⊗∇ // a⊗ (a · b)

for a, b ∈ A. Thus the inverse function may be written as

(3.5) c⊗ (c\d) c⊗ d�oo

for c, d ∈ A and a binary operation (c, d) 7→ c\d on A. The mutual
inverse relationship between (3.4) and (3.5) yields the identities (SL)
and (IL) of (2.1) on A. In dual fashion, inversion of the right com-
posite (3.2) yields a binary operation (c, d) 7→ c/d on A satisfying the
identities (SR) and (IR) of (2.1). Thus (A, ·, /, \) is a quasigroup.
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Conversely, given a quasigroup (A, ·, /, \), one may define

∇ : a⊗ b 7→ a · b .

The quasigroup identities (2.1) yield an inverse (3.5) to (3.1), and a dual
inverse to (3.2). The remaining structure is provided by Lemma 3.9,
and verification of the bimagma condition (2.4) is immediate.

(b): If (A,∇,∆, η, ε) is a quantum loop in Set, the counital quantum
quasigroup reduct (A,∇,∆, ε) yields a quasigroup (A, ·, /, \) by (a).
The unit η : > → A selects an element e of A, which then becomes an
identity element for (A, ·, /, \) by virtue of the unitality.

Conversely, given a loop (A, ·, /, \, e), the quasigroup reduct (A, ·, /, \)
specifies a counital quantum quasigroup (A,∇,∆, ε) by (a). Defining
η : 1 7→ e with the identity element e then makes (A,∇,∆, η, ε) a biu-
nital bimagma. �

General quantum quasigroups in Set are subtler. In the finite case,
they correspond to certain quasigroups with operators. Treatment of
the infinite case is deferred to a later work.

Theorem 3.12. Quantum quasigroups in (FinSet,×,>) are equiva-
lent to triples (A,L,R) consisting of a quasigroup A with an ordered
pair (L,R) of automorphisms of A.

Proof. Let (A,∇,∆) be a quantum quasigroup in FinSet, with co-
magma ∆: a 7→ aL ⊗ aR. Commuting of the bimagma diagram (2.4)
shows that the functions L : A→ A and R : A→ A are endomorphisms
of the magma (A,∇). The left composite function (3.1) takes the form

(3.6) a⊗ b �∆⊗1A // aL ⊗ aR ⊗ b �1A⊗∇ // aL ⊗ (aR · b)

for a, b ∈ A. Its invertibility implies that L is surjective. Dually, R is
surjective. Since A is finite, it follows that both L and R are invertible.

The inverse function to the left composite (3.6) may now be written
as

(3.7) cL
−1 ⊗ (cL

−1R\d) c⊗ d�oo

for c, d ∈ A and a binary operation (x, y) 7→ x\y on A. The mutual
inverse relationship between (3.6) and (3.7) yields the identities (SL)
and (IL) of (2.1) on A. Similarly, inversion of the right composite (3.2)
provides a binary operation (x, y) 7→ x/y on A satisfying the identities
(SR) and (IR) of (2.1). Thus (A, ·, /, \) is a quasigroup equipped with
automorphisms L and R.
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Conversely, given a quasigroup (A, ·, /, \) with automorphisms L and
R, define a multiplication ∇ : A⊗A→ A; a⊗ b 7→ ab and comultiplica-
tion ∆: A→ A⊗ A; a 7→ aL ⊗ aR. It is then straightforward to verify
that (A,∇,∆) is a quantum quasigroup in Set. �

Since finiteness of the underlying set A was not assumed in the con-
cluding paragraph of the proof of Theorem 3.12, one may immediately
observe the following.

Corollary 3.13. Given a quasigroup (A, ·, /, \) with automorphisms
L and R, define a multiplication ∇ : A ⊗ A → A; a ⊗ b 7→ ab and
comultiplication ∆: A → A ⊗ A; a 7→ aL ⊗ aR. Then (A,∇,∆) is a
quantum quasigroup in Set.

Corollary 3.14. Let (A,∇,∆) be a quantum quasigroup in FinSet,
with corresponding triple (A,L,R).

(a) The quantum quasigroup (A,∇,∆) is commutative if and only
if the quasigroup A is commutative.

(b) The quantum quasigroup (A,∇,∆) is associative if and only if
the quasigroup A is associative, i.e., is empty or a group.

(c) The quantum quasigroup (A,∇,∆) is cocommutative if and only
if the automorphisms L and R coincide.

Proposition 3.15. Let (A,∇,∆) be a coassociative quantum quasi-
group in FinSet, with corresponding triple (A,L,R). Then (A,∇,∆)
is cocommutative, with L = R = 1A.

Proof. By Definition 2.3(d), one has L2 = L and R2 = R. Since L and
R are automorphisms, it follows that L = 1A = R and (A,∇,∆) is
cocommutative. �

Example 3.16. Consider the symmetric group S3 of degree 3, gener-
ated by transpositions λ and ρ. Let L and R be the respective con-
jugations of S3 by λ and ρ. Then the quantum quasigroup in Set
corresponding to the triple (S3, L,R) is associative, but neither com-
mutative, nor cocommutative, nor coassociative. On the other hand,
the quantum quasigroup in Set corresponding to the triple (S3, L, L)
is associative and cocommutative, but neither commutative, nor coas-
sociative.

Example 3.17. Consider the quasigroup (Z/3,−) of integers mod-
ulo 3 under subtraction. Take L : Z/3 → Z/3; r 7→ −r and R =
1Z/3 . Then the quantum quasigroup in Set corresponding to the triple(
(Z/3,−), L,R

)
is neither commutative, nor associative, nor cocommu-

tative, nor coassociative.



14 J. D. H. SMITH

3.4. Quasigroup and loop algebras. For simplicity, the results of
this section are presented within the category S of modules over a
commutative, unital ring S, construed as a symmetric tensor category
(S,⊗, S) under the tensor product of modules. Discussion of extensions
to more general entropic varieties is confined to Remark 3.20.

Proposition 3.18. Let Q be a quasigroup. Suppose that QS is the
free S-module over Q. Define a magma (QS,∇) by the free extension
of the quasigroup multiplication ∇ : Q⊗Q→ Q;x⊗ y 7→ xy. Define a
comagma (QS,∆) by the free extension of the diagonal ∆: q 7→ q⊗q for
q in Q. Then (QS,∇,∆) is a cocommutative, coassociative quantum
quasigroup in S.

Proof. The left composite (3.1) takes the form

x⊗ y �∆⊗1QS// x⊗ x⊗ y �1QS⊗∇// x⊗ (x · y)

for x, y ∈ Q. The inverse is given by

u⊗ (u\v) u⊗ v�oo

for u, v ∈ Q. Invertibility of the right composite (3.2) is dual. Com-
muting of the bimagma diagram (2.4) is straightforward. �

Definition 3.19. The quantum quasigroup QS of Proposition 3.18 is
known as the quasigroup algebra of Q over the ring S.

Remark 3.20. If V is an entropic variety, with free algebra functor
V : Set → V, then an analogous quasigroup algebra in V may be
constructed on the free V-algebra QV over the set Q. It is obtained
by applying Proposition 3.4, with the free V-algebra functor V , to the
quantum quasigroup in Set corresponding under Theorem 3.12 to the
triple (Q, 1Q, 1Q). Note that Proposition 3.18 actually represents the
special case where V = S. More generally, taking a triple (Q,L,R)
with automorphisms L and R of Q yields a twisted quasigroup algebra
in V.

Corollary 3.21. If (Q, ·, e) is a loop, then the quasigroup algebra
(QS,∇,∆) of Q over the ring S admits an augmentation to a quantum
loop (QS,∇,∆, η, ε) in S.

Proof. The counit ε : QS → S is the free extension of ε : Q→ S;x 7→ 1.
The unit η : S → QS is the free extension of η : {1} → QS; 1 7→ e.
Verification of the unitality, counitality, and biunitality conditions is
straightforward. �
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Definition 3.22. The quantum loop QS of Corollary 3.21 is known as
the loop algebra of Q over the ring S.

Example 3.23. If Q is a group, then the loop algebra of Q over a field
K is (a reduct of) the usual group Hopf algebra (compare [5, Ex. 1.6]).

Example 3.24. If Q is a Moufang loop, then the loop algebra of Q
over a field K, in the sense of Definition 3.22, is (a reduct of) the loop
algebra of Q in the sense of [1, p.1004]. This example provides instances
of Corollaries 4.2 and 4.3 below.

3.5. Dual quasigroup and loop algebras. The results of this sec-
tion are again presented within the category S of modules over a com-
mutative, unital ring S, taken as a symmetric tensor category under
the tensor product of modules. For a finite set Q, recall that the free
S-module over Q is modeled by the set SQ of functions from Q to S,
under the pointwise module structure. A basis is provided by the delta
functions δq : Q→ S with

(3.8) xδq =

{
1 if x = q;

0 otherwise

for elements x, q of Q. With the Kronecker delta δx,q to denote the
element 1 of S if x = q, and 0 otherwise, one may rewrite (3.8) as
xδq = δx,q. The Kronecker delta notation is used below, where its
comma will become essential to distinguish it from instances of a delta
function δxq for the product xq of elements x and q of a quasigroup Q.

Proposition 3.25. Let Q be a finite quasigroup. Define a magma
(SQ,∇) by pointwise multiplication of S-valued functions. Define a
comagma (SQ,∆) by the free extension of the factorization

∆: δq 7→
∑

qLqR=q

δqL ⊗ δqR

for an element q of Q. Then (SQ,∇,∆) is a commutative, associative
quantum quasigroup in S.

Proof. The left composite (3.1) takes the form

δx ⊗ δy �∆⊗1
SQ//
∑

xLxR=x δxL ⊗ δxR ⊗ δy
�1SQ⊗∇// δx/y ⊗ δy

for x, y ∈ Q. Note that xR = y and xLxR = x imply xL = x/xR = x/y.
The inverse is given by

δuv ⊗ δv δu ⊗ δv�oo
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for u, v ∈ Q, since v = y and u = x/y imply uv = x. Invertibility of
the right composite (3.2) is dual. Commuting of

δp ⊗ δq � ∆⊗∆ //
_

∇
��

∑
pLpR=p

∑
qLqR=q δpL ⊗ δpR ⊗ δqL ⊗ δqR_

1
SQ⊗τ⊗1

SQ

��

δp,qδq_

∆
��

δp,q
∑

qLqR=q δqL ⊗ δqR
∑

pLpR=p

∑
qLqR=q δpL ⊗ δqL ⊗ δpR ⊗ δqR

�
∇⊗∇
oo

for p, q ∈ Q confirms the bimagma condition (2.4). For the bottom line
of the diagram, note that pL = qL and pR = qR are equivalent to p = q
under pLpR = p and qLqR = q. �

Definition 3.26. The quantum quasigroup SQ of Proposition 3.25 is
known as the dual quasigroup algebra of Q over the ring S.

Remark 3.27. If V is an entropic Jónsson-Tarski variety (compare
[10]), with free algebra functor V : Set → V, then an analogous dual
quasigroup algebra in V may be constructed on the free V-algebra QV
over a finite quasigroup Q.

Corollary 3.28. If (Q, ·, e) is a finite loop, then the dual quasigroup
algebra (SQ,∇,∆) of Q over the ring S admits an augmentation to a
quantum loop (SQ,∇,∆, η, ε) in S.

Proof. The counit ε : SQ → S is the delta function δe, while the unit
η : S → SQ maps a scalar s to the constant function Q→ {s}. Verifica-
tion of the unitality, counitality, and biunitality conditions is straight-
forward. �

Definition 3.29. The quantum loop SQ of Corollary 3.28 is known as
the dual loop algebra of Q over the ring S.

Example 3.30. If Q is a finite group, then the dual loop algebra of Q
over a field K is (a reduct of) the usual dual group Hopf algebra.

3.6. The quantum couple. As in the previous two sections, this sec-
tion again works within the category S of modules over a commutative,
unital ring S, regarded as a symmetric tensor category under the tensor
product of modules.

Theorem 3.31. Let G be a (not necessarily finite) group with a (not
necessarily faithful) automorphic right action on a finite quasigroup Q.
Let GQ be the tensor product of the free S-module GS over G with
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the free S-module QS over Q. For g in G and q in Q, write the basic
element g ⊗ q of GQ as g|q. Define a magma (GQ,∇) by the free
extension of the map

(3.9) (f |p⊗ g|q)∇ =

{
fg|q if pg = q;

0 otherwise

for f, g in G and p, q in Q. Define a comagma (GQ,∆) by the free
extension of the factorization

∆: g|q 7→
∑

qLqR=q

g|qL ⊗ g|qR

for g in G and q in Q. Then (GQ,∇,∆) is an associative quantum
quasigroup in S.

Proof. The multiplication is associative, since both (∇ ⊗ 1GQ)∇ and
(1GQ ⊗ ∇)∇ map g1|q1 ⊗ g2|q2 ⊗ g3|q3 to g1g2g3|q3 if q1g2 = q2 and
q2g3 = q3, and to 0 otherwise. (Note that q1g2g3 = q3 if and only if
q1g2 = q2, when q2g3 = q3.)

To show that (GQ,∇,∆) is a bimagma, it is convenient to abbreviate
the multiplication definition (3.9) as (f |p⊗ g|q)∇ = δpg,qfg|q using the
Kronecker delta. Now consider the bimagma diagram (2.4). Using the
abbreviated version of Sweedler notation, one has

f |p⊗ g|q � ∆⊗∆ //
_

∇
��

f |pL ⊗ f |pR ⊗ g|qL ⊗ g|qR
_

1GQ⊗τ⊗1GQ

��

δpg,qfg|q_

∆
��

δpg,qfg|qL ⊗ fg|qR f |pL ⊗ g|qL ⊗ f |pR ⊗ g|qR�
∇⊗∇
oo

for g, h ∈ G, as required. Note that pg = q and pLpR = p imply
pLg · pRg = pg, so pLg = qL and pRg = qR with qLqR = q.

The left composite (3.1) acts as

f |p⊗ g|q �∆⊗1GQ//
∑

pLpR=p f |pL ⊗ f |pR ⊗ g|q
�1GQ⊗∇// f |

(
p/(qg−1)

)
⊗ fg|q

for f, g in G and p, q in Q, since (f |pR ⊗ g|q)∇ is nonzero only for
pRg = q or pR = qg−1, in which case pL = p/(qg−1). Then the basic
action of the inverse function is given as

h|r · sk−1h⊗ h−1k|s h|r ⊗ k|s�oo
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for h, k in G and r, s in Q — note that

p/(s(h−1k)−1) = r ⇔ p = r · sk−1h .

Dually, the right composite (3.2) is invertible. Thus (GQ,∇,∆) is an
associative quantum quasigroup. �

Definition 3.32. The quantum quasigroup GQ of Theorem 3.31 is
known as the quantum couple of G and Q over the ring S.

Example 3.33. If G is the trivial group >, then the quantum couple
>Q reduces to the dual quasigroup algebra SQ.

Example 3.34. If Q is the trivial singleton quasigroup >, then the
quantum couple G> is the quasigroup algebra GS of the group G.

Example 3.35. If Q is a finite group, acting on itself by conjugation,
then the quantum couple (QQ,∇,∆) is essentially (the bimagma reduct
of) the group quantum double studied in [17].

3.7. Linear quasigroups, trees, and Conway algebras. In this
section, the category Z of abelian groups is taken as a symmetric tensor
category (Z,⊕, {0}) under the direct sum (biproduct) ⊕ of abelian
groups.

Lemma 3.36. Let (A,∇) be a magma in (Z,⊕, {0}). Then

(3.10) ∇ : A⊕ A→ A;x⊕ y 7→ xρ + yλ

for endomorphisms ρ, λ of the abelian group A.

Proof. Note that A⊕ A is the coproduct of two copies of A in Z. �

Lemma 3.37. Let (A,∆) be a comagma in (Z,⊕, {0}). Then

(3.11) ∆: A→ A⊕ A;x 7→ xL ⊕ xR

for endomorphisms L,R of the abelian group A.

Proof. Note that A⊕ A is the product of two copies of A in Z. �

Remark 3.38. The expression (3.11) serves as a model for the general
abbreviated version of Sweedler notation established in Remark 2.2(b).

Proposition 3.39. Suppose that an abelian group A carries a magma
structure (3.10) and a comagma structure (3.11). Then (A,∇,∆) is a
bimagma in (Z,⊕, {0}) if and only if the commutation relations

(3.12) λL = Lλ , ρL = Lρ , λR = Rλ , ρR = Rρ

are satisfied by the endomorphisms λ, L, ρ, R of the abelian group A.
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Proof. The bimagma diagram (2.4) takes the form

x⊕ y � ∆⊗∆ //
_

∇
��

xL ⊕ xR ⊕ yL ⊕ yR
_

1A⊕τ⊕1A

��

xρ + yλ
_

∆
��

(xρ + yλ)L ⊕ (xρ + yλ)R

xLρ + yLλ ⊕ xRρ + yRλ xL ⊕ yL ⊕ xR ⊕ yR�
∇⊕∇
oo

for x, y ∈ A. Thus the relations (3.12) are equivalent to commutativity
of the diagram. �

Definition 3.40. A combinatorial quasigroup (A, ·) is linear if there
is an abelian group structure (A,+, 0) with automorphisms ρ, λ such
that

(3.13) x · y = xρ + yλ

for x, y in A.

The following theorem may be regarded as a linear version of the
combinatorial Theorem 3.12, in a sense made precise by Corollary 3.42
below.

Theorem 3.41. Finite quantum quasigroups in (Z,⊕, {0}) are equiv-
alent to triples (A,L,R) consisting of a finite linear quasigroup A with
an ordered pair (L,R) of automorphisms of A.

Proof. Let (A,∇,∆) be a finite quantum quasigroup in (Z,⊕, {0}),
with multiplication as in (3.10) and comultiplication as in (3.11). By
Proposition 3.39, the commutation relations (3.12) are satisfied by the
endomorphisms λ, L, ρ, R of the abelian group A. The invertible left
composite morphism (3.1) takes the form

(3.14) x⊕ y �∆⊕1A // xL ⊕ xR ⊕ y �1A⊕∇ // xL ⊕ (xRρ + yλ)

for x, y ∈ A. Its invertibility implies that L is surjective. Since A is
finite, it follows that L is invertible. Then (x⊕ y)(∆⊕ 1A)(1A ⊕∇) =
0⊕ yλ implies x = 0, so 0⊕ yλ can only be the image of 0⊕ y. Thus λ
is surjective, and since A is finite, it follows that λ is invertible.
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The inverse to the left composite (3.14) is given by

(3.15) uL
−1 ⊕ (v − uL−1Rρ)λ

−1
u⊕ v�oo

for u, v ∈ A, noting that L and λ are automorphisms. Inversion of the
right composite (3.2) is dual, in particular implying that R and ρ are
automorphisms. Thus the multiplication (3.10) on A yields a linear
quasigroup; the commutation relations (3.12) imply that L and R are
quasigroup automorphisms.

Conversely, a linear quasigroup (A, ·) with x · y = xρ + yλ and auto-
morphisms L,R yields a bimagma (A,∇,∆) with multiplication (3.10)
and comultiplication (3.11) by Proposition 3.39. Invertibility of the
left composite (3.1) follows as illustrated above for (3.14) by means of
(3.15). Dually, the right composite (3.2) is invertible. �

Since finiteness of the underlying set A was not assumed in the con-
cluding paragraph of the proof of Theorem 3.41, one may observe the
following.

Corollary 3.42. Consider a triple (A,L,R) comprising a linear quasi-
group A and an ordered pair (L,R) of automorphisms of A. The triple
yields a quantum quasigroup in (Set,×,>) by Corollary 3.13, and also
in (Z,⊕, {0}). Then the former is obtained by applying Proposition 3.4
to the latter, with the underlying set functor Z→ Set.

Example 3.43 (Binary rooted trees and nonassociative powers). Let
〈ρ, λ〉 be the free group over the doubleton {ρ, λ}. Consider the abelian
group reduct A of the integral group algebra Z〈ρ, λ〉. Define abelian
group automorphisms ρ : A → A;x 7→ xρ and λ : A → A;x 7→ xλ.
Under the quasigroup multiplication (3.13), A becomes a linear quasi-
group. The triple (A, 1A, 1A) yields a quantum quasigroup in (Set,×,>)
under Corollary 3.13, and in (Z,⊕, {0}) under Corollary 3.42. Now the
submagma generated by {1} is free [2, Th. III.5.4], [13, Th. 11.1]. Thus
these quantum quasigroups embrace an algebra of binary rooted trees
or nonassociative powers.

Example 3.44 (Entropic quasigroups and Conway algebras). If the
automorphisms ρ and λ commute, a linear quasigroup 3.13 is entropic.
In particular, consider the polynomial ring Z[ρ, ρ−1, λ, λ−1] over a pair
of invertible indeterminates ρ and λ, i.e., the integral group algebra of
the free abelian group over the doubleton {ρ, λ}. Consider the abelian
group reduct A of Z[ρ, ρ−1, λ, λ−1]. As in Example 3.43, define abelian
group automorphisms ρ : A → A;x 7→ xρ and λ : A → A;x 7→ xλ.
With the quasigroup multiplication (3.13), A forms an entropic linear
quasigroup, and in particular an equational quasigroup (A, ·, /, \). Let
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% denote the opposite right division, with x%y = y/x for x, y ∈ A. The
structure (A,%, \) is an entropic right quasigroup, satisfying the iden-
tities x%(x\y) = y = x\(x%y). Now consider the quantum quasigroup
determined by the triple (A, 1A, 1A) in (Set,×,>) by Corollary 3.13,
or in (Z,⊕, {0}) by Corollary 3.42. Then the right quasigroup struc-
ture S in (A,%, \) generated by the set {1(∆∇)n | 0 < n ∈ Z} forms
a Conway algebra in the sense of knot theory (compare [8, 12]). Here
{1(∆∇)n | 0 < n ∈ Z} is the set of skein polynomials of unlinks, while
the skein polynomial of an arbitrary classical oriented link is an element
of S.

Example 3.45 (Representations of groups with two generators). The
linear quasigroup constructions of this section work more generally in
the symmetric tensor category (S,⊕, {0}) of modules over a commu-
tative, unital ring S, under the biproduct ⊕ of S-modules. Let A
be a faithful representation of a group G in the category S of mod-
ules. Suppose that the group G is generated by two elements r and l,
with corresponding representing S-module automorphisms ρ and λ of
A. Then the structure of the representation is encoded in the linear
quasigroup given by the multiplication (3.13) on A.

4. Quantum loops and Hopf algebras

4.1. Hopf algebras as quantum loops. Ostensibly, Proposition 4.1
below shows that a Hopf algebra in a concrete symmetric monoidal
category V is a quantum loop in V, by means of an elementary proof
that lends itself to the Moufang-Hopf case treated in Corollary 4.2 and
the Hopf quasigroup or coquasigroup cases treated in Corollary 4.3. A
diagrammatic version of the proof of Proposition 4.1 (along the lines
of [15, Prop. 1.2]) extends the result to arbitrary symmetric monoidal
categories V.

Proposition 4.1. Suppose that V is a concrete symmetric monoidal
category. Then if (A,∇,∆, η, ε, S) is a Hopf algebra in V, the reduct
(A,∇,∆, η, ε) is a quantum loop in V.

Proof. The biunital bimagma structure in (A,∇,∆, η, ε) is taken di-
rectly from the Hopf algebra. Thus the main task is to demonstrate
the invertibility of the composites (3.1) and (3.2). By the coassociativ-
ity of the comultiplication, one has

(4.1) xLL ⊗ xLR ⊗ xR = xL ⊗ xRL ⊗ xRR

for x in A — compare Definition 2.3(d). Then for an element y in
A, tensoring the equation (4.1) on the right with y and applying the
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function (1A ⊗ 1A ⊗ S ⊗ 1A)(1A ⊗ 1A ⊗∇)(1A ⊗∇) to each side yields

xLL ⊗ xLRxRSy = xL ⊗ xRLxRRSy = xL ⊗ xRεηy(4.2)

= xLxRεη ⊗ y = x⊗ y ,

using (2.8) and counitality for the second and final equalities respec-
tively. Thus(

(∆⊗ 1A)(1A ⊗ S ⊗ 1A)(1A ⊗∇)
)(

(∆⊗ 1A)(1A ⊗∇)
)

= 1A⊗A .

Again, for y in A, tensoring both sides of (4.1) on the right with y and
applying (1A ⊗ S ⊗ 1A ⊗ 1A)(1A ⊗ 1A ⊗∇)(1A ⊗∇) gives

xLL ⊗ xLRSxRy = xL ⊗ xRLSxRRy = xL ⊗ xRεηy(4.3)

= xLxRεη ⊗ y = x⊗ y
as before, so(

(∆⊗ 1A)(1A ⊗∇)
)(

(∆⊗ 1A)(1A ⊗ S ⊗ 1A)(1A ⊗∇)
)

= 1A⊗A .

It follows that the left composite (∆⊗ 1A)(1A ⊗∇) is invertible. Veri-
fication of the invertibility of the right composite (1A ⊗∆)(∇⊗ 1A) is
dual. �

The proof of Proposition 4.1 may be applied, mutatis mutandis, to
yield the following results, which were foreshadowed by Example 3.24.
Compare [1, Defn. 1.2] for the concept of a Moufang-Hopf algebra.

Corollary 4.2. Let (A,∇,∆, η, ε, S) be a Moufang-Hopf algebra. Then
the reduct (A,∇,∆, η, ε) is a quantum loop.

Proof. Replace the Hopf algebra computation (4.2) by

xLL ⊗ xLR(xRSy) = xL ⊗ xRL(xRRSy) = xL ⊗ xRεηy
using brackets for nonassociative multiplications. Similarly, the com-
putation

xLL ⊗ xLRS(xRy) = xL ⊗ xRLS(xRRy) = xL ⊗ xRεηy
replaces (4.3). In each case, the second equalities are applications of
identities involving the antipode S within the definition of a Moufang-
Hopf algebra. �

As further extensions of Hopf algebras, see [4, Defn. 4.1] for the
concept of a Hopf quasigroup, and [4, Defn. 5.1] for the dual concept
of a Hopf coquasigroup.

Corollary 4.3. Let (A,∇,∆, η, ε, S) be a Hopf quasigroup or a Hopf
coquasigroup. Then the reduct (A,∇,∆, η, ε) is a quantum loop.
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Proof. In the first case, the above proof of Proposition 4.1 carries over
directly, noting only that the associativity of the Hopf algebra mul-
tiplication was not used at all, while (2.8) is available here by virtue
of [4, Prop. 4.2(1)]. The second case follows by the self-duality of the
quantum loop concept. �

Example 4.4. As a Hopf quasigroup [4, Prop. 4.8], the universal en-
veloping algebra of a Mal’tsev algebra [7] (over a field of characteristic
coprime to 6) is a quantum loop.

4.2. When quantum loops are Hopf algebras. Let K be the cat-
egory of vector spaces over a field K. Recall that a comonoid in K
is simple if it has exactly two subcomonoids (one trivial, the other
improper) [9, Defn. 2.1.8]. Then a comonoid in K is pointed if each
simple subcomonoid is 1-dimensional [9, Defn. 3.4.4]. A bimonoid in
K is pointed if its comonoid reduct is pointed [9, Defn. 5.1.13].

Theorem 4.5. Consider the category K of vector spaces over a field K.
Suppose that (A,∇,∆, η, ε) is an associative and coassociative finite-
dimensional quantum loop in K, such that the comonoid (A,∆, ε) is
pointed. Then (A,∇,∆, η, ε) is a Hopf algebra.

Proof. Consider the set

A1 = {x ∈ A | a∆ = a⊗ a , aε = 1}

of setlike [16, p.40] (or “grouplike” [9, p.25]) elements of A. By the
commuting of the bimagma and biunital diagrams in A, it follows that
A1 forms a monoid under multiplication, with 1η = e as the identity
element. Since

x⊗ y �∆⊗1A // x⊗ x⊗ y �1A⊗∇ // x⊗ xy

for x, y ∈ A1, the invertible composite (∆⊗1A)(1A⊗∇) : A⊗A→ A⊗A
restricts to an injective map

(4.4) j : A1 ⊗ A1 → A1 ⊗ A1 .

Since the set A1 is linearly independent in the finite-dimensional vector
space A (compare [9, Lemma 2.1.12]), it follows that the set A1⊗A1 =
{x⊗ y | x, y ∈ A1} is finite. Thus the injective map (4.4) is surjective.
In particular, for each setlike element u, there are setlike elements w, v
such that w⊗wv = (w⊗v)j = u⊗e, whence w = u and uv = e. A dual
argument exhibits a setlike element v′ such that v′u = e. Thus each
setlike element u of A is invertible. Since the bimonoid (A,∇,∆, η, ε)
is pointed, it then becomes a Hopf algebra [9, Prop. 7.6.3]. �
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4.3. Pérez-Izquierdo algebras. The topic of this paragraph is based
on Pérez-Izquierdo’s concept of an “H-bialgebra” [6, Defn. 2]. In the
category K of vector spaces over a field K, a Pérez-Izquierdo algebra
as defined below reduces to a unital H-bialgebra.

Definition 4.6. Let V be a symmetric monoidal category. Then a
Pérez-Izquierdo algebra

(
A,∇,∆, η, ε, /, \

)
in V is a biunital bimagma

(A,∇,∆, η, ε) equipped with a right division V-morphism

/ : A⊗ A→ A

and a left division V-morphism

\ : A⊗ A→ A

such that the diagrams

(4.5) A⊗ A⊗ A 1A⊗∇ // A⊗ A
\
��

A⊗ A ε⊗1A //

∆⊗1A

OO

∆⊗1A
��

1⊗ A η⊗1A // A⊗ A ∇ // A

A⊗ A⊗ A
1A⊗\

// A⊗ A
∇

OO

and

(4.6) A⊗ A⊗ A ∇⊗1A // A⊗ A
/
��

A⊗ A 1A⊗ε //

1A⊗∆

OO

1A⊗∆
��

A⊗ 1
1A⊗η // A⊗ A ∇ // A

A⊗ A⊗ A
/⊗1A

// A⊗ A
∇

OO

commute.

Remark 4.7. (a) Note that H-bialgebras and Pérez-Izquierdo algebras
are not self-dual concepts.

(b) Recovering Pérez-Izquierdo’s original notation, write

(x⊗ y)\ = x\y and (x⊗ y)/ = x/y

for x, y ∈ A and concrete V. The commuting diagrams (4.5) and (4.6)
are then seen to be modeled on the quasigroup identities (2.1).
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As with Proposition 4.1, the following result is formulated and proved
for a concrete category V, although it may again be extended to an
arbitrary symmetric monoidal category V with a diagrammatic proof.

Theorem 4.8. Suppose that V is a concrete symmetric monoidal cat-
egory. Then if

(
A,∇,∆, η, ε, /, \

)
is a coassociative Pérez-Izquierdo

algebra in V, the reduct (A,∇,∆, η, ε) is a quantum loop in V.

Proof. The biunital bimagma structure in (A,∇,∆, η, ε) is inherited
directly from the Pérez-Izquierdo algebra. Now for an element y in
A, tensoring the coassociativity equation (4.1) on the right with y and

applying the function (1A ⊗ 1A ⊗ \ )(1⊗∇) yields

xLL ⊗ xLR(xR\y) = xL ⊗ xRL(xRR\y) = xL ⊗ xRεηy = x⊗ y
by the commuting of the lower half of (4.5), so that(

(∆⊗ 1A)(1A ⊗ \ )
)(

(∆⊗ 1A)(1A ⊗∇)
)

= 1A⊗A .

Again, tensoring the coassociativity equation (4.1) on the right with y

and applying the function (1A ⊗ 1A ⊗∇)(1⊗ \ ) yields

xLL ⊗ xLR\(xRy) = xL ⊗ xRL\(xRRy) = xL ⊗ xRεηy = x⊗ y
by the commuting of the upper half of (4.5), so that(

(∆⊗ 1A)(1A ⊗∇)
)(

(∆⊗ 1A)(1A ⊗ \ )
)

= 1A⊗A .

It follows that the left composite (∆⊗ 1A)(1A ⊗∇) is invertible. Veri-
fication of the invertibility of the right composite (1A ⊗∆)(∇⊗ 1A) is
similar, using the commuting of (4.6). �

For the concept of universal enveloping algebra of a Sabinin algebra
(or hyperalgebra in the sense of [2, Defn. XII.7.9], [11]), see [6, §5].

Corollary 4.9. The universal enveloping algebra of a Sabinin algebra
over a field K of characteristic zero is a quantum loop in K.

Proof. By [6, Prop. 24, Cor. 25], the universal enveloping algebra forms
a coassociative H-bialgebra. �

The following result shows that if the dual loop algebra of a loop is
to be a Pérez-Izquierdo algebra, then elements of the loop have to have
equal left and right inverses.

Theorem 4.10. Consider the category S of modules over a non-trivial
commutative unital ring S. Then the dual loop algebra (A,∇,∆, η, ε) in
S of a loop (Q, ·, /, \, e) admits an augmentation to a Pérez-Izquierdo

algebra
(
A,∇,∆, η, ε, /, \

)
if and only if the identity x\e = e/x is

satisfied in Q.
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Proof. In A, an instance of the fragment of the upper half of (4.5)
defined in (A,∇,∆, η, ε) is provided by∑

uv=x δu ⊗ δv ⊗ δy
� 1A⊗∇ // δx/y ⊗ δy

_

\
���
�
�

δx ⊗ δy � ε⊗1A //
_

∆⊗1A

OO

δx,e ⊗ δy �η⊗1A // δx,e ⊗ δy � ∇ // δx,eδy

for x, y ∈ Q. Commuting of this diagram is equivalent to δx/y\δy =
δx,eδy, i.e. δzy/y\δy = δzy,eδy or

δz\δy = δzy,eδy

for z ∈ Q. Under this specification, the lower half of (4.5) appears as
(4.7)

δx ⊗ δy � ε⊗1A //
_

∆⊗1A
��

δx,e ⊗ δy �η⊗1A // δx,e ⊗ δy � ∇ // δx,eδy

∑
uv=x δu ⊗ δv ⊗ δy

�

1A⊗\
// δx/(e/y) ⊗ δy

_
∇

OO

noting that for uv = x in Q, one has vy = e if and only if v = e/y, in
which case u(e/y) = x or u = x/(e/y). Commuting of (4.7) means

x = e iff x/(e/y) = y

in Q, and is thus equivalent to satisfaction of the identity e/(e/y) = y
or

(4.8) y\e = e/y

in Q. Since {δx | x ∈ Q} is a free basis for the S-module A, satisfaction
of (4.8) is equivalent to the good definition and commutativity of (4.5).
The chiral symmetry of (4.8) then implies that its satisfaction is also
equivalent to the good definition and commutativity of (4.6). �
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