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Quantum geometry embedded in unitarity of evolution:
Revealing its impacts as geometric oscillation and dephasing

in spin resonance and crystal bands
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Quantum Hall effects provide intuitive ways of revealing the topology in crystals, i.e., each quantized “step”
represents a distinct topological state. Here, we seek a counterpart for “visualizing” quantum geometry, which is
a broader concept. We show how geometry emerges in quantum as an intrinsic consequence of unitary evolution,
composing a framework compatible with quantum metric and independent of specific details or approximations,
suggesting quantum geometry may have widespread applicability. Indeed, we exemplify geometric observables,
such as oscillation, dephasing, in magnetic resonance or band driving scenarios. Anomalies, supported by both
analytic and numerical solutions, underscore the advantages of adopting a geometric perspective, potentially
yielding distinguishable experimental signatures.
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I. INTRODUCTION

Quantum geometry is a rising field that reveals geome-
try’s influence (or even dominance) in quantum phenomena
[1–11]. The geometry does not refer to the shape of ma-
terials nor any tangible apsect, rather to the structure of
quantum states [12,13]. A hallmark for such abstract for-
mulation is its leading to definition of discrete numbers
that characterize material’s topological states [14,15]. The
topology can be visualized, for instance, by Hall conduc-
tivities: each step of σxy corresponds to a distinct topo-
logical state. This quantization displays a universal e2/h,
independent of material species, thus it is identifiable in
experiments.

Topology can be viewed as “quantized geometry”. For
broader geometry [16–30], one may need to uncover other
robust observables [24,29–31] (like counterparts of σxy but
not necessarily quantized). To be identifiable, the observable
needs to be “abnormal”, just like the quantized σxy is abnormal
under a classical understanding.

The goal of this work is two fold. First, show geometry
directly embedded in unitarity of evolution, without further
precondition. Thus, geometry defined here is a fundamen-
tal quantum notion, rather than an approximation at specific
limits [1,8,21]; it gives geometric effects that are robust and
suitable for across-scenario test. Second, find concrete ob-
servables to make quantum geometry visible. We explore
spin/charge pumping models to reveal distinguishable feature
that is qualitatively different from perturbation results. To
be specific, we observe that geometry may lead to pumping
oscillation with gap sizes, i.e., pumping is possibly enhanced
with increased gaps. The counter-intuitive oscillating behav-
ior has a potential to be generalized beyond the models
exemplified here.

II. THE FOUNDATION OF GEOMETRY

The first question is how geometry comes into quantum.
We should see geometry can enter for the mere fact that
evolution operator is unitary. It endorses the significance of
Fubini-Study metric [12,32,33], widely studied as a unitary-
invariant quantum distance [7,8,18,34–36]; also underscores
another unitary invariant geometric quantity, like Haar mea-
sure [29,30] (quantum volume) (Appendix A). Thus, the
framework we will introduce extends the usage of geometry
from metric to other aspects, but focus solely on geometry’s
role within a general and consistent physical ground, not sup-
posed to unify effects yielded under distinct approximations
such as adiabaticity [1], wave-package dynamics [3,21], and
thermodynamic limit [8,16,17], which are irreconcilable.

Unitary evolution is usually emphasized for its preserva-
tion of a state vector’s magnitude, i.e., probability, while its
geometric meanings as rotations are often overlooked. For
example, the evolution operator U for spin belongs to SU(2)
that involves three Euler angles φ, θ, ψ∈[0, 2π ). That means
in addition to the dynamic parameters (time t and parameters
contained in Hamiltonian H), U could be labeled by angles,
such as U (φ, θ, ψ ). By setting U (t ; B, ω, . . .) = U (φ, θ, ψ ),
we get smooth maps between the two types of parameters:
(t ; B, ω, . . .) �→(φ, θ, ψ ), called Z-map denoted as

Z : Xe→Xg. (1)

Xe and Xg stand for the spaces of dynamic and geometric
parameters. Interestingly, there is intrinsic mismatch be-
tween them: Xe often contains boundless parameters, such
as t, B∈(−∞,+∞), while angles in Xg are bounded and
periodic. Intuitively, the Z-map is about linking two objects
of different “shapes”, like a large piece of paper to wrap up
an orange. Accurately, a Z-map often connects a noncompact
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FIG. 1. Z-map (restricted to Xg
∼= S2) under different

parametrizations of Hamiltonian. 1D (a) and 2D: (b) isomorphism
S2→S2; (c) plane R2→S2; (d) Torus T 2→S2. Singular points
are inevitable for (c), (d) for distinct topologies. For (c), imagine
a big piece of paper wrapping (winding around) an orange and
encountering an annoying point at the pedicle. For (d), surgery has
to be performed on the sphere to make it become a torus.

space to a compact one, characterized by the dimensions and
natures of Xe and Xg. Restricting to dimXe = dimXg, we find
1D is simple, just winding around [mod 2π , Fig. 1(a)]. In 2D,
three topologies of Xe are listed in Figs. 1(b)–1(d); in some of
them, singularity might be inevitable, such as mapping from
cylinder [Fig. 1(c)] or torus [Fig. 1(d)] to S2 (a sphere surface),
and these singularities may have important indications.

Evidently, quantum evolution is made into categories based
on the shapes of Xe and Xg — geometry and topology have
sneaked in for the mere sake of U being unitary. One is
able to incorporate various geometric quantities through the
space Xg. For example, the familiar Fubini-Study metric as
defined on S2n+1/U (1), if needed, could be introduced onto
Xg. Given n = 1, we have S3/U (1) ∼= S2, and this leads to a
choice of Xg

∼= S2, wherein the metric gives the distance de-
fined on a sphere. The “k-dependence” of the metric [33–36]
corresponds to choosing Xe to be Brillouin zone (BZ), a
torus like Fig. 1(d), not intrinsic for the metric’s definition,
though. Here, we happen to examine another geometric quan-
tity “quantum volume” defined on Xg and a case like Fig. 1(c),
which gives robust abnormality.

Consider building a concrete Z-map for a spin driven by
cyclic “pie slice” loops of B(t ) [Fig. 2(a)]. We recognize
Xe := (�,ω), an unbounded ω := 2π/τ (τ is the cycle pe-
riod) together with a bounded � (the vertex angle); other
parameters are fixed.

The geometric space is chosen to be Xg := (�,
)∼=S2,
where � is the vertex angle of B(t ), while 
 is a quantum
phase arising from evolution. That is,

Z : (�,ω) �→(�,
), (2)

which is the type Fig. 1(c). The (one-cycle) evolution operator
U should be expressed with Xg. Physically, this corresponds
to reinterpretation of dynamic evolution as Hilbert spatial
rotation. It shows in the Supplemental Material [37] (see also
[38]) that spin 1/2 will lead to
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FIG. 2. (a) A standard loop and its distortion due to deviation
from the ideal. (b) A quenched pumping (pG→0) is geometrically
interpreted as approaching to N-pole of S2, and dephasing is ap-
proaching the S-pole. (c), (d) Comparison of analytic (left) and
numerical solutions (right, at each pixel pG ≈ pn=100). (e), (f) Quan-
tum oscillation (s = 1/2, 1) approaches to dephasing tuned by angle
� : 0→π .

For spin 1 (a 3D Hilbert space), U (�,
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Notably, evolution operators [Eqs. (3) and (4)] are “formal”
and “general”, and have the potential to be applied to multiple
models. Because evolution operators of different models may
correspond to the same coordinates (�,
). In other words,
distinct models are characterized by different functions �,

 in terms of original parameters, such as ω, B, t . (For-
tunately, solving explicit forms of these functions can be
eluded.) Therefore, Eqs. (3) and (4) attack multiple models
{H} with “one shot”, and the result reflects the common
behavior for {H}.

Moreover, in view of Z-map, such as Eq. (2), being inde-
pendent of Hilbert space (Xe and Xg are distinct spaces from
Hilbert space), the geometric argument or interpretation will
hold for models defined in different dimensions of Hilbert
spaces. We demonstrate the potential of “cross-space” uni-
fying with 2D [Eq. (3)] and 3D [Eq. (4)] (corresponding to
2-fold and 3-fold highest degeneracy). Although they live in
different Hilbert spaces, they are described by a common Z-
map [Eq. (2)]. In principle, this applies to higher dimensions.

144305-2



QUANTUM GEOMETRY EMBEDDED IN UNITARITY OF … PHYSICAL REVIEW B 111, 144305 (2025)

III. QUANTUM OSCILLATION & DEPHASING FOR SPINS

To show abnormality, consider a magnetic resonance ex-
periment [Fig. 2(a)]. The observable is spin population over
eigenstates |s, sz〉 after t→∞ (cycle number n→∞). Given
an initial state is spin up, i.e., ϕ(t = 0) = | 1

2 , 1
2 〉 or |1, 1〉. The

average population of n cycles is

pn(s, sz ) := 1

n

∑n

j
|〈s, sz|U j |ϕ(0)〉|2. (5)

Using Eqs. (3) and (4), we (numerically) evaluate pG :=
pn→∞ ≈ pn=100 against (�,
), presented in the right half
of Figs. 2(c), 2(d), which suggest pG peaks at a longitude
(the diagram is symmetric with 
 = 0). Since (�,
) actually
forms S2 surface, if the system traverses along latitudes of
(�,
), pumping should periodically encounter a maximum,
forming an oscillation.

The “motion” on S2 is not a dynamic real-time driv-
ing because a point on S2 represents a particular model,
and a path is a series of models subject to certain con-
tinuous tuning. Particularly, we are interested in frequency
f as the tuning parameter, which leads to a pumping os-
cillation with f . Normally, as energy quanta h f increases,
pumping will increase before it hits the resonance — a
monotonous trend. In other words, when h f provides more
energy, pumping should have been enhanced. By contrast, ge-
ometry suggests an oscillation. That means in certain regime,
pumping might be enhanced with a larger gap. Within tech-
nically achievable f ranges of B(t ) (Appendix B), we plot
the spin pumping [Figs. 2(e), 2(f)] to directly “see” the effect
of geometry.

Besides, the pumping probability is fractional (with a frac-
tional ceiling), an absent feature for conventional energetic
pumping. Indeed, it originates from geometry. However, un-
like the oscillation which could be intuitively understood as
due to the hovering around S2 [inset of Fig. 2(e)], the frac-
tionality (shown and proved shortly) lacks a direct picture.

The oscillation exhibits parameter-independent signature,
thus not a fine-tuning effect. For example, spin 1/2 is of
frequency double with spin 1 under common conditions
[Figs. 2(e), 2(f)], which is related to a pure geometric fact
that half-integer s gives -1 after rotating 2π , while integer s
gives +1. Interestingly, this rotation rule for spin can practi-
cally be observed by pumping phenomenon at t→∞ beyond
interference of dynamic phases [39].

The oscillation can be switched on/off [Figs. 2(e), 2(f)]
by tuning the angle of the B(t ) loop [Fig. 2(a)], thus it
is verifiable in experiments. A flat line (as �→π ) means
pumping probability is insensitive to the quantum phase 
.
A basic ingredient in quantum is the phase’s influence; now
the phase becomes effectless, as though it disappears. The
dephasing is shared by both half-integer and integer spins
[Figs. 2(d), 2(e)], and it only depends on �, thus we call it
geometric dephasing.

Z-map provides a pathway to analytic solutions for pG

(Sec. 2 of [37]). The idea is mapping the evolution path to
a special subspace of Xg, namely ergodic subgroup, [29,30] in
which probability density is uniform according to quantum
Liouville’s theorem recently proved [30]. With integration

approaches, we obtain
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Analytic and numerical pG are compared in Figs. 2(c), 2(d).
The analytic solutions make geometric dephasing a rigorous
concept, because all pumping channels shown by Eqs. (6) and
(7) become constant functions of 
 at � = π . Z-map gives
a geometric understanding: approaching to the S-pole of the
S2, and since 
 corresponds to motions along latitudes, it
becomes motionless at the S-pole [Fig. 2(b)], thus causing no
effect. Furthermore, it proves fractionality and its exact limit
values: pG(1,−1)→ 3

8 and pG(1, 0)→ 1
4 at �→π .

Note that it is a limited understanding that geometric ef-
fect is just a quantity expressed as a function of quantum
metric. Here we see quantum volume is used instead of dis-
tance. Moreover, the phenomenon’s robustness is related to
the inevitable pole, whose math expression is beyond a local
analytic function [21,33–36]. Indeed, geometry is a broader
notion than metric or analytic.

IV. QUANTUM OSCILLATIONS FOR BANDS

Similar analysis can be made on H (k), given k is con-
served. Phonon plays the roles of cyclic fields, and B = 0
corresponds to gap closing, which might lead to band inver-
sion and thus topological phase transition (TPT). The spin
observable is replaced with interband pumping, a charge dis-
tribution near gap closing k0, formed after a number times of
TPT driven by phonons. [40–43] Consider a two-band model

H (k) = cH

(−ε(t ) − cos(k) −isin(k)
isin(k) ε(t ) + cos(k)

)
, (8)

where ε(t ) = ε0 + Aph·sin(ωt ) depicts phonon.
Z-map for bands relies on numerical methods to determine

(�,
 are now functions of k). Given the model Eq. (8), we
employ Trotter decomposition [44,45] to evaluate U . Basi-
cally, the method discretizes the evolution into steps. Once
U is obtained, we use Eq. (3) to deduce (�,
). The Z-map is
graphed in Fig. 3(a), i.e., H (k) is mapped to S2 surface [inset
of Fig. 3(a)].

Now k plays roles as ω in the spin model, tracing out a path
on S2. Analytic solutions [Fig. 3(b)] suggest the maximum
pG occurs at 
 = 0. Thus, whenever the longitude 
 = 2nπ

[dashed lines in Fig. 3(a)] is passed, pumping peaks. How-
ever, as �→0, the peak width vanishes. Thus, only the first
few orders have decent chance to be seen. The simulations
are presented in Fig. 3(c). In principle, the peaks are equal
in heights, but for finite k resolution (k-sampling eludes the
peak), they appear decreasing — thus, the numerical (conven-
tional) method potentially misses the higher order features,
which is revealed by the geometric approach based on Z-map.
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FIG. 3. (a) k serves as the coordinate of a path in (�, 
) space
(S2 surface shown by the inset). Every time longitude 
 = 0 (dashed)
is passed, pumping probability pG gets to maximum (1st, 2nd, 3rd).
The color scales of dots stand for k’s value in unit of π . (b) Analytic
solutions of pG (for spin 1/2). (c) Numerical results of pG in BZ.
(pG(k) = pG(−k)) subject to different phonon period τph, and its
correspondence to (�, 
) (lower panels). Maximum of pG occurs
at dashed line (lower panels) crossing 
 (orange dots). Since 
 is
periodic, the jump from -1 to 1 is actually continuous. (d) Oscillation
of pumping tuned by bias voltages.

In analog to spin pumping oscillating with ω, charge pump-
ing oscillates with gaps in k-space [Fig. 3(c)]: larger gap
(minimum gap happens at 
) might lead to enhanced prob-
ability density of pumping. The abnormality is of the same
geometric origin as spin, independent of band or phonon de-
tails. We demonstrate the robustness with two phonon periods
τph (representing different phonon modes). Their patterns are
similar except for the longer τph = 3 ps leading to a fast-
rolling phase 
 and thus passing more around S2 than τph = 1
ps [Fig. 3(c)].

Unlike perturbation, Z-map relies solely on unitarity and
continuity, providing a distinct picture. However, their opposi-
tion could be neutralized from a coarse-grained viewpoint, as
the envelope of the oscillations aligns with the tendency sug-
gested by perturbation. Furthermore, geometry circumvents
H’s detailed forms to yield model-independent behaviors,
while energetic analysis like perturbation depends on inter-
action V̂ , its strength and truncation orders (or types) [39],
resulting in model-specific outcomes.

To facilitate experimental detection, we make a pro-
posal only dependent on the total probability (sum over
BZ). The idea is to employ local site energy ε0 (instead
of k) to drive the oscillation. A plausible tuning for ε0 is
bias voltage or strain; a suitable system could be ZrTe5

[40,41] a narrow-gapped topological insulator at the vicinity
of TPT. The only drawback is averaging might reduce the
contrast [Fig. 3(d)]. Fortunately, the pump-probe techniques
[25,40–43] provide sensitive detection of charge pumping

by measuring the change of reflectivity �R with resolution
�R/R 10−5 ∼ 10−6.

V. DISCUSSION & SUMMARY

Comparison with known effects. The predicted oscillation
should not be confused with an existing term “quantum os-
cillation”, e.g., the de Haas–Van Alphen (DHVA) effect. The
difference lies in (i) it is not is an oscillation in a single system,
but an “up-and-down” displaying in a group of peer systems;
(ii) the convolution is not on a “material” Fermi surface, but
on an abstract closed manifold of evolution group, thus it
is not limited to electronic or metallic systems; and (iii) the
observable is not limited to the response to magnetic fields,
but could be multiple. The pumping pG is one such. It is
based on h̄ω��̄ except for an infinitesimal period of gap
closing in the cycle, thus it is different from the adiabatic
limit where h̄ω��̄ constantly holds, also different from Rabi
oscillations [39], which lead to pumping at h̄ω∼�̄. Therefore,
geometric oscillation is virtually different from the known
quantum oscillations (e.g., DHVA, Rabi oscillation), in terms
of where it takes place, the occurrence conditions, and so on.

Outlook. Z-map proves useful in revealing anomalies and
a deep-seated contradiction: the monotonic dependence of
pumping on gaps or frequencies, while intuitively satisfying,
secretly violates the principles of unitarity and continuity.
Z-map is independent of energetic parameters and space di-
mensions, and its strength is to uncover generic behaviors
across models. Therefore, a promising direction is by judi-
cious construction of different Z-maps (Fig. 1) to discover
more such behaviors, analogous to ongoing efforts in express-
ing different quantities in terms of quantum metrics [33–36].
However, the focus shifts to general geometry rather than a
specific geometric quantity. Another inspiration of Z-map is
that geometry’s influence can go beyond analytic ways, as ex-
emplified by the connection between dephasing and “poles”.

Conclusion. First, geometry enters quantum via unitarity,
unconstrained by specific approximations or scenarios, lead-
ing to generic phenomena and rigorous concepts. Second,
observables are uncovered for visualizing the influence of
quantum geometry in spin/band scenarios. Intuitively speak-
ing, topology is demonstrated by “steps, and here geometry
can be demonstrated with “wavy lines; moreover, these wavy
lines are abnormal to conventional belief and can be tuned
(for spin, by the loop vertex angle �, and for band by band
inversion [29,40]), such that their identities could be tested.
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APPENDIX

1. A. Generality of Z-map & Its limitation

(i) The potential of Z-map to connect models defined in dif-
ferent spaces. This comes in from several tiers. First, different
models, say (�,ω1), (�,ω2), ... in the original Xe, described
by the standard “pie-slice” loops [Fig. 2(a)] could be mapped
to a common point in Xg. That is, a point in geometric space
Xg, say (�,
), is not just standing for a single model, but an
equivalence class of models that lead to a common evolution
operator. In other words, the unifying is related to the fact that
Z-map is noninjective (multiple-to-one). The benefit is that, to
examine “all” models, we not necessarily exhaustively write
down all Hamiltonians, but only select one representative in
each equivalence class, such as using the “pie-slice” model.
So, instead of covering all possible Hamiltonians, we try to
cover all evolution outcomes of Hamiltonians.

Second, we may generalize the standard loops of B(t) to
broader ones, as long as they are characterized by a set of
parameters. For example, a “bumpy” loop [Fig. 2(a)] expands
Xe from (B, ω) to a higher dimension {Bj, ω j} (Fig. 2(a) and
[37]). Notably, increasing Xe will not change Xg. The idea is
that a model {Bj, ω j} in the expanded Xe will still find a place
on the same Xg. Formally, this is expressed with a map “dis-
tortion” (�,
) �→(�′,
′) [Fig. 2(a)]. That means arbitrary
models characterized by a specific Xe could be unified to a
common Xg.

Third, different scenarios, such as spin and band, which are
formulated by different Xe spaces, could still be mapped to a
common Xg. Moreover, the dimension of Xe is independent
of the dimension of Hilbert space. In the paper, we show with
spin 1/2 and spin 1, which reside in 2D and 3D Hilbert spaces,
while they share a common Xe = (B, ω). By this example,
we see arguments, such as dephasing at � �→π , can be made
across different Hilbert spaces. Otherwise, we would have
faced an infinite task of studying different dimensions.

In short, different Hilbert spaces are unified to a common
Xe; different Xe could be unified under a common Xg; then we
work on Xg — this is the “mechanism” for making generic
arguments across scenarios, models, and Hilbert spaces.

(ii) General applicability and robust phenomena. Berry
phase involves (i) geometric terms (connection, curvature,
etc.) and (ii) general applicability. Notably, most protocols
for quantum geometry only inherit (i) by exploring further
geometric terms, such as metric; but lose (ii), because to make
metric enter, it relies on specific approximations or scenar-
ios. By contrast, Berry phase is defined in generic parameter
space, independent of whether the system is atom or crystal,
whether the dispersion is flat or not.

Z-map tries to maintain both (i) and (ii). Firstly, on Xg, var-
ious geometric quantities (including metric) could be defined;
secondly, the existence of Xg merely relies on unitary, thus (ii)
is respected too.

Generality is also seen from the general observables un-
covered. It is often said quantized σxy is general, because it is
due to “continuity”, which forbids the wave function jumps
between topologies. This generality makes the effect robust,
insensitive to the system’s details.

Here, Z-map predicts robust phenomena, such as geomet-
ric oscillation/dephasing, which also arise from “continuity”.

Such phenomena might take place in different scenarios
and parameter regimes. For example, we show the ro-
bustness with different phonon periods τph (independent of
phonon modes). Besides, the robustness is demonstrated by
parameter-independent phenomena, such as geometric oscil-
lation of half-integer s along ω (or f ) being twice faster than
integer s [Figs. 2(e), 2(f)].

(iii) Relationship with metric-based geometry. Z-map is
a comprehensive framework for various geometric quantities
to be built in, such as metric (or particularly Fubini-Study
metric), measure, curvature. The entrance is just Xg space.
Moreover, Xg (solely) arises from unitary evolution, thus
naturally underscores the Fubini-Study metric as a unitary
invariant. Otherwise, if the formulation merely involves gauge
invariant, Fubini-Study metric does not prove irreplaceable,
thus it is not “physical”.

Besides, Z-map extends the ways of geometry giving the
influence. Most commonly, geometry enters locally, in forms
of a local field, such as metric [7–9,18,42–45], curvature,
or sometimes enters in a global way by an integration of
metric [19,24]. The geometric oscillation/dephasing from Z-
map are both due to global geometry, but not due to an
integration of an explicit local field. Besides, it raises the
possibility of nonanalytic ways of geometry giving its in-
fluence, such as the poles when one space tries to cover a
different one.

Limitation of Z-map. Z-map generalizes geometry from
metric to measure, and possibly to other aspects. But Z-map
will not unify every existing scheme as special cases. Because
their “inputs” could be different, Z-map is stricter in gener-
ality in introducing geometric concepts. In short, they will
overlap, but are not totally inclusive.

Another limitation is that Z-map is only to reveal generic
behaviors, and certain detailed behavior will be ignored. For
example, a generic oscillation can be proved by geometry,
while the exact locations of peaks or valleys are scenario
specific. This is in analog with quantized σxy, which is due to
edge bands protected by topology, thus material-independent;
but the detailed dispersion and locations of those edge bands
are material-dependent.

2. B. Viability of experiments

First, the observable is an oscillation pattern, more de-
tectable than fine features. Second, unlike some fragile
phenomena (e.g., spin liquid) living in narrow regimes, the
oscillation is robust to model details, easier for material selec-
tion and preparation. Third, it is scenario independent, that
means it allows crosscheck in different systems from local
spins to various narrow-gapped topological insulators, along
different axes, such as ω, ε0 (Figs. 2, 3). Fourth, the frequency
of B(t ) is MHz, and the driving of bands is in THz — both are
technically achievable.

In particular, for the band model, we already made pre-
liminary measurement in ZrTe5 [40,41]. The TPT could be
realized by A1g, B1u phonon modes, which can be excited by
THz or optical pulses. The pumping physically is a metastable
charge configuration after a relatively “long” time, thus, it is
insensitive to the vibration process, as long as the phonon
will close up the gap for a number of times. The charge
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pumping can be measured by transition rate change with
∼10−5-10−6 and sub-ps time resolution. Next, we need to
extend the measurement under a biased voltage or applied
strains.

Parameters used for the experimental proposal. In Figs.
2(e), 2(f). The frequency f is 1/τ , where τ is the period
of B(t ) completing a whole loop. Magnetic resonance ex-
periment is typically performed in a MHz range [46]. Thus,
parameters will be chosen to approach that range. By a rough
estimate, B̄ = 0.01 T is suitable and technically achievable.
Assume 
0 = 0 at f0 = 1/τ0 = 10 MHz for a demonstra-
tion. (Otherwise, if 
 = 0 happens at a different frequency,
the oscillation simply has an overall shift to the true f0.)
Then, 
 = 
0 + �
 = Ē ·(τ − τ0)/h̄ and Ē = μBB̄, where

Ē and B̄ are the average energy and magnetic field. Some
calculations give 
 = c(1/ f − τ0), where c is a coefficent
∼2.8π ·102 MHz. Combining 
 with Eqs. (6) and (7), we may
plot the oscillations under different �.

As a necessary check, we should remember f cannot be
too fast (or equivalently B̄ cannot be too small), because the
pumping is derived based on h f ��̄. In this case, B̄ = 0.01 T
leads to �̄ ∼ 10−27 J and h f is ∼10−25 J. Thus, the precon-
dition is satisfied. In other words, it is well separated from a
Rabi pumping [39].

In Fig. 3, we have adopted cH = 0.5 eV, which gives a
Fermi velocity under this model ∼105 m/s, consistent with
ZrTe5. More parameters, such as the sampling density in BZ,
could be found in [37].
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