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1. Introduction

In the theory of quasigroups, the role played by homotopies (2) is as important
as that played by homomorphisms. Historically, there have been two approaches
to the study of quasigroup homotopies. The first approach, due to Gvaramiya and
Plotkin [6, 7], uses the concept of a reversible automaton, consisting of three mutu-
ally interacting state spaces. In terms of universal algebra, reversible automata are
modeled as heterogeneous algebras. The second approach uses a semisymmetriza-
tion functor, which reduces homotopies between general quasigroups to homomor-
phisms between semisymmetric quasigroups [16]. In particular, two quasigroups
are isotopic if and only if their semisymmetrizations are isomorphic semisymmetric
quasigroups. The aim of the present paper is to reconcile these two approaches,
to examine the kernels determined by homotopies, and to derive the Factorization
theorem that resolves a homotopy as the composite of a regular epimorphism and
a monomorphism in the category of quasigroup homotopies. Additionally, the net
or web of a quasigroup is identified as the set of points of the quasigroup in the
category of quasigroup homotopies.

1203



November 20, 2008 19:54 WSPC/132-IJAC 00484

1204 J. D. H. Smith

Quasigroup homotopies are defined in Sec. 2. The process of semisymmetrization
is described in Sec. 3. Theorem 1 in Sec. 4 shows how the 3-net or 3-web associated
with a quasigroup, originally construed as a combinatorial or geometric object,
actually arises as the set of points of the quasigroup in the category of quasigroup
homotopies. Section 5 recalls the concept of a reversible automaton. Section 6 begins
a more careful examination of reversible automata, required when relinquishing
the assumption (made implicitly in [6, 7]) that the state spaces are nonempty. A
reversible automaton is said to be pure if its three state spaces are isomorphic sets
(Definition 3). Theorem 5 shows that pure reversible automata are equivalent to
isotopy classes of quasigroups.

A homotopy from a quasigroup involves three functions defined on that quasi-
group, with three corresponding kernel relations. These three kernels constitute a
homotopy kernel. In Sec. 7, homotopy kernels are characterized combinatorically in
terms of the multiplication on the quasigroup. In particular, a set equipped with
a binary multiplication forms a quasigroup iff the triple of equality relations forms
a homotopy kernel. Section 8 examines the lattice of homotopy kernels on a quasi-
group. Theorem 26 identifies which congruences on the semisymmetrization of a
quasigroup correspond to kernels of semisymmetrized homotopies. As a corollary,
it is shown that the lattice of homotopy kernels is modular.

Together with its left adjoint, the semisymmetrization functor provides an endo-
functor on the category of semisymmetric quasigroups. Section 9 considers the
Eilenberg–Moore algebras for this functor. In Sec. 10, these algebras are identified
as quasigroup semisymmetrizations. The semisymmetrization adjunction is seen to
be monadic. The two concluding sections work out the concrete implications of
this categorical fact. The category of quasigroup homotopies is shown to be equiva-
lent to the category of semisymmetrized algebras, semisymmetric quasigroups that
have been enriched with a ternary operation satisfying the diagonal identity (36),
and interacting appropriately with the quasigroup multiplication (Definition 34).
It follows that the category of quasigroup homotopies is complete and cocomplete
(Corollary 36). The paper culminates with Theorem 45, providing a factorization of
each quasigroup homotopy as a product of a regular epimorphism and a monomor-
phism in the category of quasigroup homotopies.

Algebraic conventions and notation not explicitly described in the paper will
follow the usage of [18]. Note that corestriction of a function means trimming its
codomain to a subset that still contains the image.

2. Quasigroups

A (combinatorial) quasigroup (Q, ·) is a set Q equipped with a binary multiplication
operation denoted by · or simple juxtaposition of the two arguments, in which
specification of any two of x, y, z in the equation x · y = z determines the third
uniquely. The quasigroup (Q, ·) is a loop (Q, ·, e) if there is an identity element e of
Q such that ex = x = xe for all x in Q. For each element y of a quasigroup Q, the
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left multiplication LQ(y) or L(y) is the permutation

L(y) : Q → Q; x �→ yx,

of Q, while the right multiplication RQ(y) or R(y) is the permutation

R(y) : Q → Q; x �→ xy.

In the equivalent equational description, a quasigroup (Q, ·, /, \) is a set Q equipped
with three binary operations of multiplication, right division / and left division \,
satisfying the identities:

(IL)y\(y · x) = x;
(IR)x = (x · y)/y;
(SL)y · (y\x) = x;
(SR)x = (x/y) · y.

(1)

In compound expressions, the multiplication binds more strongly than the divisions,
so, for example, the right-hand side of (IR) could be written as xy/y or x · y/y.
The equational definition of quasigroups means that they form a variety Q, and
are thus susceptible to study using standard concepts and methods of universal
algebra [18]. In particular, one may also consider Q as a category with quasigroup
homomorphisms as the morphisms.

A triple (f1, f2, f3) : Q → Q′ of maps from the underlying set Q of one quasi-
group to the underlying set Q′ of another is a homotopy if

xf1 · yf2 = (xy)f3 (2)

for all x, y in Q. The class of all quasigroups then forms the object class of a category
Qtp whose morphisms are quasigroup homotopies. The composite of homotopies
(f1, f2, f3) : Q → Q′ and (g1, g2, g3) : Q′ → Q′′ is the homotopy (f1g1, f2g2, f3g3) :
Q → Q′′. The isomorphisms in Qtp are isotopies.

There is a forgetful functor

Σ : Q → Qtp (3)

preserving objects, sending a quasigroup homomorphism f : Q → Q′ to the homo-
topy (f, f, f) : Q → Q′. A function f : Q → Q′ connecting the underlying sets of
equational quasigroups (Q, ·, /, \) and (Q′, ·, /, \) is a quasigroup homomorphism if
it is a homomorphism f : (Q, ·) → (Q′, ·) for the multiplications. Thus a homotopy
(f1, f2, f3) which has equal components f1 = f2 = f3 is an element of the image of
the morphism part of the forgetful functor (3).

3. Semisymmetrization

A quasigroup is semisymmetric if it satisfies the identity x · yx = y. (Compare [17,
Example 9] for an interpretation of this identity in terms of the semantic triality of
quasigroups.) Let P denote the category of homomorphisms between semisymmetric
quasigroups. Each quasigroup Q or (Q, ·, /, \) defines a semisymmetric quasigroup



November 20, 2008 19:54 WSPC/132-IJAC 00484

1206 J. D. H. Smith

structure Q∆ on the direct cube Q3 with multiplication as follows:

(x1, x2, x3) · (y1, y2, y3) = (x2//y3, x3\\y1, x1 · y2) (4)

— writing x//y = y/x and x\\y = y\x [16]. If (f1, f2, f3) : (Q, ·) → (Q′, ·) is a
quasigroup homotopy, define

(f1, f2, f3)∆ : Q∆ → Q′∆; (x1, x2, x3) → (x1f1, x2f2, x3f3). (5)

This map is a quasigroup homomorphism. Indeed, for (x1, x2, x3) and (y1, y2, y3) in
Q∆, one has

(x1f1, x2f2, x3f3) · (y1f1, y2f2, y3f3)

= (x2f2//y3f3, x3f3\\y1f1, x1f1 · y2f2)

= ((x2//y3)f1, (x3\\y1)f2, (x1 · y2)f3)

= ((x1, x2, x3) · (y1, y2, y3))(f1, f2, f3)∆.

Thus there is a functor

∆ : Qtp → P, (6)

known as the semisymmetrization functor, with object Part (4) and morphism
Part (5). This functor has a left adjoint, namely the restriction Σ : P → Qtp
of the forgetful functor (3) [16, Theorem 5.2]. The unit of the adjunction at a
semisymmetric quasigroup P is the homomorphism

ηP : P → PΣ∆; x �→ (x, x, x) (7)

[16, (5.3)]. The counit εQ at a quasigroup Q is the homotopy

(π1, π2, π3) : Q∆Σ → Q (8)

with (x1, x2, x3)πi = xi for 1 ≤ i ≤ 3 [16, (5.4)].

4. Webs

A (three)-web or (three)-net is a set N carrying equivalence relations αi for 1 ≤ i ≤ 3
such that N is isomorphic to the direct product Nαi × Nαj for each 2-element
subset {i, j} of {1, 2, 3}. Thus αi ∩ αj is the diagonal or equality relation N̂ , while
the relation product αi ◦ αj is the universal relation N2. For |N | > 1, the relations
αi are distinct [18, Proposition I.4.3(d)]. For 1 ≤ i ≤ 3, the quotients Nαi are all
isomorphic [18, Proposition I.4.3(c)].

Let Q be a set with isomorphisms λi : Q → Nαi for 1 ≤ i ≤ 3. For q in Q, the
αi-class qλi is called the i-line labeled q. A quasigroup multiplication is defined on
Q by setting the product of elements x and y to be the label of the 3-line containing
the unique point of intersection of the 1-line labeled x with the 2-line labeled y.
The quasigroup Q is said to coordinatize the web N . With different labelings, the
web is coordinatized by different isotopes of Q.

Conversely, consider a quasigroup Q. A three-web (the web of the quasigroup
Q) is defined on the direct square Q2 of Q by taking the respective equivalence
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relations to be the kernels of the projections π1 : (x, y) �→ x, π2 : (x, y) �→ y and
the multiplication π3 : (x, y) �→ xy. If each i-line (x, y)ker πi is labeled by (x, y)πi

for each index i, then the web of Q is coordinatized by Q.

Theorem 1. Let Q be a quasigroup. Let T be a singleton quasigroup, the terminal
object of Qtp.

(a) The web of Q is the set Qtp(T, Q) of points of Q in Qtp.
(b) For a homotopy p : T → Q and 1 ≤ i ≤ 3, the following are equivalent:

(i) For q in Q, the point p lies on the i-line labeled q.

(ii) The image of T∆p∆ under the i-th component of the homotopy εQ is q.

5. Reversible Automata

Semisymmetrization reduces homotopies to homomorphisms of semisymmetric
quasigroups. The earlier approach due to Gvaramiya and Plotkin [6, 7] reduces
homotopies to homomorphisms of heterogeneous algebras. A reversible automaton
(of quasigroup type) is a triple (S1, S2, S3) of sets or state spaces Si, equipped with
operations

µ : S1 × S2 → S3; (x1, x2) �→ x1 · x2,

ρ : S3 × S2 → S1; (x3, x2) �→ x3/x2,

λ : S1 × S3 → S2; (x1, x3) �→ x1\x3

(known respectively as multiplication, right division and left division) satisfying the
identities:

(ILA)x1\(x1 · x2) = x2;

(IRA)x1 = (x1 · x2)/x2;

(SLA)x1 · (x1\x3) = x3;

(SRA)x3 = (x3/x2) · x2;

(9)

analogous to (1). Given two reversible automata (S1, S2, S3) and (S′
1, S

′
2, S

′
3), a

homomorphism (in the sense of heterogeneous algebras [3, 5, 9, 11]) is a triple
(f1, f2, f3) of maps fi : Si → S′

i (for 1 ≤ i ≤ 3) such that

xf1
1 · xf2

2 = (x1 · x2)f3 , xf3
3 /xf2

2 = (x3/x2)f1 , xf1
1 \xf3

3 = (x1\x3)f2 (10)

for xi in Si. With homomorphisms as morphisms, the class of reversible automata
forms a category RAt, a variety of heterogeneous algebras.

Each quasigroup Q yields a reversible automaton Qat or (Q, Q, Q) with equal
state spaces. From (10), it is then apparent that a quasigroup homotopy f =
(f1, f2, f3) : Q → Q′ yields a corresponding homomorphism f at : Qat → Q′at of
reversible automata. Thus a functor at : Qtp → RAt is defined, corestricting to
an equivalence at : Qtp → QAt of the homotopy category Qtp with a category
QAt of homomorphisms between reversible automata.
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6. Pure Reversible Automata

For any set S (empty or not), there are reversible automata

(∅, ∅, S), (S, ∅, ∅), (∅, S, ∅) (11)

of quasigroup type in which the multiplication, right division, and left division
respectively embed the empty set in S, while the other two operations in each are
the identity 1∅ on the empty set. The remaining possibilities are described by the
following.

Proposition 2. Let (S1, S2, S3) be a reversible automaton of quasigroup type, with
at most one empty state space. Then the state spaces S1, S2 and S3 are isomorphic,
nonempty sets.

Proof. If S2 were empty, the existence of the left division (as a map from S1 × S3

to S2) would imply the emptiness of at least one of S1 and S3. Thus S2 is nonempty.
Fix an element s2 of S2. Then by (IRA) and (SRA), the maps

S1 → S3; x1 �→ x1 · s2 and S3 → S1; x3 �→ x3/s2

are mutually inverse, showing that S1 and S3 are isomorphic. In particular, they
are both nonempty. Then for an element s1 of S1, the maps

S2 → S3; x2 �→ s1 · x2 and S3 → S2; x3 �→ s1\x3

are mutually inverse by (ILA) and (SLA), showing that S3 and S2 are isomorphic.

Definition 3. A reversible automaton of quasigroup type is said to be pure if its
three state spaces are isomorphic sets.

Remark 4. By Proposition 2, the impure reversible automata are given by (11)
with non-empty S. Thus Definition 3 agrees with the general definition of Barr [1,
p. 367].

Now consider a pure reversible automaton (S1, S2, S3). By the purity, there is a
set Q with isomorphisms

li : Q → Si (12)

for 1 ≤ i ≤ 3. Define a respective multiplication, right division and left division
on Q by

x · y = (xl1 · yl2)l−1
3 , (13)

x/y = (xl1/yl2)l−1
3 , (14)

x\y = (xl1\yl2)l−1
3 . (15)

The identities (9) on (S1, S2, S3) yield the identities (1) on Q, making Q a quasi-
group. The definition of the operations on Q shows that

(l1, l2, l3) : Qat → (S1, S2, S3)
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is an isomorphism in RAt. If (S1, S2, S3) is isomorphic to Q′at for a quasigroup
Q′, then the isomorphism between Qat and Q′at shows that Q and Q′ are isotopic.
Summarizing, one has the following result, originally stated without the explicit
purity hypothesis as [6, Theorem 1(1)] [7, Theorem 1].a

Theorem 5. Let R be a pure reversible automaton of quasigroup type.

(a) Within the category RAt, the automaton R is isomorphic to an automaton of
the form Qat for a quasigroup Q.

(b) The quasigroup Q of (a) is unique up to isotopy.

7. Homotopy Kernels

Definition 6. Let Q be a quasigroup. Consider a triple (θ1, θ2, θ3) of equivalence
relations on the set Q. Then (θ1, θ2, θ3) is said to be a homotopy kernel if for xy = z

and x′y′ = z′ in Q, any two of the following statements implies the third:

(a) (x, x′) ∈ θ1;
(b) (y, y′) ∈ θ2;
(c) (z, z′) ∈ θ3.

Remark 7. The very definition of quasigroups implies that the triple of equality
relations

(
Q̂, Q̂, Q̂

)
on a quasigroup Q forms a homotopy kernel.

Example 8. Let (f1, f2, f3) : Q → Q′ be a homotopy. Then the triple

(ker f1, ker f2, ker f3)

of kernels forms a homotopy kernel.

Proposition 9. Let (θ1, θ2, θ3) be a homotopy kernel on a quasigroup Q. Then
(Qθ1 , Qθ2 , Qθ3) is a pure reversible automaton.

Proof. Consider the maps

µ : Qθ1 × Qθ2 → Qθ3 ; (xθ1
1 , xθ2

2 ) �→ (x1 · x2)θ3 ,

ρ : Qθ3 × Qθ2 → Qθ1 ; (xθ3
3 , xθ2

2 ) �→ (x3/x2)θ1 ,

λ : Qθ1 × Qθ3 → Qθ2 ; (xθ1
1 , xθ3

3 ) �→ (x1\x3)θ2 .

By Definition 6, these maps are well-defined. To verify (ILA), note that

xθ1
1 \(xθ1

1 · xθ2
2 ) = xθ1

1 \(x1 · x2)θ3 =
(
x1 · (x1\x2)

)θ2 = xθ2
2

by (IL). Verification of the remaining identities (9) is similar. Thus (Qθ1 , Qθ2 , Qθ3)
forms a reversible automaton.

If Q is empty, all three quotients Qθi for 1 ≤ i ≤ 3 are empty, forming the pure
reversible automaton (∅, ∅, ∅). Otherwise, all three quotients are non-empty. Thus
the reversible automaton (Qθ1 , Qθ2, Qθ3) is pure in all cases.

aThese papers used an implicit assumption of nonemptiness.
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Corollary 10. Let (θ1, θ2, θ3) be a homotopy kernel on a quasigroup Q. Then the
three quotient sets Qθ1 , Qθ2 and Qθ3 are isomorphic.

Proposition 11. Let (θ1, θ2, θ3) be a homotopy kernel on a quasigroup Q. If Q is
empty, take (Qθ3 , +,−,∼) as the empty quasigroup. Otherwise, for each pair (u, v)
of elements of Q, there is a well-defined quasigroup structure (Qθ3 , +,−,∼) given by

xθ3 + yθ3 = (x/v · u\y)θ3, (16)

xθ3 − yθ3 = ((x/(u\y)) · v)θ3 , (17)

xθ3 ∼ yθ3 = (u · ((x/v)\y))θ3 . (18)

Proof. Consider the instances

l1 : Qθ3 → Qθ1 ; xθ3 �→ (x/v)θ1 , (19)

l2 : Qθ3 → Qθ2 ; yθ3 �→ (u\y)θ2 (20)

l3 : Qθ3 → Qθ1 ; xθ3 �→ xθ3 (21)

of (12) for the pure reversible automaton of Proposition 9. Then (13) produces the
quasigroup multiplication

(xθ3 , yθ3) �→ (x/v)θ1 · (u\y)θ2 = (x/v · u\y)θ3, (22)

yielding (16). The right division (17) and left division (18) follow from (14) and (15)
in similar fashion.

Remark 12. If the homotopy kernel is the triple
(
Q̂, Q̂, Q̂

)
of equality relations

on a nonempty quasigroup Q, in particular on a loop, then (16) gives the so-called
u,v-isotope of Q [12, Definitions II.2.5 and III.2.5].

Corollary 13. If Q is nonempty, with u, v ∈ Q, then (Qθ3 , +, (uv)θ3) is a loop.
For different choices of u and v, the corresponding loops are isotopic.

Proof. For x in Q, one has

(uv)θ3 + xθ3 = ((uv)θ3/vθ2) · (uθ1\xθ3)

= (uv/v)θ1 · (uθ1\xθ3) = uθ1 · (uθ1\xθ3) = xθ3

and

xθ3 + (uv)θ3 = (xθ3/vθ2) · (uθ1\(uv)θ3)

= (xθ3/vθ2) · (u\uv)θ2 = (xθ3/vθ2) · vθ2 = xθ3 .

The final statement follows from Theorem 5(b).

Corollary 14. If (θ1, θ2, θ3) is a homotopy kernel on a quasigroup Q, there is a
homotopy Q → (Qθ3 , +). If Q is non-empty, with u, v ∈ Q, then the homotopy is
given by

(R(v)nat θ3, L(u)nat θ3, nat θ3). (23)
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Proof. For empty Q, the result is immediate. Otherwise, note that

(xv)θ3 + (uy)θ3 = (xy)θ3

by (16) for x, y in Q.

Proposition 15. A triple (θ1, θ2, θ3) of equivalence relations on a quasigroup Q is
a homotopy kernel if and only if it is of the form

(ker f1, ker f2, ker f3)

for a homotopy (f1, f2, f3) with domain Q.

Proof. The “if” direction is Example 8. For the “only if” direction on non-empty
Q, note that (u, u) ∈ θ1 and (v, v) ∈ θ2 imply

(x, x′) ∈ ker(R(v)nat θ3) and (y, y′) ∈ ker (L(u)nat θ3)

in (23) iff (x, x′) ∈ θ1 and (y, y′) ∈ θ2.

Theorem 16. Let (θ1, θ2, θ3) be a homotopy kernel on a quasigroup Q. Then a
semisymmetric quasigroup structure on Qθ1 × Qθ2 × Qθ3 is well defined by

(xθ1
1 , xθ2

2 , xθ3
3 ) · (yθ1

1 , yθ2
2 , yθ3

3 ) = ((y3/x2)θ1 , (y1\x3)θ2 , (x1 · y2)θ3). (24)

This semisymmetric quasigroup is isomorphic to the semisymmetrization of the
quasigroup (Qθ3 , +,−,∼) from Proposition 11.

Proof. Consider the set isomorphism

(l1, l2, l3) : (Qθ3 , +,−,∼)∆ → Qθ1 × Qθ2 × Qθ3 ;

(xθ3
1 , xθ3

2 , xθ3
3 ) �→ ((x1/v)θ1 , (u\x2)θ2 , xθ3

3 )
(25)

defined using the set isomorphisms (19)–(21). On the domain side, the product of
elements (xθ3

1 , xθ3
2 , xθ3

3 ) and (yθ3
1 , yθ3

2 , yθ3
3 ) is

(yθ3
3 − xθ3

1 , yθ3
1 ∼ xθ3

2 , xθ3
1 + yθ3

2 )

or (
((y3

/
(u\x2)) · v)θ3 ,

(
u · ((y1/v)\x3)

)θ3
,
(
x1/v · u\y2

)θ3)
. (26)

The corresponding product of the images ((x1/v)θ1 , (u\x2)θ2 , xθ3
3 ) and ((y1/v)θ1 ,

(u\y2)θ2 , yθ3
3 ) under the multiplication (24) is(

(y3/(u\x2))θ1 , ((y1/v)\x3)θ2 , (x1/v · u\y2)θ3
)
,

which is the image of (26) under the map (25). This map becomes an isomorphism
of magmas, so (24) defines a semisymmetric quasigroup on Qθ1 × Qθ2 × Qθ3 .

Remark 17. If (Q̂, Q̂, Q̂) is the triple of equality relations on a quasigroup Q,
then (24) recovers the original definition (4) of the semisymmetrization of Q

from [16].
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8. The Kernel Lattice

For a quasigroup Q, let HK(Q) denote the set of homotopy kernels on Q.

Lemma 18. Consider homotopy kernels (θ1, θ2, θ3) and (θ′1, θ
′
2, θ

′
3) on a quasigroup

Q. Then in the partition lattice of Q, the following order relations are equivalent :

(a) θ1 ⊆ θ′1;
(b) θ2 ⊆ θ′2;
(c) θ3 ⊆ θ′3.

Proof. If Q is empty, the lemma is trivial. Otherwise, suppose that (a) holds.
Consider a pair (x, y) in θ3. Now (v, v) ∈ θ2 for v in Q. Since (θ1, θ2, θ3) is a
homotopy kernel, one has (x/v, x′/v) ∈ θ1. Then (x/v, x′/v) ∈ θ′1 by (a), while
(v, v) ∈ θ′2. Since (θ′1, θ

′
2, θ

′
3) is a homotopy kernel, it follows that (x, y) ∈ θ′3. Thus

(c) holds. The other implications are similar.

Define an order relation ≤ on HK(Q) by setting

(θ1, θ2, θ3) ≤ (θ′1, θ
′
2, θ

′
3)

whenever the equivalent statements (a)–(c) of Lemma 18 hold. If ((θi
1, θ

i
2, θ

i
3) | i ∈ I)

is a family of homotopy kernels (for some index set I), then(⋂
i∈I

θi
1,
⋂
i∈I

θi
2,
⋂
i∈I

θi
3

)
is again a homotopy kernel. Thus HK(Q) forms a complete lattice under ≤, the
kernel lattice of the quasigroup Q.

For a congruence θ on the semisymmetrization Q∆ of a quasigroup Q, define
relations θi on Q for 1 ≤ i ≤ 3 as follows:

(x, x′) ∈ θ1 ⇔ ∀ s, t ∈ Q, (x, s, t) θ (x′, s, t); (27)

(y, y′) ∈ θ2 ⇔ ∀ s, t ∈ Q, (s, y, t) θ (s, y′, t); (28)

(z, z′) ∈ θ3 ⇔ ∀ s, t ∈ Q, (s, t, z) θ (s, t, z′). (29)

Lemma 19. The triple (θ1, θ2, θ3) is a homotopy kernel on Q.

Proof. If Q is empty, the lemma is trivial. Otherwise, the θi are certainly equiv-
alence relations. Suppose (y, y′) ∈ θ2 and (z, z′) ∈ θ3. Then for arbitrary s, t in Q

and fixed s0, t0 in Q, one has

(s, y, t)θ(s, y′, t) and (s0, t0, z)θ(s0, t0, z
′),

whence

(z/y, s0\t, s · t0) = (s, y, t) · (s0, t0, z)θ (s, y′, t) · (s0, t0, z
′)

= (z0/y0, s0\t, s · t0).
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Now as s and t range over Q, the elements s0\t and s · t0 range over Q. It follows
that (z/y, z′/y′) ∈ θ1. The other implications required by Definition 6 are verified
in similar fashion.

The specifications (27)–(29) thus yield an order-preserving map

k : Cg(Q∆) → HK(Q); θ �→ (θ1, θ2, θ3) (30)

from the congruence lattice of Q∆ to the kernel lattice of Q.
Conversely, consider a homotopy kernel (θ1, θ2, θ3) on Q. Define a relation

(θ1, θ2, θ3)c on Q∆ by

(x1, x2, x3) (θ1, θ2, θ3)c (y1, y2, y3) ⇔ ∀ 1 ≤ i ≤ 3, xi θi yi. (31)

Lemma 20. The relation (θ1, θ2, θ3)c is a congruence on Q∆.

Proof. Suppose that (xi, yi) and (x′
i, y

′
i) lie in θi for 1 ≤ i ≤ 3. Then

(x′
3/x2, y

′
3/y2) ∈ θ1, (x′

1\x3, y
′
1\y3) ∈ θ2, and (x1 · x′

2, y1 · y′
2) ∈ θ3 since (θ1, θ2, θ3)

is a homotopy kernel.

Remark 21. According to Corollary 14, a homotopy kernel (θ1, θ2, θ3) yields a
homotopy Q → (Qθ3 , +), semisymmetrizing to a homomorphism Q∆ → (Qθ3 , +)∆.
The relation (θ1, θ2, θ3)c is the kernel congruence of this homomorphism.

By Lemma 20 or Remark 21, the definition (31) yields an order-preserving map

c : HK(Q) → Cg(Q∆); (θ1, θ2, θ3) �→ (θ1, θ2, θ3)c (32)

from the kernel lattice of Q to the congruence lattice of Q∆.

Proposition 22. Let θ be a congruence on Q∆. Then θ ≥ θkc.

Proof. Suppose that (x, y, z) θkc (x′, y′, z′), so one has (x, x′) ∈ θ1, (y, y′) ∈ θ2,
and (z, z′) ∈ θ3. Then (x, y, z) θ (x′, y, z) θ (x′, y′, z) θ (x′, y′, z′).

The inclusion in Proposition 22 may be proper.

Example 23. Let (A, +) be a non-trivial abelian group. Now the characteristic
congruence ν on the semisymmetrization A∆ is defined by

(x1, x2, x3) ν (y1, y2, y3) ⇔ y1 − x1 = y2 − x2 = x3 − y3

[10]. Then ν is a non-trivial congruence. However, ν1 = ν2 = ν3 = Â by (27)–(29),
so that Â∆ = νkc < ν.

Definition 24. A congruence θ on the semisymmetrization Q∆ of a quasigroup Q

is said to be homotopical if θ = θkc.

In the reverse direction, matters are more straightforward.
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Proposition 25. Let (θ1, θ2, θ3) be a homotopy kernel on a quasigroup Q. Then
(θ1, θ2, θ3) = (θ1, θ2, θ3)ck.

Proof. For x, x′ ∈ Q, the reflexivity of θ2 and θ3 yields

xθ1x
′ ⇔ ∀ s, t ∈ Q, x θ1 x′, s θ2 s, t θ3 t

⇔ ∀ s, t ∈ Q, (x, s, t) (θ1, θ2, θ3)c (x′, s, t)

⇔ x (θ1, θ2, θ3)c
1 x′.

Similarly, θ2 = (θ1, θ2, θ3)c
2 and θ3 = (θ1, θ2, θ3)c

3.

Theorem 26. The maps c of (32) and k of (30) form the respective left and right
adjoints in a Galois connection. Moreover, a congruence θ on a semisymmetrization
Q∆ is homotopical if and only if it is of the form (θ1, θ2, θ3)c for a homotopy kernel
(θ1, θ2, θ3) on Q.

Proof. By Propositions 22 and 25, [18, Proposition III.3.3.1] applies. The second
statement follows from [18, III(3.3.3)].

Corollary 27. The kernel lattice HK(Q) of a quasigroup Q is modular.

Proof. If Q is empty, the result is immediate. Otherwise, consider two homotopy
kernels θ∗ = (θ1, θ2, θ3) and ϕ∗ = (ϕ1, ϕ2, ϕ3) on a non-empty quasigroup Q. In the
congruence lattice Cg(Q∆), the join of the congruences θc

∗ and ϕc
∗ is their relation

product θc
∗ ◦ ϕc

∗. By Proposition 22, θc
∗ ◦ ϕc

∗ ≥ (θc
∗ ◦ ϕc

∗)kc. Conversely, suppose
that elements (x1, x2, x3) and (y1, y2, y3) of Q∆ are related by (θc

∗ ◦ ϕc
∗)kc. Since

x1 (θc
∗ ◦ϕc

∗)k
1 y1, one has (x1, s, t) θc

∗ ◦ϕc
∗ (y1, s, t) for certain elements s, t of Q. Thus

there is an element (u, v, w) of Q∆ such that

(x1, s, t) θc
∗ (u, v, w) ϕc

∗ (y1, s, t).

In particular, x1 θ1 u ϕ1 y1, i.e. x1 θ1 ◦ ϕ1 y1. Similarly, xi θi ◦ ϕi yi for i = 2 and 3,
so that (x1, x2, x3) and (y1, y2, y3) are related by θc

∗ ◦ ϕc
∗. It follows that θc

∗ ◦ ϕc
∗ =

(θc
∗ ◦ ϕc

∗)kc: a join of homotopical congruences is homotopical; and the mutually
inverse maps c and k between the sets of closed elements in the Galois connection
of Theorem 26 are lattice isomorphisms. In particular, the kernel lattice HK(Q) is
isomorphic to a sublattice of the modular congruence lattice Cg(Q∆).

9. Eilenberg–Moore Algebras

The semisymmetrization functor ∆ : Qtp → P is right adjoint to the forgetful func-
tor Σ : P → Qtp. Consider the endofunctor Σ∆ on the category P of semisym-
metric quasigroups. Recall that a Σ∆-algebra is a semisymmetric quasigroup P

equipped with a homomorphism αP or

α : PΣ∆ → P (33)
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known as the action or structure map. A Σε∆-algebra, or Eilenberg–Moore algebra
for the adjunction (Σ, ∆, η, ε), is a Σ∆-algebra P satisfying the associative law

PΣ∆Σ∆ Σε∆P−−−−→ PΣ∆

αΣ∆


 
α

PΣ∆ −−−−→
α

P

(34)

and the unit law

P
ηP−−−−→ PΣ∆∥∥∥ 
α

P P

(35)

[18, IV, Sec. 4.1]. The associative law reduces to the diagonal identity

((x11, x12, x13)α, (x21, x22, x23)α, (x31, x32, x33)α)α = (x11, x22, x33)α (36)

for xij in P with 1 ≤ i, j ≤ 3, while the unit law reduces to the idempotence

(x, x, x)α = x (37)

for x in P . Thus (P, α) forms a diagonal algebra in the sense of P�lonka [13, 14] [15,
Example 5.2.2].

For a quasigroup Q, the semisymmetrization Q∆ is an Eilenberg–Moore algebra
[18, p. 350]. Its structure map is the image

ε∆
Q : Q∆Σ∆ → Q∆;

x11 x12 x13

x21 x22 x23

x31 x32 x33

 �→ (x11, x22, x33) (38)

of the counit, written using matrix notation for triples of triples.

10. Monadicity

In this section, it will be shown that the adjunction (Σ, ∆, η, ε) is monadic. Indeed,
those semisymmetric quasigroups that are (isomorphic to) semisymmetrizations will
be characterized as the Eilenberg–Moore algebras of the adjunction.

Let P be an Eilenberg–Moore algebra, with structure map α as in (33). Let θ

be the kernel of α, a congruence on P∆. Define corresponding relations θi on P

using (27)–(29). By Lemma 19, the triple (θ1, θ2, θ3) of equivalence relations on P

forms a homotopy kernel.

Remark 28. On a semisymmetrization Q∆, (38) shows that the relations θi reduce
to the respective kernels of the projections πi making up the counit homotopy (8).

Lemma 29. The intersection θ1 ∩ θ2 ∩ θ3 of the relations θi is the equality relation
P̂ on P .
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Proof. Suppose (x, x′) ∈ θ1 ∩ θ2 ∩ θ3. Then

x = (x, x, x)α = (x′, x, x)α = (x′, x′, x)α = (x′, x′, x′)α = x′

by idempotence (37) and successive use of the relations θ1, θ2, θ3.

Lemma 30. For elements x, y, z of P, one has

x θ1 (x, y, z)α, (39)

y θ2 (x, y, z)α, (40)

z θ3 (x, y, z)α. (41)

Proof. For arbitrary elements s, t of P , the idempotence (37) and diagonal iden-
tity (36) yield

((x, y, z)α, s, t)α = ((x, y, z)α, (s, s, s)α, (t, t, t)α)α = (x, s, t)α,

exhibiting the relation (39). The other two relations are proved similarly.

Lemma 31. The relations θ1 and θ2 permute, with common relation product P 2.

Proof. Let x and y be elements of P . Lemma 30 yields

xθ1(x, y, x)αθ2y

and

xθ2(y, x, x)αθ1y,

as required.

Lemma 32. The relations θ1 ∩ θ2 and θ3 permute. Indeed, their common relation
product is P 2.

Proof. Let x and y be elements of P . Lemma 30 yields

xθ1 ∩ θ2(x, x, y)αθ3y

and

xθ3(y, y, x)αθ1 ∩ θ2y,

as required.

Theorem 33. If a semisymmetric quasigroup P is an Eilenberg–Moore algebra for
the adjunction (Σ, ∆, η, ε), then it is isomorphic to the semisymmetrization of a
quasigroup Q.

Proof. Consider the map

Θ : P → P θ1 × P θ2 × P θ3 ; x �→ (xθ1 , xθ2 , xθ3).

By Lemmas 29, 31 and 32, Θ is a set isomorphism (compare [2, Theorem VII.5]).
Since (θ1, θ2, θ3) is a homotopy kernel, Theorem 16 shows that the codomain of Θ
carries a semisymmetric quasigroup structure isomorphic to the semisymmetriza-
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tion of a quasigroup (P θ3 , +). Then for elements x, y of the semisymmetric quasi-
group P , one has

xΘ · yΘ = (xθ1 , xθ2 , xθ3) · (yθ1 , yθ2 , yθ3)

= ((y/x)θ1 , (y\x)θ2 , (x · y)θ3)

= ((x · y)θ1 , (x · y)θ2 , (x · y)θ3) = (x · y)Θ,

so that Θ is a quasigroup isomorphism.

11. Semisymmetrized Algebras

The next two sections give direct and concrete formulations of the implications of
the preceding section.

Definition 34. An algebra (P, ·, α) equipped with a binary multiplication denoted
by · or juxtaposition, and an idempotent ternary operation α, is a semisymmetrized
algebra if:

(a) y · (x · y) = x;
(b) α satisfies the diagonal identity (36);
(c) for all xi and yj in P ,

(x1y1, x2y2, x3y3)α = (x3, x1, x2)α · (y2, y3, y1)α.

Theorem 35. The category Qtp of quasigroup homotopies is equivalent to the
variety of semisymmetrized algebras.

Proof. By Definition 34, semisymmetrized algebras form a variety of universal
algebras of type {(·, 2), (α, 3)}, construed as a category with homomorphisms as
morphisms. By Definition 34(a) and [16, Corollary 2.2], the reduct (P, ·) of a
semisymmetrized algebra forms a semisymmetric quasigroup. The remaining parts
of Definition 34 then show that P forms an Eilenberg–Moore algebra for the adjunc-
tion (∆, Σ, η, ε). In particular, Definition 34(c) expresses the fact that α : PΣ∆ → P

is a homomorphism. Since the adjunction is monadic by Theorem 33, the Eilenberg–
Moore comparison gives the required equivalence.

Corollary 36. The homotopy category Qtp is bicomplete.

Proof. Each variety of universal algebras is bicomplete [18, IV, Sec. 2.2].

Remark 37. By Theorem 5, the category of quasigroup homotopies is equiva-
lent to the category of pure reversible automata. By a result of Barr [1, The-
orem 5], reformulated by Goguen and Meseguer [5, p. 331], the category of pure
reversible automata is in turn equivalent to some variety of (single-sorted) algebras.
Theorem 35 identifies these algebras explicitly as the semisymmetrized algebras.
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12. The Factorization Theorem

Throughout this section, consider a homotopy

f = (f1, f2, f3) : Q → Q′. (42)

The main result of the section, Theorem 45, presents a factorization of (42). The
factorization may be derived indirectly from Theorem 35 and the First Isomorphism
Theorem in universal algebra, but it is nevertheless convenient to have a direct and
explicit treatment.

Proposition 38. The following are equivalent :

(a) f is a monomorphism in Qtp;
(b) ∃ 1 ≤ i ≤ 3. fi is a monomorphism in Set;
(c) ∀ 1 ≤ i ≤ 3. fi is a monomorphism in Set;
(d) (f1, f2, f3) is a monomorphism in Set3;
(e) f∆ is a monomorphism in Set;
(f) f∆ is a monomorphism in Q;
(g) f∆ is a monomorphism in P.

Proof. The equivalence of (c)–(e) is immediate, as is the implication (c)⇒(b),
while the equivalence of (e)–(g) follows since P and Q are categories of homomor-
phisms of algebras.

(a)⇒(g): The right adjoint ∆ : Qtp → P preserves monomorphisms [8,
Proposition 24.5 and Theorem 27.7].

(c)⇒(a): Suppose gf = g′f in Qtp. Then for 1 ≤ i ≤ 3, one has gifi = g′ifi in
Set. By (c), gi = g′i, so that g = g′.

(b)⇒(c): Suppose yf2 = y′f2 for distinct elements y, y′ of Q. Then for an element
x of Q, the elements xy and xy′ are distinct. But

(xy)f3 = xf1 · yf2 = xf1 · y′f2 = (xy′)f3,

so f2 not monomorphic implies f3 not monomorphic. The other cases follow in
similar fashion.

Proposition 39. Let u and v be elements of Q. Define an operation + on Qf3 by

xf3 + yf3 = (x/v · u\y)f3 (43)

for x, y in Q. Then (Qf3, +, (uv)f3) is a well-defined loop.

Proof. Let (θ1, θ2, θ3) be the homotopy kernel on Q given by Example 8. For x in
Q, consider the well-defined instances

l1 : Qf3 → Qθ1 ; xf3 �→ (x/v)θ1 ,

l2 : Qf3 → Qθ2 ; xf3 �→ (u\x)θ2 ,

l3 : Qf3 → Qθ1 ; xf3 �→ xθ3 ,

of (12). Then (43) reduces to (16).
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Corollary 40. The operation (43) may be written in the form

X + Y = (X/vf2) · (uf1\Y ) (44)

for X, Y in Qf3.

Proof. The form (44) of (43) follows from (22).

For 1 ≤ i ≤ 3, let ji : Qfi ↪→ Q′ be the embedding of the subset Qfi into Q′. It
is apparent from Corollary 40 that

m = (RQ′ (vf2)−1j1, LQ′(uf1)−1j2, j3) : (Qf3, +) → (Q′, ·) (45)

is a well-defined homotopy. In particular, XR(vf2)−1 ∈ Qf1 and Y L(uf1)−1 ∈
Qf2 for X , Y in Qf3. By Proposition 38, the homotopy m is a monomorphism
in Qtp. Thus (45) presents the quasigroup (Qf3, +) as a subobject of Q′ in the
category Qtp.

Definition 41. If Q is nonempty, then the subobject (45) of Q′ is known as the
image of the homotopy (42). Otherwise, the image of (42) is defined to be the empty
subquasigroup of Q′ (or more precisely the image of the embedding Q-morphism
∅ ↪→ Q′ under the forgetful functor Σ).

Proposition 42. Considered as a subobject of Q′ in the category Qtp, the image
of the homotopy (42) for nonempty Q is independent of the choice of the elements
u and v of Q.

Proposition 43. Let m be the image of the homotopy f of (42). If Q is nonempty,
m being chosen as in (45), there is a homotopy

e = (f1RQ′(vf2), f2LQ′(uf1), f3) : (Q, ·) → (Qf3, +) (46)

such that em = f . If f has empty domain, take e to be the identity isotopy on the
empty quasigroup, so again em = f .

Proof. For x, y in Q, one has

xf1R(vf2) + yf2L(uf1) = xf1 · yf2 = (x · y)f3,

showing that e is a homotopy. Then

em = (f1R(vf2), f2L(uf1), f3)(R(vf2)−1j1, (uf1)−1j2, j3)

= (f1j1, f2j2, f3j3) = (f1, f2, f3) = f,

as required.

Proposition 44. In the category Qtp, the homotopy e of Proposition 43 is a
regular epimorphism.
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Proof. Consider the kernel congruence

ker f∆ = {((x1, x2, x3), (x′
1, x

′
2, x

′
3)) ∈ Q∆2 | ∀ 1 ≤ i ≤ 3, xifi = x′

ifi}
of the P-morphism f∆ : Q∆ → Q′∆. For 1 ≤ i ≤ 3, define projections

πi : ker f∆ → Q; ((x1, x2, x3), (x′
1, x

′
2, x

′
3)) �→ xi

and

π′
i : ker f∆ → Q; ((x1, x2, x3), (x′

1, x
′
2, x

′
3)) �→ x′

i.

Then

π = (π1, π2, π3) : ker f∆ → Q

and

π′ = (π′
1, π

′
2, π

′
3) : ker f∆ → Q

are homotopies (compare the verification in [16] that the counit (8) of the adjunction
between Σ and ∆ is a homotopy). The homotopy e = 1∅ (for Q = ∅) or

e = (f1R(vf2), f2L(uf1), f3) : (Q, ·) → (Qf3, +)

(otherwise) is the coequalizer in Qtp of the pair (π, π′). In particular, note that

xf1R(vf2) = x′f1R(vf2) ⇔ xf1 = x′f1

and

xf2L(uf1) = x′f2L(uf1) ⇔ xf2 = x′f2

for x, x′ in Q.

Theorem 45. Each quasigroup homotopy

f = (f1, f2, f3) : (Q, ·) → (Q′, ·)
factorizes as the product f = em of a regular epimorphism

e : (Q, ·) → (Qf3, +)

to its image and a monomorphism

m : (Qf3, +) → (Q′, ·)
in the category Qtp of quasigroup homotopies. If Q is nonempty, then the image
quasigroup (Qf3, +) is a loop.

Remark 46. Application of Theorem 45 to the identity homotopy on a nonempty
quasigroup Q gives a “natural” confirmation of the well-known fact that each such
quasigroup is isotopic to a loop (compare Remark 12).
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