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Abstract. Quantum quasigroups and loops are self-dual objects that
provide a general framework for the nonassociative extension of quantum
group techniques. They also have one-sided analogues, which are not
self-dual. In this paper, natural quantum versions of idempotence and
distributivity are specified for these and related structures. Quantum
distributive structures furnish solutions to the quantum Yang-Baxter
equation.

1. Introduction

Hopf algebras (or “quantum groups”) have been developed over the last
few decades as an important extension of the concept of a group, from the
category of sets with the cartesian product to a more general symmetric,
monoidal category V [3, 13]. Over the same time period, there has been an
intensive parallel development of the theory of quasigroups and loops [15].
Some work has also been done on extending Hopf algebras to non-associative
products [1, 8, 9, 12].

Recently, the self-dual concepts of quantum quasigroup and loop have
been introduced as a far-reaching unification of Hopf algebras (along with
their non-associative extensions) and quasigroups [17]. Consider a bimagma
(A,∇,∆), an object of V with V-morphisms giving a magma structure
∇ : A⊗A → A, and a comagma structure ∆: A → A⊗A, such that ∆ is a
magma homomorphism. The self-dual definition of a quantum quasigroup
requires the invertibility of two dual morphisms: the left composite

G : A⊗ A
∆⊗1A // A⊗ A⊗ A

1A⊗∇ // A⊗ A

and the right composite

a : A⊗ A
1A⊗∆ // A⊗ A⊗ A

∇⊗1A // A⊗ A .

Quantum quasigroups and loops also have one-sided analogues [16]. The
definition of a left quantum quasigroup requires only the invertibility of
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the left composite. Dually, the definition of a right quantum quasigroup
requires only the invertibility of the right composite. On the other hand,
within the left Hopf algebras of Taft et al. [6, 11, 14], the left composite is
a section, while the right composite is a retract. (Right Hopf algebras are
dual.)

The primary goal of the present work is to initiate investigation of the
connections between these structures and the well-known quantum Yang-
Baxter equation (QYBE)

(1.1) R12R13R23 = R23R13R12

[3, §2.2C]. The QYBE applies to an endomorphism

R : A⊗ A → A⊗ A

of the tensor square of an object A in a symmetric, monoidal category. For
a given integer n > 1, the notation Rij, for 1 ≤ i < j ≤ n, means applying
R to the i-th and j-th factors in the n-th tensor power of A. Since the left
and right composite morphisms are also endomorphisms of tensor squares,
it is natural to seek conditions under which they satisfy the QYBE. Then,
as anticipated by B.B. Venkov working in the category of sets with cartesian
product [5, §9], the QYBE corresponds generally to various distributivity
conditions on the products ∇ : A ⊗ A → A appearing in the left and right
composites. Indeed, it transpires that distributive counital left and right
quantum quasigroups, along with commutative Moufang loops of exponent
three, yield solutions to the quantum Yang-Baxter equation. If the left (or
right) composite of a bimagma satisfies the QYBE, then the bimagma is
said to possess the property of left (or right) quantum distributivity.

In the theory of quasigroups, distributivity and idempotence are closely
related. For example, one has the implications of identities

x · yz = xy · xz ⇒ x · xx = xx · xx ⇒ x = xx

in a left distributive right quasigroup. Thus a secondary goal of the paper
is a study of quantum idempotence in a bimagma (A,∇,∆), defined by the
requirement that the diagram

A⊗ A
∇

##F
FF

FF
FF

FF

A
1A

//

∆
;;xxxxxxxxx

A

be commutative, i.e., the requirement that the comultiplication is a section
for the multiplication (compare [7]).

The layout of the paper is as follows. Section 2 recalls the basic definitions
of one- and two-sided quasigroups and loops. Section 3 reviews symmetric
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monoidal categories, and various structures (from magmas through to Hopf
algebras) that appear within them. A discussion of quantum quasigroups
and loops, along with their one-sided analogues, is given in Section 4. Then
quantum idempotence and quantum distributivity are presented in Section 5
and Section 6 respectively.

For algebraic concepts and conventions that are not otherwise discussed
in this paper, readers are referred to [18]. In particular, algebraic notation
is used throughout the paper, with functions to the right of, or as superfixes
to, their arguments. Thus compositions are read from left to right. These
conventions serve to minimize the proliferation of brackets.

2. Quasigroups and loops

2.1. Combinatorial or equational quasigroups. Quasigroups may be
defined combinatorially or equationally. Combinatorially, a quasigroup (Q, ·)
is a set Q equipped with a binary multiplication operation denoted by · or
simple juxtaposition of the two arguments, in which specification of any two
of x, y, z in the equation x · y = z determines the third uniquely. A loop is
a quasigroup Q with an identity element e such that e · x = x = x · e for all
x in Q.

Equationally, a quasigroup (Q, ·, /, \) is a set Q with three binary oper-
ations of multiplication, right division / and left division \, satisfying the
identities:

(2.1)
(SL) x · (x\z) = z ; (SR) z = (z/x) · x ;
(IL) x\(x · z) = z ; (IR) z = (z · x)/x .

If x and y are elements of a group (Q, ·), the left division is given by x\y =
x−1y, with x/y = xy−1 as right division. For an abelian group considered as
a combinatorial quasigroup under subtraction, the right division is addition,
while the left division is subtraction.

2.2. Equational or combinatorial one-sided quasigroups. Equation-
ally, a left quasigroup (Q, ·, \) is a set Q equipped with a multiplication
and left division satisfying the identities (SL) and (IL) of (2.1). Dually,
a right quasigroup (Q, ·, /) is a set Q equipped with a multiplication and
right division satisfying the identities (SR) and (IR) of (2.1). A left loop is
a left quasigroup with an identity element. Dually, a right loop is a right
quasigroup with an identity element.

Combinatorially, a left quasigroup (Q, ·) is a set Q with a multiplication
such that in the equation a · x = b, specification of a and b determines
x uniquely. In equational terms, the unique solution is x = a\b. The
combinatorial definition of right quasigroups is dual. If Q is a set, the right
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projection product xy = y yields a left quasigroup structure on Q, while
the left projection product xy = x yields a right quasigroup structure.

3. Structures in symmetric monoidal categories

The general setting for the algebras studied in this paper is a symmetric
monoidal category (or “symmetric tensor category” — compare [19, Ch. 11])
(V,⊗,1). The standard example is provided by the category K of vector
spaces over a field K, under the usual tensor product. More general con-
crete examples are provided by varieties V of entropic (universal) algebras,
algebras on which each (fundamental and derived) operation is a homomor-
phism (compare [4]). These include the category Set of sets (under the
cartesian product), the category of pointed sets, the category R of (right)
modules over a commutative, unital ring R, the category of commutative
monoids, and the category of semilattices.

In a monoidal category (V,⊗,1), there is an object 1 known as the unit
object. For example, the unit object of K is the vector space K, while the
unit object of Set under the cartesian product is a terminal object ⊤, a
singleton. For objects A and B in a monoidal category, a tensor product
object A⊗B is defined. For example, if U and V are vector spaces over K
with respective bases X and Y , then U ⊗ V is the vector space with basis
X×Y , written as {x⊗ y | x ∈ X, y ∈ Y }. There are natural isomorphisms
with components

αA,B;C : (A⊗B)⊗ C → A⊗ (B ⊗ C) , ρA : A⊗ 1 → A , λA : 1⊗ A → A

satisfying certain coherence conditions guaranteeing that one may as well
regard these isomorphisms as identities [19, p.67]. Thus the bracketing of
repeated tensor products is suppressed in this paper, although the natural
isomorphisms ρ and λ are retained for clarity in cases such as the unitality
diagram (3.1) below. In the vector space example, adding a third space W
with basis Z, one has

αU,V ;W : (x⊗ y)⊗ z 7→ x⊗ (y ⊗ z)

for z ∈ Z, along with ρU : x⊗ 1 7→ x and λU : 1⊗ x 7→ x for x ∈ X.
A monoidal category (V,⊗,1) is symmetric if there is a given natu-

ral isomorphism with twist components τA,B : A ⊗ B → B ⊗ A such that
τA,BτB,A = 1A⊗B [19, pp.67–8]. One uses τU,V : x ⊗ y 7→ y ⊗ x with x ∈ X
and y ∈ Y in the vector space example.
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3.1. Diagrams. Let A be an object in a symmetric monoidal category
(V,⊗,1). Consider the respective associativity and unitality diagrams

(3.1) A⊗ A⊗ A
1A⊗∇ //

∇⊗1A
��

A⊗ A

∇
��

A⊗ A
∇

// A

and A⊗ A
∇

%%JJ
JJJ

JJJ
JJJ

A⊗ 1
1A⊗ηoo

ρA
��

1⊗ A

η⊗1A

OO

λA

// A

in the category V, the respective dual coassociativity and counitality dia-
grams

(3.2) A⊗ A⊗ A A⊗ A
1A⊗∆oo

A⊗ A

∆⊗1A

OO

A

∆

OO

∆
oo

and A⊗ A
1A⊗ε //

ε⊗1A
��

A⊗ 1

1⊗ A A

∆

eeJJJJJJJJJJJ

λ−1
A

oo

ρ−1
A

OO

in the category V, the bimagma diagram

(3.3) A
∆

))SSS
SSSS

SSSS
SSSS

SS

A⊗ A

∆⊗∆

��

∇
55kkkkkkkkkkkkkkkkk

**TTTTTTTTTTTTTTTTTT A⊗ A

A⊗ A⊗ A⊗ A
1A⊗τ⊗1A

//

44jjjjjjjjjjjjjjjjjj
A⊗ A⊗ A⊗ A

∇⊗∇

OO

in the category V, the biunital diagram

(3.4) 1⊗ 1
∇ // 1 1

η
����
��
��
��

∆ //1oo 1⊗ 1

η⊗η

��
A⊗ A

∇ //

ε⊗ε

OO

A
∆ //

ε

__>>>>>>>>

A⊗ A
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in the category V, and the antipode diagram

(3.5) A⊗ A
S⊗1A // A⊗ A

∇

��6
66

66
66

66
66

66
6

A
ε //

∆

CC��������������

∆

��6
66

66
66

66
66

66
6 1 η

// A

A⊗ A
1A⊗S

// A⊗ A

∇

CC��������������

in the category V, all of which are commutative diagrams. The arrow
across the bottom of the bimagma diagram (3.3) makes use of the twist
isomorphism τA,A or τ : A⊗ A → A⊗ A.

3.2. Magmas and bimagmas. This paragraph and its successor collect
a number of basic definitions of various structures and homomorphisms
between them.

Definition 3.1. Let V be a symmetric monoidal category.

(a.1) A magma in V is a V-object A with a V-morphism

∇ : A⊗ A → A

known as multiplication.
(a.2) Let A and B be magmas in V. Then a magma homomorphism

f : A → B is a V-morphism such that the diagram

A

f

��

A⊗ A

f⊗f

��

∇oo

B B ⊗B
∇

oo

commutes.
(b.1) A comagma in V is a V-object A with a V-morphism

∆: A → A⊗ A

known as comultiplication.
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(b.2) Let A and B be comagmas in V. A comagma homomorphism
f : A → B is a V-morphism such that the diagram

B
∆ // B ⊗B

A

f

OO

∆
// A⊗ A

f⊗f

OO

commutes.
(c) A bimagma (A,∇,∆) in V is a magma (A,∇) and comagma (A,∆)

in V such that the bimagma diagram (3.3) commutes.

Remark 3.2. (a) Commuting of the bimagma diagram (3.3) in a bimagma
(A,∇,∆) means that

∆: (A,∇) →
(
A⊗ A, (1A ⊗ τ ⊗ 1A)(∇⊗∇)

)
is a magma homomorphism (commuting of the upper-left solid and dotted
quadrilateral), or equivalently, that

∇ :
(
A⊗ A, (∆⊗∆)(1A ⊗ τ ⊗ 1A)

)
→ (A,∆)

is a comagma homomorphism (commuting of the upper-right solid and dot-
ted quadrilateral).

(b) If V is an entropic variety of universal algebras, the comultiplication of
a comagma in V may be written as

(3.6) ∆: A → A⊗ A; a 7→
(
(aL1 ⊗ aR1) . . . (aLna ⊗ aRna )

)
wa

in a universal-algebraic version of the well-known Sweedler notation. In
(3.6), the tensor rank of the image of a (or any such general element of A⊗A)
is the smallest arity na of the derived word wa expressing the image (or
general element) in terms of elements of the generating set {b⊗ c | b, c ∈ A}
for A ⊗ A. A more compact but rather less explicit version of Sweedler
notation, generally appropriate within any concrete monoidal category V,
is a∆ = aL ⊗ aR, with the understanding that the tensor rank of the image
is not implied to be 1.

(c) Magma multiplications on an object A of a concrete monoidal category
are often denoted by juxtaposition, namely (a ⊗ b)∇ = ab, or with a · b as
an infix notation, for elements a, b of A.

(d) With the notations of (b) and (c), commuting of the bimagma diagram
(3.3) in a concrete bimagma (A,∇,∆) amounts to

(3.7) aLbL ⊗ aRbR = (ab)L ⊗ (ab)R

for a, b in A.
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Definition 3.3. Suppose that A is an object in a symmetric monoidal
category V.

(a) A magma (A,∇) is commutative if τ∇ = ∇. Thus if V is concrete,
this may be written in the usual form ba = ab for a, b ∈ A.

(b) A comagma (A,∆) is cocommutative if ∆τ = ∆. This condition
takes the form aR ⊗ aL = aL ⊗ aR in Sweedler notation for a ∈ A.

(c) A magma (A,∇) is associative if the associativity diagram (3.1)
commutes. In the concrete case, one often writes ab · c = a · bc, with
infix · binding less strongly than juxtaposition, for a, b, c in A.

(d) A comagma (A,∆) is coassociative if the coassociativity diagram
(3.2) commutes. Coassociativity takes the form

(3.8) aLL ⊗ aLR ⊗ aR = aL ⊗ aRL ⊗ aRR

when written in Sweedler notation for a ∈ A.

Remark 3.4. (a) In a bimagma (A,∇,∆), the concepts of Definition 3.3
may be applied to the respective magma and comagma reducts of A.

(b) Note that the usual Sweedler notation a∆ = a(1) ⊗ a(2), which merely
records the linear order of the tensor factors, cannot be used reliably for
noncoassociative comultiplications. Indeed, it renders both sides of (3.8) as
a(1) ⊗ a(2) ⊗ a(3).

3.3. Unital structures and Hopf algebras.

Definition 3.5. Let V be a symmetric monoidal category.

(a.1) A magma (A,∇) in V is unital if it has a V-morphism η : 1 → A
such that the unitality diagram (3.1) commutes.

(a.2) Let A and B be unital magmas in V. Then a unital magma ho-
momorphism f : A → B is a magma homomorphism such that the
diagram

A

f
��

1
ηoo

1
��

B 1η
oo

commutes.
(b.1) A comagma (A,∆) inV is counital if it has aV-morphism ε : A → 1

such that the counitality diagram (3.2) commutes.
(b.2) Let A and B be comagmas in V. Then a counital comagma homo-

morphism f : A → B is a comagma homomorphism such that the
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diagram

B
ε // 1

A

f

OO

ε
// 1

1

OO

commutes.
(c) A biunital bimagma (A,∇,∆, η, ε) is a unital magma (A,∇, η) and

counital comagma (A,∆, ε) such that (A,∇,∆) is a bimagma, and
the biunital diagram (3.4) commutes.

Remark 3.6. (a) The joint commuting of the bimagma diagram (3.3) and
biunital diagram (3.4) in a biunital bimagma (A,∇,∆, η, ε) means that the
comultiplication ∆: A → A ⊗ A is a unital magma homomorphism, or
equivalently, that ∇ : A⊗ A → A is a counital comagma homomorphism.

(b) If V is an entropic variety of universal algebras, where the algebra 1 is
free on a generating singleton {x}, then the image of the generator x under
the V-morphism η : 1 → A of a unital magma (A,∇, η) is often written as
the element 1 of A.

Definition 3.7. Let V be a symmetric monoidal category.

(a) A monoid in V is an associative unital magma in V.
(b) A comonoid in V is a coassociative counital comagma in V.
(c) A bimonoid in V is defined as an associative, coassociative, and

biunital bimagma.
(d) A Hopf algebra in V is a bimonoid A in V that is equipped with

a V-morphism S : A → A known as the antipode, such that the
antipode diagram (3.5) commutes.

4. Quantum quasigroups and loops

4.1. Basic definitions.

Definition 4.1. Let (A,∇,∆) be a bimagma in a symmetric monoidal
category (V,⊗,1).

(a) On (A,∇,∆), the endomorphism

(4.1) G : A⊗ A
∆⊗1A // A⊗ A⊗ A

1A⊗∇ // A⊗ A

of A⊗ A is known as the left composite morphism.
(b) On (A,∇,∆), the endomorphism

(4.2) a : A⊗ A
1A⊗∆ // A⊗ A⊗ A

∇⊗1A // A⊗ A

of A⊗ A is known as the right composite morphism.
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Definition 4.2. Consider a symmetric monoidal category (V,⊗,1).

(a) A left quantum quasigroup (A,∇,∆) in V is a bimagma in V for
which the left composite morphism G is invertible.

(b) A right quantum quasigroup (A,∇,∆) in V is a bimagma in V for
which the right composite morphism a is invertible.

(c) A quantum quasigroup (A,∇,∆) in V is a bimagma in V where
both G and a are invertible.

Definition 4.3. Let (A,∇,∆, η, ε) be a biunital bimagma in a symmetric
monoidal category (V,⊗,1).

(a) Suppose that (A,∇,∆) is a left quantum quasigroup in V. Then
(A,∇,∆, η, ε) is said to be a left quantum loop.

(b) Suppose that (A,∇,∆) is a right quantum quasigroup in V. Then
(A,∇,∆, η, ε) is said to be a right quantum loop.

(c) If (A,∇,∆) is a quantum quasigroup in V, then (A,∇,∆, η, ε) is
said to be a quantum loop.

Since these basic definitions are expressed entirely within the structure
of a symmetric, monoidal category, their concepts are maintained under
the symmetric, monoidal functors which preserve that structure. A typical
example of such a functor is the free monoid functor from sets under carte-
sian products to the category of modules over a commutative ring, with the
usual tensor product.

Proposition 4.4. Suppose that (V,⊗,1V) and (W,⊗,1W) are symmetric
monoidal categories. Let F : V → W be a symmetric monoidal functor.

(a) If (A,∇,∆) is a left, right, or two-sided quantum quasigroup in V,
then the structure (AF,∇F ,∆F ) is a respective left, right, or two-
sided quantum quasigroup in W.

(b) Suppose that (A,∇,∆, η, ε) is a left, right, or two-sided quantum
quantum loop in V. Then (AF,∇F ,∆F , ηF , εF ) is a respective left,
right, or two-sided quantum loop in W.

Corollary 4.5. Within the context of Proposition 4.4, validity of any one of
the commutativity, cocommutativity, associativity, or coassociativity condi-
tions for the left, right, or two-sided quantum quasigroup (A,∇,∆) implies
validity of the corresponding condition for (AF,∇F ,∆F ).

4.2. Relations with other structures. Both quantum quasigroups and
quantum loops are self-dual structures. A Hopf algebra (A,∇,∆, η, ε, S)
includes a bimagma reduct (A,∇,∆, η, ε) that is a quantum loop. A similar
situation holds for various nonassociative generalizations of Hopf algebras
considered by various authors [17]. So-called left Hopf algebras [6, 11, 14]
satisfy all of the requirements for a Hopf algebra listed in Definition 3.7(d),



QUANTUM IDEMPOTENCE AND DISTRIBUTIVITY 11

except for the commuting of the lower pentagon in the antipode diagram
(3.5). In this situation, the V-morphism S is known as a left antipode. In a
left Hopf algebra, the left composite is a section, while the right composite
is a retract.

Lemma 4.6. Suppose that (A,∆, ε) is a counital comagma in (Set,×,⊤).
Then the comultiplication is the diagonal embedding ∆: a 7→ a⊗ a. On the
other hand, the diagonal embedding on each set A yields a cocommutative,
coassociative counital comagma (A,∆, ε) in (Set,×,⊤).

Proof. If ⊤ = {x}, then aε = x for each element a of A. Now consider the
counitality diagram

A⊗ A
1A⊗ε //

ε⊗1A
��

A⊗ 1

1⊗ A A

∆

eeJJJJJJJJJJJ

λ−1
A

oo

ρ−1
A

OO

Suppose a∆ is actually aL ⊗ aR for an element a of A. Then x ⊗ aR =
aLε ⊗ aR = a∆(ε ⊗ 1A) = aλ−1

A = x ⊗ a, so aR = a, and similarly aL = a.
Thus a∆ = a⊗ a, as required. �
Corollary 4.7. Left quantum loops and counital left quantum quasigroups
in (Set,×,⊤) are cocommutative and coassociative.

Theorem 4.8. [16, 17] Consider the category Set of sets and functions,
with the symmetric monoidal category structure (Set,×,⊤).

(a) Counital left or two-sided quantum quasigroups in (Set,×,⊤) are
respectively equivalent to left or two-sided quasigroups.

(b) Left or two-sided quantum loops in (Set,×,⊤) are respectively equiv-
alent to left or two-sided loops.

Theorem 4.9. Consider the symmetric, monoidal category (FinSet,×,⊤)
of finite sets under the cartesian product.

(a) Left quantum quasigroups in (FinSet,×,⊤) are equivalent to triples
(A,L,R) that consist of a left quasigroup A with an automorphism
L and endomorphism R [16].

(b) Quantum quasigroups in (FinSet,×,⊤) are equivalent to triples
(A,L,R) consisting of a quasigroup A equipped with automorphisms
L and R [17].

Corollary 4.10. [16] Given a left quasigroup (A, ·, \) equipped with an au-
tomorphism L and endomorphism R, define ∇ : A⊗ A → A; a⊗ b 7→ ab as
a multiplication and ∆: A → A ⊗ A; a 7→ aL ⊗ aR as a comultiplication.
Then (A,∇,∆) is a left quantum quasigroup in (Set,×,⊤).
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Corollary 4.11. [17] Suppose that (A, ·, /, \) is a quasigroup equipped with
two automorphisms L and R. Define ∇ : A ⊗ A → A; a ⊗ b 7→ ab as a
multiplication and ∆: A → A⊗A; a 7→ aL⊗aR as a comultiplication. Then
(A,∇,∆) is a quantum quasigroup in (Set,×,⊤).

5. Quantum idempotence

Definition 5.1. Let (A,∇,∆) be a bimagma in a symmetric, monoidal
category V. If the diagram

A⊗ A
∇

##F
FF

FF
FF

FF

A
1A

//

∆
;;xxxxxxxxx

A

commutes inV, then the bimagma is said to satisfy the condition of quantum
idempotence.

5.1. Classical idempotence. The first result justifies the terminology of
Definition 5.1.

Proposition 5.2. Let (A,∇) be a magma in the category of sets with the
cartesian product. Define ∆: A → A⊗ A; a 7→ a⊗ a.

(a) The structure (A,∇,∆) is a counital, cocommutative, coassociative
bimagma.

(b) The bimagma (A,∇,∆) is quantum idempotent if and only if the
magma (A,∇) is idempotent in the classical sense.

Proof. (a) Use Remark 3.2(d) and Lemma 4.6.

(b) For each element a of A, one has a∆∇ = (a⊗ a)∇ = aa. �
Proposition 5.3. Suppose that (A,∇,∆) is a nontrivial quantum-idempotent
left quantum quasigroup within the category (Set,×,⊤).

(a) If (A,∇,∆) is unital, it is not counital.
(b) If (A,∇,∆) is counital, it is not unital.

Proof. Suppose that (A,∇,∆) is both unital and counital. According to
Theorem 4.8(a), (A,∇) is an idempotent, unital left quasigroup. Let a be
an element of A. Note that a∆ = a⊗ a by Lemma 4.6. Then aa = a∆∇ =
a = a1 implies a = a\(aa) = a\(a1) = 1, so that A is trivial. �
5.2. Non-classical quantum idempotence. The next two paragraphs
furnish natural non-classical examples of quantum idempotence. The results
are readily extended to categories of modules over a commutative ring (or
indeed more general entropic varieties), under the tensor product, using the
free algebra functor as discussed in Proposition 4.4 and its corollary.
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Theorem 5.4. Let (A, ·, \) be a left quasigroup in which the identity

(5.1) (x\y) · (x\y) = (x · x)\(y · y)

is satisfied. Define ∆: A → A⊗ A; a 7→ a⊗ a · a and ∇ : a⊗ b 7→ a\b.
(a) The structure (A,∇,∆) forms a left quantum quasigroup within the

category (Set,×,⊤).
(b) The bimagma (A,∇,∆) is quantum idempotent.

Proof. (a) Since (A, ·, \) is a left quasigroup, then so is (A, \, ·). The identity
(5.1) guarantees the bimagma condition (3.7). By Corollary 4.10, it follows
that (A,∇,∆) forms a left quantum quasigroup in (Set,×,⊤).

(b) For each a in A, one has a∆∇ = (a⊗a ·a)∇ = a\(a ·a) = a by (IL). �

Corollary 5.5. Under the conditions of Theorem 5.4, the bimagma (A,∇,∆)
is cocommutative if and only if (A,∇) is classically idempotent.

Proof. For an element a of A, one has a∆ = a⊗ a · a and a∆τ = a · a⊗ a.
Thus ∆τ = ∆ if and only if a · a = a. �

Remark 5.6. Commutative, diassociative loops (such as abelian groups)
satisfy the conditions of Theorem 5.4, along with entropic left quasigroups,
including sets equipped with right projections.

5.3. Commutative Moufang loops.

Theorem 5.7. Suppose that (A, ·, /, \, 1) is a commutative Moufang loop.
Define ∆: A → A⊗ A; a 7→ a−1 ⊗ a−1 and ∇ : a⊗ b 7→ a · b.

(a) In the category (Set,×,⊤), the structure (A,∇,∆) forms a unital,
commutative and cocommutative quantum quasigroup.

(b) If (A, ·, /, \, 1) has exponent 3, the bimagma (A,∇,∆) is quantum
idempotent.

Proof. (a) By the commutativity and diassociativity of (A, ·, /, \, 1), the in-
version mapping A → A; a 7→ a−1 is an automorphism of the multiplication
∇. By Corollary 4.11, it follows that (A,∇,∆) is a quantum quasigroup in
(Set,×,⊤). The remaining statements are immediate.

(b) Consider an element a of A. Then

a∆∇ = (a−1 ⊗ a−1)∇ = a−2 = a

since (A, ·, /, \, 1) has exponent 3. �

Remark 5.8. Consider the context of Theorem 5.7, with (A, ·, /, \, 1) as a
commutative Moufang loop of exponent 3.
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(a) If A is nontrivial, say with non-identity element a, then

a∆(∆⊗ 1A) = (a−1 ⊗ a−1)(∆⊗ 1A) = a⊗ a⊗ a−1

while

a∆(1A ⊗∆) = (a−1 ⊗ a−1)(1A ⊗∆) = a−1 ⊗ a⊗ a ,

so that (A,∇,∆) is not coassociative.
(b) The quantum quasigroup (A,∇,∆) is associative if and only if the

loop (A, ·, /, \, 1) is associative.
(c) The quantum quasigroup (A,∇,∆) is always unital.
(d) By Proposition 5.3, the quantum quasigroup (A,∇,∆) is counital

only when A is trivial.

6. Quantum distributivity and the QYBE

Definition 6.1. Suppose that (A,∇,∆) is a bimagma in a symmetric,
monoidal category.

(a) The bimagma (A,∇,∆) is said to satisfy the condition of quantum
left distributivity if the left composite G of (A,∇,∆) satisfies the
quantum Yang-Baxter equation (1.1).

(b) The bimagma (A,∇,∆) is said to satisfy the condition of quantum
right distributivity if the right composite a of (A,∇,∆) satisfies the
quantum Yang-Baxter equation (1.1).

(c) The bimagma (A,∇,∆) is said to satisfy the condition of quantum
distributivity if it has both the left and right quantum distributivity
properties.

6.1. Classical distributivity. An analogue of Proposition 5.2 relates the
concepts of classical and quantum distributivity. In particular, the bimagma
structure of the present result is obtained from Proposition 5.2(a).

Proposition 6.2. Let (A,∇) be a magma in the category of sets with the
cartesian product. Define ∆: A → A ⊗ A; a 7→ a ⊗ a. Then the bimagma
(A,∇,∆) is quantum left distributive if and only if the magma (A,∇) is left
distributive, in the classical sense that the identity

(6.1) x(yz) = (xy)(xz)

is satsified.

Proof. The left composite in the bimagma (A,∇,∆) is G : a ⊗ b 7→ a ⊗ ab.
At the elementary level, the two sides of the quantum Yang-Baxter equation
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(1.1) appear as the top and bottom halves of

x⊗ xy ⊗ z � G13
// x⊗ xy ⊗ xz

�
G23

))SSS
SSSS

SSSS
SSS

x⊗ xy ⊗ (xy)(xz)

x⊗ y ⊗ z
?

G12

??�������������������

~

G23

��>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>

x⊗ xy ⊗ x(yz)

x⊗ y ⊗ yz �
G13

// x⊗ y ⊗ x(yz)
+ G12

55kkkkkkkkkkkkkk

when applied to an element x ⊗ y ⊗ z of A ⊗ A ⊗ A. It is then apparent
that the diagram commutes if and only if the magma is left distributive in
the classical sense. �
Corollary 6.3. Let (A,∇,∆) be a nontrivial left quantum distributive left
quantum quasigroup within the category (Set,×,⊤).

(a) If (A,∇,∆) is unital, it is not counital.
(b) If (A,∇,∆) is counital, it is not unital.

Proof. Suppose that (A,∇,∆) is both unital and counital. According to
Theorem 4.8(a), (A,∇) is a unital left quasigroup. Let a be an element of
A. Note that a∆ = a⊗a by Lemma 4.6. Then according to Proposition 6.2,
(A,∇) is a classically left distributive, unital left quasigroup. Now

aa = (a1)(a1) = a(11) = a1

— with the notation of Remark 3.6(b) — implies

a = a\(aa) = a\(a1) = 1 ,

so that A is trivial. �

6.2. Non-classical quantum distributivity.

Proposition 6.4. Let (A,∇,∆) be a bimagma in (Set,×,⊤), equipped with
comultiplication ∆: A → A⊗ A; a 7→ aL ⊗ aR. Then (A,∇,∆) is quantum
left distributive if LR = RL and the identity

xR(yRz) = (xRRyR)(xRLz)(6.2)

is satisfied.
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Proof. Consider an element x⊗ y ⊗ z of A⊗ A⊗ A. Then

(x⊗ y ⊗ z)G23G13G12 = (x⊗ yL ⊗ yRz)G13G12 =
(
xL ⊗ yL ⊗ xR(yRz)

)
G12

= xLL ⊗ xLRyL ⊗ xR(yRz)(6.3)

and

(x⊗ y ⊗ z)G12G13G23 = (xL ⊗ xRy ⊗ z)G13G23 = (xLL ⊗ xRy ⊗ xLRz)G23

= xLL ⊗ (xRy)L ⊗ (xRy)R(xLRz) .(6.4)

By Remark 3.2(d), the maps R and L are endomorphisms of the magma
(A,∇). Thus the respective middle factors of (6.3) and (6.4) agree if R
and L commute. For commuting magma endomorphisms L and R, the final
factors of (6.3) and (6.4) agree if the identity (6.2) is satisfied. �
Corollary 6.5. Let (A,∇,∆) be a bimagma in (Set,×,⊤), equipped with
comultiplication ∆: A → A⊗A; a 7→ aL⊗aR. Then the bimagma (A,∇,∆)
is quantum left distributive if LR = RL and the identity

x(yz) = (xRy)(xLz)(6.5)

is satisfied.

6.3. Commutative Moufang loops of exponent 3. The following result
is a continuation of Theorem 5.7, which showed that commutative Moufang
loops of exponent three yield quantum idempotent quantum quasigroups in
the category of sets under cartesian products.

Theorem 6.6. Suppose that (A, ·, /, \, 1) is a commutative Moufang loop
of exponent 3. Define ∆: A → A⊗A; a 7→ a−1 ⊗ a−1 and ∇ : a⊗ b 7→ a · b,
as in Theorem 5.7. Then the quantum quasigroup (A,∇,∆) is quantum left
distributive.

Proof. With the given comultiplication, the identity (6.5) of Corollary 6.5
takes the form

x(yz) = (x−1y)(x−1z) .(6.6)

Then for elements x, y, z of A, one has

(x−1y)(x−1z) = (x−1y)(zx−1) = (x−1 · yz)x−1

= x−1(x−1 · yz) = x−1x−1(yz) = x(yz)

by sequential application of the commutative, Moufang, commutative, di-
associative, and exponent 3 properties of (A, ·, /, \, 1). �
Remark 6.7. Manin actually takes the identity x2(yz) = (xy)(xz) as a
defining axiom for commutative Moufang loops, within the class of loops
[10, I.1.4(4)] (cf. [2, Th. II.7B]). Substituting x−1 for x and using the
exponent 3 condition (x−1)2 = x then produces (6.6) directly.



QUANTUM IDEMPOTENCE AND DISTRIBUTIVITY 17

The commutativity and cocommutativity of (A,∇,∆) yield the following
extension of Theorem 6.6.

Corollary 6.8. The quantum quasigroup (A,∇,∆) is quantum distributive.
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