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Abstract. The scopes of both character theory and module theory have previously been extended
from groups to quasigroups. This paper initiates the extension to quasigroups of a further aspect
of group representation theory: transitive permutation representations. Using pseudoinverses of
incidence matrices of quasigroups in partitions induced by left multiplications of subquasigroups,
a transitive permutation action of a quasigroup is defined as a set of Markov chain actions indexed
by the quasigroup. The definition is given a natural graph-theoresical interpretation. A certain
non-unital ring is afforded a linear representation by a quasigroup permutation action. If the
quasigroup is a group, the linear representation is a factor in the usual linear representation of
the group algebra afforded by the transitive permutation action of the group. Finally, Bumside’s
Lemma for transitive quasigroup actions is derived.
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1. Introduction

A quasigroup Q or (Q, -) is a set O equipped with a binary multiplication, denoted by
*“” or juxtaposition, such that in the equation

xX-y=zg, (1.1)

lmowledge of any two of x, y, z specifies the third uniquely. Thus, for each element g
of Q, the right multiplication R(q) or

Ro(@) : Q— Q; x> xq (1.2)
and left multiplication L(q) or

Lo(@) : Q— Q; x+—>gx (1.3)
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are clements of the group Q! of bijections of the set Q. A subgquasigroup P of a
quasigroup Q is a subset P of Q that is itself a quasigroup under the multiplication
of Q. The relative right multiplication group RMItp P of P in Q is the subgroup of Q!
generated by {Rg(p)|p € P}. The relative left multiplication group LMItg P is defined
similarly. The relative multiplication group Mltg P is the join of RMltp P and LMltg P
in the lattice of subgroups of Q!. The (right, left) multiplication groups RMItQ, LMItQ,
MItQ of Q are the relative (right, left) multiplication groups of Q in Q.

Examples of quasigroups are furnished by groups under multiplication, by abelian
groups under subtraction, and by the octonions of norm 1 under multiplication. More
generally, any Latin square may be construed as the multiplication table of a quasigroup
on labeling its rows and columns as in (3.1) below. For other examples and applications,
see [3]. The multiplication group of a group ( is given by the exact sequence

1520 2 02 -5 Mitg — 1 (1.4)

with A : Z(Q) — Q?%; z — (z, z) as the diagonal embedding of the center in the square,
and with T : 0% — MItQ; (x,y) — L(x)"'R(y). Note that the associative law yields
the commuting of LMItQ with RMItQ, so that T in (1.2) is indeed a homomorphism.
For a subgroup P of a group (, the orbits of the relative multiplication group Mltg P
acting on Q are the double cosets of P in Q. The set Q /L MlItg P of orbits of the (right)
action of the permutation group LMItg P on Q is the set P\Q of right cosets of P in
Q. The map

R:P —> MltpP; p+— Ro(p) (1.5)

is an injective group homomorphism with image RMltp P, so that RMltp P is
isomorphic to P. Indeed, (1.3) is an extension of the right regular representation of
P given by Cayley’s Theorem.

Much work has been done on extending certain aspects of representation theory from
groups to quasigroups. It is convenient to identify three such aspects:

(a) character theory;
(b) modules;
(c) permutation representations.

There is now a very satisfactory character theory for quasigroups, to some extent
(but not completely) located within the theory of association schemes [1]. The action
of the multiplication group MItQ on a (finite) quasigroup Q is “multiplicity free”. In
other words, extending by linearity, the CMItQ-module CQ decomposes as a direct
sum of mutually inequivalent submodules. Thus the centralizer ring VMItQ, Q), the
ring EndCMhQ(CQ of CMItQ-endomorphisms of the module C(, is a commutative
C-algebra. As such, it decomposes as a direct sum of copies of C. There are two natural
bases for V(MItQ, Q): the orthogonal idempotents yielding the decomposition, and the
incidence matrices for the orbits of MItQ in its diagonal action on Q. Normalized basis
change matrices connecting these bases yield the ordinary character table of Q if Q is
a group. In the general case, they thus provide the foundation for extending character
theory from groups to quasigroups. Further details are available in [6-13,15].

Modules for quasigroups are defined using category theory and universal algebra.
(Readers unfamiliar with these subjects are referred to [21].) A quasigroup may be
redefined equivalently as a set Q with three binary operations, namely the multiplication,
right divisionx /y = xR(y)~", and left division x\y = yL(x) ™!, satisfying the identities
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Y /y = x, (x/y)y = x, y\(yx) = x, and y(y\x) = x [21, I§2.2]. A variety of
quasigroups is the full class of all quasigroups satisfying these and possibly a further
set of identities (such as associativity). A variety V may be construed as a category on
admitting homomorphisms between V-quasigroups as the morphisms of the category.
For a V-quasigroup Q, a Q-module in V is then defined to be a complex vector space
7 : E = Q in the slice category V/Q.Tf V is the category Gp of groups, then such an
object 7 : E — Q is just the projection 7 : Q[M — Q; (g,m) — ¢ from the split
extension Q[M of a module M over the group Q in the traditional sense. For general
quasigroups, there is no longer the strong link between the character table and module
theory that there is in the group case. General Q-modules are characterized by analytic
characters, defined as certain almost-periodic functions on the relative multiplication
group of Q in the coproduct Q[X] of Q with the free quasigroup on an indeterminate
X . Further details are available in {4, 5, 16, 17, 20].

The aim of the current paper is to initiate development of a concept of permutation
representation for quasigroups. At this early stage, it does not yet seem appropriate to
attempt formulation of general axioms. Instead, a concrete, model-based approach is
adopted. If O is a group, then each set X acted upon by Q breaks up as a disjoint union
of orbits or transitive actions. Each of these transitive actions is of the form P\Q for a
subgroup P of O (namely the stabilizer of an element of the orbit). The elements g of
Q act on P\ Q by right multiplication

Rp\o(q) : Px > Pxq. (1.6)

It is these transitive actions that will be extended here to general quasigroups. For a
subquasigroup P of a quasigroup Q, the set P\Q is taken to be the set of orbits of
LMitpP on Q. In Sec. 2, the action of Q on P\Q is then defined probabilistically.
For each element g of Q, the set P\Q is the state space of a certain Markov chain.
The (transitive) permutation action of Q on P\Q is then defined to be the set of
all these Markov chains. In the group case, the transition matrices just turn out to
be the usual permutation matrices. Section 3 gives a graphical interpretation of the
constructions of Sec. 2, showing how they follow naturally from an incidence matrix and
its pseudoinverse. In the group case, a permutation action affords a linear representation
of the complex group algebra. Section 4 identifies a non-unital ring represented linearly
by a transitive quasigroup permutation representation, and connects this representation
with the permutation representation of the group algebra in the group case. Finally, Sec. 5
shows that Burnside’s Lemma extends naturally to the quasigroup case.

2. Transition Matrices

Let P be a subquasigroup of a finite quasigroup Q. The relative left multiplication group
LMilty P of P in Q acts on Q. Define the underlying set

P\Q := Q/L MliyP @.1)

of a permutation representation P\Q of Q as the set of orbits of the action of the
permutation group LMlty P of Q. For each element g of Q, a Markov chain will be
defined on the set P\ Q of states. This set of Markov chains on the state space P\ Q, one
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for each element g of Q, will comprise the full structure of the quasigroup permutation
representation P\ Q. Thus the key step is to define the transition matrix Rp\g(g) of the
Markov chain corresponding to an element g of Q.

The transition matrices will be defined in terms of an incidence matrix Ap and its
pseudoinverse A;. The incidence matrix A p is the incidence matrix of the membership
relation between the set Q and the set P\Q of subsets of Q. As such, it is a
|Q] x | P\ Q| matrix. Consider the row corresponding to an element x of Q and the
column corresponding to an orbit X of LMltg P on Q. Then the entry in this row and
column is 1 if x € X, and O otherwise.

Recall that the pseudoinverse A" of a complex matrix A is the unique [2, Theorem
1.5; 14] matrix A™ satisfying the equations

(a) AATA=A;

(b) ATAAT = AT,
(©) (ATA)* = ATA;
(d) (AAT)* = A4t

in which the “x” denotes the conjugate transpose.

2.2)

Theorem 2.1 For a subquasigroup P of a non-empty quasigroup Q, the pseudoinverse
A;F of the incidence matrix A p is the | P\ Q| X | Q| matrix whose entry in the row indexed
by LMltg P-orbit X and column indexed by Q-element x is given by

if x € X, then [X|! else 0. (2.3)

Proof. To simplify notation, drop the suffix P from the matrices Ap and A;f. Matrix
suffices x and y will then correspond to elements of Q, while suffices X and ¥ will
correspond to orbits of LMItg P. The various equations of (2.2) have to be verified. For
(a) and (b), consideration of the relationship

xe¥YsyeX 24

will be critical. For fixed x in Q and X in P\ Q, note that (2.4) can hold only if X = 7,
and that it will then hold for each of the | X| elements y of X.

(a) Forx € Q and X € P\Q, consider the equation

(AATA)x = D Y AwAj Ayx. 2.5)
YeP\Q yeQ

A summand on the right-hand side is non-zero precisely when (2.4) holds. For
x ¢ X, there are no such summands, so (AAT A), x takes the value zero of A, x for
this case. On the other hand, if x € X, then each of the | X| non-zero summands in
(2.5) is |X|71, so that the sum yielding (AA* A),x agrees with the value of A,x
(namely 1) for this case as well.

(b) Forx € Q and X € P\ Q, consider the equation

(ATAAN g =Y Y AL ArAL. (2.6)
yeQYeP\Q
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A summand on the right-hand side of (2.6) is non-zero precisely when (2.4) holds.
For x ¢ X, there are no such summands, so (AT AA™)y, takes the value zero of
A}x for this case. On the other hand, if x € X, then each of the |X| non-zero
summands in (2.6) is [X|~2 so that the sum yielding (AT AA ™)y, agrees with the
value of A}Lx (mamely |X|~1) for this case as well.

(¢) For X and Y in P\ Q, consider the equation

(At A)xy = Z A3 Ay .7)
yeQ
Here, the relation
Xsyev, 2.8)

holding only if X = Y, and then precisely for cach of the | X| elements y of X, is
critical. If (2.8) holds, then A}yAyY takes the value | X|~!. Thus

(At A)xy = 8xv, 2.9)

from which (c) follows.

(d) For x and y in Q, consider the equation

(AAD),, = Z Ax A%, (2.10)
XeP\Q

Note that a summand A, XA}y of (2.10) is non-zero if and only if x and y both lie

in X, in which case the non-zero value is the real number [X |~. Since orbit-sharing
is a symmetrical relation on Q, (d) holds. O

Corollary 2.2 By (2.9), it follows that
A;AP = Iip\g)s (2.11)

the identity matrix of size |P\Q|. O

The incidence matrix Ap and its pseudoinverse A'}t may now be used to define the
transition matrix Rp\g(q) specifying the Markov chain that an element ¢ of Q induces
on the state space P\ Q. Consider R(g) as a permutation matrix with rows and columns
indexed by the elements of Q.

Definition 2.3. The transition matrix on P\ Q specified by an element q of Q is

Rr\0(q) = AL R(q)Ap. (2.12)
O

Theorem 2.4. Definition 2.3 yields a Markov chain on the state space P\Q of
LMltg P-orbits on Q. The probability of transition from an orbit X to an orbit Y is
given as

IX NYR(@)/IX]. (2.13)
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Proof. By (2.12), one has

[Reo@lxy = Y > AL, R(@xyAyy

xeQ yeQ
=Y AL Awgr =Y A} Awgy
xeQ xeX

= |X|_1|{x|x € X,xq €Y}
=1XI""XNYR@™,

yielding (2.13). Moreover, summing (2.13) over all elements ¥ of P\ Q yields the value
1, since the image of the partition P\Q of Q under the permutation R(g) ! of Q is
again a partition of Q. O

3. A Graphical Illustration

In order to visualize the ideas of the preceding section, it is sometimes helpful to use the
methods of graph theory. Consider a quasigroup Q with multiplication table

3.1)

AWV AW =IO
AN BN W=
AN W N
(9 W O N TIVEE S N 0N
[SSI SR N Y, N
[SNOCI CI [  Ne N R}
N = Wl o

Let P be the singleton subquasigroup {1}. Note that L. Mty P is the cyclic subgroup of
Q! generated by (23)(456). Label the respective orbits {1}, {2, 3}, {4, 5, 6} of LMty P
on @ by their 2-power representatives 1,2,4, so that P\Q = {1, 2, 4}. The Markov
chain given by Rp\ g (5) may then be determined from the graph of Fig. 1. The bipartite
graphs on the left- and right-hand sides of the figure specify the incidence between
elements of Q and elements of P\ Q. Thus A p is the incidence matrix of these bipartite
graphs. Reading from left to right, the central portion of the figure describes the action
2R(5) =4, 3R(5) = 5, etc., of R(5) on Q. (Note that R(5) is actually involutory, so that
the edges describing the action of R(5) may be drawn undirected.) The transitions in the
Markov chain given by R(5) on P\ Q may now be read from left to right across Fig. 1.
The probabilities of passage from an element of P\ Q across the left-hand bipartite graph
to Q are given by the pseudoinverse A}f. In other words, if a vertex of P\ Q has valency
v, the probability of passage along any edge incident to it is 1/v. For example, there is
a probability of 1/3 for passage from the vertex 4 of P\Q to each of the vertices 4,5,6

G enEG

e

e

i i,
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2<3 3>2
4 4
4/5 5\4
\6 6/
1——1><1——1
Fig. 1.

of Q. From each vertex of Q on the left-hand side of the central part of Fig. 1, there is
then a unique path across to a vertex of P\ Q on the right-hand side of the figure. Thus
in Rp\g (5), there is a probability 1/3 of transition from 4 to 1, and probability 2 /3 of
transition from 4 to 2.

4. Linear Representations

Let P be a subquasigroup of a finite quasigroup Q. Consider the complex vector spaces
CQ withbasis Q and CP\ Q with basis P\ Q. Identify linear maps between these spaces
(and themselves) by their matrices with respect to these bases. Now, Eq. (2.12) yields a
function p or

pp\o : EndcCQ — EndcCP\Q; C > ASCAp 4.1)

from the set of endomorphisms of the vector space CQ to the set of endomorphisms of the
vector space CP\ Q. The function (4.1) is linear, but is generally not a homomorphism
for the monoid structures of the endomorphism sets under composition. In the example
of the previous section, one has

0 0o 172 1/3 2/3 0
RP\Q(5)2=[ 0 0 1J =|1/3 2/3 0, (4.2)
1/3 2/3 0 0O o0 1

although R¢ (5)* = lcp maps to A Ap under ppy g, and A} Ap = Igp\ o by Corollary
2.2. The aim of this section is to define a new associative multiplication on EndcCQ
such that, with this new multiplication and the old linear structure, EndcCQ becomes a
(non-unital) ring and pp\ ¢ becomes a ring homomorphism, restricting to representations
of various subrings associated with P and Q. To this end, define the element

Ep = ApA} 43)
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of EndcCQ. By (2.2)(a), Ep is an idempotent of EndcCQ under composition. Consider
(C,D) > CEpD 4.4

as a binary operation on EndcCQ. It is convenient to denote this binary operation by
Ep, regarding the right-hand side of (4.4) as infix notation for the binary operation.

Proposition 4.1 Under the original C-space structure and the multiplication Ep, the
set EndcCQ forms a non-unital ring. The map (4.1) then becomes a ring homomorphism
pp\@ : (EndcCQ, +, Ep) — (Bnd¢CP\Q, +, ) (4.5)

Jfrom this non-unital ring EndcCQ to the ring EndcC P\ Q with the original multiplica-
tion given by composition.

Proof. The associative and distributive laws for (EndcCQ, +, Ep) are immediate. Then
for C and D in EndcCQ, one has C°D? = ASCApA}DAp = (CEpD)?, as
required. O
In order to restrict the ring homomorphism (4.5), one needs to locate Ep within the
image of CMItQ under its representation 7 on CQ. For a finite subset S of a C-space

V, define the barycenter
S=157")"v. .6)

ves

Theorem 4.2 For the subquasigroup P of Q, one has
Ep =7T(LMthP). “.7)
In particular, Ep is an element of 7 (CLMltg P).

Proof. To simplify notation, abbreviate 77 (L Mltg P) to L, and drop the suffix P from
Ap and A;.f, as in the proof of Theorem 2.1. For an element x of (the basis) Q (of CQ),
it must be shown that the endomorphisms on each side of (4.7) have the same effect
on x. Now, xEp = xAA™ = 3,0 x(AAN)y = x5 pip Xyep ArxAY, =

XY yexs Avsr Al = ZyexL(xL)AjL,y = [xL|7' Y ...y = xL. On the other

hand, xL = |L|™' 3 cp xg = [LI™' - (ILI/IXLD) X,y » = XL as well. D
Corollary 4.3. The ring homomorphism (4.5) restricts to a representation
pr\@ : (@(CMltg P), +, Ep) — EndcCP\ Q. 4.3)

n:

Corollary 4.4. Consider the C-subalgebra (RMItQ, Ep) of the algebra (T (CMItQ), +, )

generated by T(RMItQ) and Ep. Then (4.5) restricts to a representation
ppvo : ((RMItQ, Ep), +, Ep) — (EndcCP\Q, +, ). 4.9)
O
Note that the centralizer ring V(MItQ, Q) = EndCMth(C Q is aring of endomorphisms
of the domain of the representation (4.9).
The following result is quite natural in view of the way that Definition 2.3 set out to
generalize from the group case.
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S
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Corollary 4.5. If Q is a group, then (4.1) restricts to a ring homomorphism

p : T (CRMItQ) — EndcCP\ Q. 4.10)

Proof. If Q is a group, then LMItQ commutes with RMItQ. By Theorem 4.2, it
follows that Ep commutes with 7 (RMItQ). Thus for C and D in 7 (CRMItQ), one has
C?DP = ALCApA}DAp = AFCEpDAp = ALEpCDAp = AFApALCDAp =
ALCDAp = (CD)?, using (4.3) and (2.2)(b). o

Using Corollary 4.5, one may connect the customary linear permutation representation
(4.10) of a group Q with its linear quasigroup permutation representation 4.9).

Theorem 4.6 Let P be a subgroup of a group Q. Then there is a non-unital ring
homomorphism

L(Ep) : n(CRMItQ) — ((RMItQ, Ep),+, Ep) (4.11)

given via left multiplication L(Ep) : C + E pC by Ep, such that the group
tepresentation p of (4.10) factors through the quasigroup representation pr\g of (4.9)
as

p=L(Ep) - pp\g. (4.12)

Proof. Arguing as in the proof of Corollary 4.5, one has (EpC)(Ep D) = E%, CD =
EpCD for C and D in 7 (CRMItQ). Thus, (4.11) is a ring homomorphism. Similarly,
for C in 7(CRMItQ), one has CL(Ep)pp\op = AJIEEPCAP = A;APA;FCAP =
ALCAp = Cp, verifying (4.12). o

5. Burnside’s Lemma

Let g be an element of a quasigroup Q with subquasigroup P. The matrix R ro(g) of
Definition 2.3 is the transition matrix specifying the Markov chain action of g on P\Q.
The trace of Rp\p(g) gives the expected number of points fixed by the action of ¢. In
the example of Sec. 3, one has

0 1 0
Rp\g(2) = [1/2 1/2 O:l . (5.1)
0 0 1

Thus the point 4 of P\Q always stays fixed, the point 1 never stays fixed, while the
point 2 is fixed with probability 1/2. Overall, the expected number of fixed points of the
quasigroup element 2 acting on P\ Q is 1.5, the trace of R P\ (2). If Q is a group, so
that P\ Q is a transitive Q-set, then Burnside’s Lemma expresses the number of orbits,
namely 1 in this case, as the average of the (expected) number of fixed points of the
| Q] elements of Q [21, Theorem 13.1.2]. The following theorem shows that Burnside’s
Lemma still holds in the quasigroup case.



728 J.D.H. Smith

Theorem 5.1. Let P be a subquasigroup of a finite, non-empty quasigroup Q. Then the
average expected number of fixed points of the | Q| elements of Q is

1

(5.2)
| Q]

Dt Rpo(g) =1.

q€Q

Proof. Consider the action of RMItQ on the vector space CQ, asin the previous section.
Given x and y in Q, there is a unique element g of Q such that xg = y or xR(g) = y.
Thus the sum X coR(g) of the permutation matrices R(q) over all the elements of g
is the | Q| x | Q| matrix J, each of whose entries is 1. Use notation as in the proof of
Theorem 2.1. One then has

Z trRp\o(q) =tr Z Rp\0(q)
geQ qeQ
=try AFR(@Ap
geQ
=tr A;JAP

= Z Z ZA;(—J'JY"AXX

XeP\Q yeQ xeQ

= Z Z ZAzyA’CX

XeP\Q yeQ x€Q

> (205 )

Il

XeP\Q yeQ

= Y (Tan) (T ax)
XeP\Q yeX xeX

= Y 1-1XI=10l
XeP\Q

the final equality holding since P\ Q is a partition of Q. Equation (5.2) follows. ul
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