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Abstract. A comtrans algebra is said to decompose as a Thomas sum of two
subalgebras if it is a direct sum at the module level and its algebra structure
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1 Introduction

The ternary algebras of the title are comtrans algebras described formally
in Section 2 below. They are modules equipped with two basic trilinear
operations, a left alternative commutator and a translator satisfying the
Jacobi identity. The two operations are connected by the comtrans identity.
Comtrans algebras were originally introduced in [12] in answer to a problem
from differential geometry, asking for the algebraic structure in the tangent
bundle corresponding to the coordinate n-ary loop of an (n+1)-web (cf. [3]).
In this context, the role played by comtrans algebras is analogous to that
played by the Lie algebra of a Lie group. As described in Section 6 below,
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or more fully in [10], taking repeated commutators in a Lie algebra £ yields
a comtrans algebra CT'(L). Furthermore, the Lie algebra £ is simple if
and only if the comtrans algebra CT'(£) is simple (see [10]). Other simple
comtrans algebras are furnished by spaces equipped with bilinear forms
(see [9]), spaces of Hermitian operators (see [11]), and certain more general
spaces of matrices (see [10]).

The motivation for the current paper comes from the use of symmetric
or involutive Lie algebras to describe symmetric spaces (see (2, 4, 5]). If a
(real) Lie algebra g is equipped with an involutive automorphism o, then
the concept of a symmetric Lie algebra describes the decomposition

g=p+t¢t (1.1)

of g into the eigenspaces of ¢ belonging respectively to the eigenvalues —1
and 1. The eigenspace € in (1.1), as the fixed point set of o, is a Lie
subalgebra of g. On the other hand, the eigenspace p has no autonomous
existence as a Lie algebra since it is not closed under the binary Lie bracket.
The lack of closure of p in (1.1) is a parity phenomenon, traceable to the
evenness of the arity of the Lie bracket. Within Lie theory, one has to
resort to Lie triple systems in order to achieve closure (cf. Sec. IV.7 of [4] or
Sec. XI1.4 of [5]). But using comtrans algebras, in which the basic operations
are ternary, the closure is automatic. One is led to the main technical idea
in this paper, the concept of a Thomas sum

G=E®F (1.2)

of comtrans algebras. (The name comes from the special case n = 3 of (7.4),
namely the comtrans algebra of the Lorentz group. Compare [2, p. 502].) In
(1.2), the comtrans algebra G is a module direct sum of subalgebras E and
F, each of which acts on the other. The algebra structure of G is recovered
from the subalgebras and their mutual interactions. Thus (1.2) does not
just give a decomposition of a known algebra G, but it may also be used to
construct the algebra GG from the smaller algebras £ and F.

Just like their specializations, direct sums, Thomas sums come in two
versions: internal and external. Internal Thomas sums are defined in Sec-
tion 3. The main results of that section (Propositions 3.2 and 3.4) relate
internal Thomas sums to the existence of involutive automorphisms. Ex-
ternal Thomas sums are introduced in Section 4. There is an equivalence
between internal and external Thomas sums, enabling one to speak simply
of Thomas sums. Section 5 describes duality for Thomas sums. The dual
of a Thomas sum (1.2) is obtained by negating the internal algebra struc-
ture of E and the action of E on F (Definition 5.2). It is defined over all
rings, regardless of the characteristic. In the real case, it specializes to yield
the duality of symmetric Lie algebras (Proposition 5.3), better known to
physicists as “Weyl’s unitary trick” (see [2, 5]).

The comtrans algebras obtained from Lie algebras and from symmetric
bilinear forms lie in the variety of monic comtrans algebras, in which the
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comtrans identity reduces to simple equality between the commutator and
the translator. Thomas sums of monic algebras are treated in Section 6.
Section 7 then uses Thomas sums to analyze real orthogonal algebras. The-
orem 7.1 shows how the comtrans algebra O™ of the real orthogonal group
O(n.R) is obtained as an iterated Thomas sum of Euclidean spaces E" of
decreasing dimensions r. One normally thinks of groups as being “active”,
while the spaces on which they act remain “passive”. Now the spaces have
been endowed with algebra structure, however, it turns out that they are
able to encode the (infinitesimal) group structure. The cascading sequence
(7.1) of Euclidean spaces is reminiscent of the structure of support functions
of non-compact convex sets (see [1, 6]); it might prove fruitful to examine
this relationship further. The corollaries to Theorem 7.1 demonstrate the
irreducibility of the actions of the orthogonal algebras and Euclidean spaces
in the Thomas sum decomposition of O". The final Corollary 7.4 uses
duality to convert the Thomas decomposition (7.2) of Theorem 7.1 into a
Thomas decomposition of the comtrans algebra of the real orthogonal group
O(n,1).

For concepts and conventions of algebra that are not otherwise explained
here, refer to [13].

2 Comtrans Algebras

A comtrans algebra E over a unital commutative ring R is an R-module E
equipped with two trilinear ternary operations, a commutator [z,y, z] and
a translator (z,y, z), such that the commutator satisfies the left alternative
identity

[zyz, 3] =10, (2.1)

the translator satisfies the Jacobi identity
(z,u,2) + (y,2,2) + (2,2,¥4) =0, (2:2)

and together the commutator and translator satisfy the comtrans identity

2,9, 28] = {z,y,2). (2.3)

Note that the class €Ty of all comtrans algebras over a fixed ring R forms a
variety in the sense of universal algebra. This variety becomes (the class of
objects of) a bicomplete category whose morphisms are the homomorphisms
between comtrans algebras (cf. Theorems 2.1.3 and 2.2.3 of [13, Chpt. IV]).
For a member E of €Ty, let E[X]| denote the coproduct of F in €Ty with
the free €T g-algebra on a singleton {X}. For z,y in E, there are R-module
homomorphisms

K(z,y): E[X] — E[X]; 2z~ [z,2,y], (2.4)

R(z.y) : E[X] » EIX); zv (z,2,y), (2.5)
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and
L(z,y) : E[X] — E[X]; z+ (y,7,2). (2.6)

The universal enveloping algebra U(E) of E (see [8]) is the R-subalgebra of
the endomorphism ring of the R-module E[X]| generated by

{K(z,y), R(z,y), L(x,y) | =,y € E}.

Note that the maps (z,y) — K(z,y), (z,y) — R(z,y), and (z,y) — L(z,y)
from E x E to U(FE) are bilinear.

Proposition 2.1. In the enveloping algebra U(E) of a comtrans algebra
E, one has

K(z,z) — R(z,z) — L(z,z) = 0. (2.7)
Proof. Apply the left-hand side of (2.7) to an element z of E[X] and simplify
by consecutive use of (2.1)-(2.3). O

A comtrans algebra E' is said to act on another comtrans algebra F if
the R-module F' is a module over the enveloping algebra U(E) of E. The
action is irreducible if F is an irreducible U( E)-module. The action is trivial
if fK(e,e') = fR(e,e') = fL(e,e’) = 0 for all f in F and e,e’ in E. The
algebras E and I’ are said to interact mutually if each acts on the other.

3 Internal Thomas Sums

Definition 3.1. A comtrans algebra G is said to be the internal Thomas
sum of subalgebras E and F if
(i) as a module, (& is the internal direct sum of its submodules E and F;
and
(ii) the following containments are satisfied:

[E,F.FICE, |F,E,F|CE, |[F.F,E|CE, (3.1)
(E,F,F)CE, (FE,F)CE, (F.F,E)CE, (3.2)
[F,E,E|CF, [E,F,E|CF, |[EEF|CF, (3.3)
(F,E,E)CF, (EF,EYCF, (E.EF)CF. (3.4)

Proposition 3.2. Let o be an involutive automorphism of a comtrans
algebra G over a ring R in which 2 is invertible. Let E be the set of elements
of G negated by o. Let F be the set of elements of G that are fized by o.
Then,

(i) £ and F are subalgebras of G.

(ii) G is the internal Thomas sum of E and F.

Proof. As =igenspaces of o, the subsets E and F of GG are submodules. The
module G decomposes as the direct sum of E and F, since each element
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x of G is the sum of elements z(1 — o)/2 of E and z(1 4+ o)/2 of F. The
verifications of (3.1) (3.4) are straightforward. a

Corollary 3.3. Let E and F be comtrans algebras. Then the direct product
E x F is the internal Thomas sum of its subalgebras E x {0} and {0} x F.

Proof. 1f 2 is invertible in R, then one may apply Proposition 3.2 to the
automorphism o of E x F that negates E x {0} and fixes {0} x F. In
any case, identifying E with £ x {0} and F with {0} x F, condition (i) in
Definition 3.1 is standard, while the commutators and translators on the
left-hand side of the containments (3.1)-(3.4) are all {0}. )

The idea used for the quick proof of Corollary 3.3 in the case where 2 is
invertible may also be used to obtain a converse to Proposition 3.2.

Proposition 3.4. Over a ring R in which 2 is invertible, let G be a
comtrans algebra that decomposes as the internal Thomas sum of subalgebras
E and F. Then there is an involutive automorphism o of G such that E
and F are the sets of elements of G respectively negated and fived by o.

Proof. Define o to be the direct sum of the module automorphisms —1 :
E — Eand 1p : F — F. Then o, clearly an involutive module automor-
phismi, is readily verified to be a comtrans algebra automorphism of G. O

Corollary 3.5. Let R be a commutative unital ring in which 2 is invertible.
Then the class of comtrans algebras G over R that decompose as internal
Thomas sums forms a variety €Thy of universal algebras.

Proof. Take €Thg to be the variety of comtrans algebras G over R whose
type has been enriched by an involutive comtrans algebra automorphism o
(cf. [13, p. 287]). O

4 External Thomas Sums

Definition 4.1. Let F and F' be two mutually interacting comtrans al-
gebras over a ring R. Their external Thomas sum is defined to be the
external direct sum G = E @ F of the R-modules E and F, equipped with
a commutator

[er + fi,e2 + fo,e3 + fa] = [e1, ez, €3] + [f1, fo, f3]
+ e1 K (fa, f3) — eaK (f1, f3) + es{L(f2, f1) + R(f2. f1) = K(f2, f1)}
+ fiK(e2,e3) — faK (e, e3) + fa{L(ea, €1) + Rlea, e1) — K(e2,€1)}

and a translator
(e1+ fi,e2 + fa,e3 + fa) = (e1,e2,e3) + (f1, fa, f3)

+ e1R(fa, f3) — ea{ R(f3, f1) + L(f1, f3)} + esL(f2, f1)
4 flR(E’z,ea) - fg{R(E;;.(ﬂ) A L(E],Ea)} + fgL{(fg,el)
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defined using elements e; of E and f; of F.

Proposition 4.2. The external Thomas sum G of two mutually interacting
comtrans algebras E and F over R is a comtrans algebra. This comtrans
algebra G is the internal Thomas sum of its subalgebras E&{0} and {0}&F.
Conversely, suppose a comtrans algebra G is the internal Thomas sum of
subalgebras E and F. Then G is isomorphic to the external Thomas sum
of E and F.

Proof. The first two statements of the theorem are straightforward. For the
final part, use (2.4)-(2.6) to define an action of F' on E. This is possible by
(3.1) and (3.2). Similarly, on the strength of (3.3) and (3.4), use (2.4)—(2.6)
to define an action of £ on F. The external direct sum E4 F is then specified
by Definition 4.1 with this mutual interaction. The map ¢ : E& F — G
given by e f — e+ f is readily seen to be a comtrans algebra isomorphism.

a

Once Proposition 4.2 is established, one may abuse language and sup-
press the distinetion between internal and external Thomas sums, speaking
simply of the Thomas sum of two mutually interacting comtrans algebras.
This usage is similar to the usage for direct sums. Indeed, in the context of
Corollary 3.3, Thomas sums specialize to direct sums in the case where the
mutual interaction is trivial. It is convenient to write G = E (T) F' to denote
that a comtrans algebra (G is a Thomas sum of E and F, although this
notation does not record the specific mutual interaction of the subalgebras.

5 Duality

Definition 5.1. The negation E of a comtrans algebra (E, ', , |, {, ., )) is
the comtrans algebra (E, —[,.]. —(,.,)).

Note that the negation of E is E itself. Although the negation of a
comtrans algebra E is not generally isomorphic to E (unless R contains a
square root of —1), the universal enveloping algebras of E and E coincide.

Definition 5.2. Let G = E@MF be a Thomas sum of E and F given
by actions n : U(E) — Endg(F) and ¢ : U(F) — Endg(E). Then the
dual G* = E@ F is the Thomas sum of E and F given by the action —y
of U(E) = U(E) on F and the action ¢ of U(F) on the equal R-modules
E=E.

Note that G** = G, justifying the terminology of Definition 5.2. If R is
of characteristic 2, then G* = G.

Consider the variety €T¢ of complex comtrans algebras. There is a so-
called real form functor R : €3¢ — €T to the variety of real comtrans
algebras, obtained by forgetting the imaginary scalar multiplications. Since
this functor preserves underlying sets, it possesses a left adjoint C' : €T —
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€T known as complerification (cf. Corollary 3.4.8 of [13, Chpt. IV]).

Let G = E@ F be a Thomas sum of real comtrans algebras, with in-
volutive automorphism ¢ = —1g @& 1p given by Proposition 3.4. Then the
complexification G of G decomposes as the Thomas sum G¢ = E€ @ F€
obtained via Proposition 3.2 from the involutive automorphism ¢¢ of G€.
Consider the real subspace iE @ F of GER,

Proposition 5.3. The space iE & F forms a subalgebra of G8, decom-
posing as the Thomas sum G* =iE @ F dual to G = E@ F.

Proof. For e; in E and f; in F, one has

liey + fi.ie2 + fa,ies + fi]
= i{—[e1,ea,e3] + [e1, fa, fa] + [f1, €2, fa] + [f1, f2, €3]}
+ {1, fa, f3] = [f1,€2, €3] — [ex, fa, €3] — [e1, €2, fa]}
= —ile1, ez, e3] + [f1, fo, fa]
+ie1 K (fa, f3) —iea K (f1, fa) + ies{ L(f2, f1) + R(f2, f1) — K(f2, f1)}
— fiK(ea,e3) + faK(e1,e3) — fa{L(ez,e1) + Rlez, e1) — K(ea,€1)}.

In similar vein, one may verify that the translator on iE @ F is dual to the
translator on G. O

Ezample 5.4. Let A be a real comtrans algebra. Define 6 : A — A? : a —
(a,a), e: A— A%:a > (—a,a), and 7 : A> = A?%: (a,b) — (b,a). Since T
negates A° and fixes A%, Proposition 3.2 shows that

A= A2 @ A°. (5.1)
Similarly, the complexification A of A is obtained as a Thomas sum
A =iA@A (5.2)
by virtue of the “complex conjugation”
A€ — A% a+id —a—id.

Then one may readily verify that the direct square (5.1) is dual to the
complexification (5.2).

6 Monic Algebras

Definition 6.1. A comtrans algebra is said to be monic if its commutator
and translator agree (so that it has just one rather than two basic trilinear
operations). In other words, monic algebras are characterized by the monie
identity [x,y,2] = (x,y,2). Let Mg denote the variety of monic comtrans
algebras over the commutative unital ring R.
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If 3 is a symmetric bilinear form on an R-module E, then

[:s.y, Z] = (Iv y,z) = yﬁ(rs z) - 17.8(3/! Z) (61)

defines a monic comtrans algebra (E, [, , ], (., )) (cf. Example 2.3 of [10]).
Let E" denote the monic real comtrans algebra obtained via (6.1) from the
n-dimensional Euclidean space. The algebra E™ is called the n-dimensional
Euclidean (comtrans) algebra. If (L, [, ]) is a Lie algebra, then

[z,y, 2] = (2,9, 2) = [[z,y], 2] (6.2)

defines a monic comtrans algebra (L, [, , ], (, , )) (cf. Example 2.2 of [10]).
Note that if R is a field and L is finite-dimensional over R, then the Killing
form of the Lie algebra (L, [, ]) is just the trace of the restriction of (2.4)
to L. Let O™ denote the monic real comtrans algebra obtained via (6.2)
from the Lie algebra o(n,R) of the real orthogonal group O(n), the group
of automorphisms of E" (cf. Corollary 3.7 of [9]). The algebra O" is called
the nth real orthogonal (comtrans) algebra. Note that the Euclidean algebra
E? and orthogonal algebra O? coincide, each denoting the comtrans algebra
of the real vector triple product. By convention, O' = {0}, while O* and
E' both coincide with the 1-dimensional real abelian algebra R. The (com-
plexification of the) comtrans algebra E* appears as the type E(I,1) in [7].
One may readily verify the following.

Theorem 6.2. A Thomas sum G = EM F of monic E and F is monic
itself if and only if the identities
R(z,y) = K(x,y) and L(z,y) = K(z,y) — K(y. )

hold in each of the mutual actions of E on F and vice versa.

7 Orthogonal Algebras

Theorem 7.1. For cach positive integer n, the orthogonal real comtrans
algebra O™ decomposes as an iterated Thomas sum

OT[+1 :En@)(En—l@(”_ @(E2®E1))) (71)

of Buclidean algebras. In particular, for each positive integer n, the orthog-
onal real comtrans algebra O™ decomposes as a Thomas sum

o™t —E"@®O0". (7.2)

Proof. The proof of (7.12 goes by induction on n. The induction basis
is the observation that O° = R = E' % O' = E'. The induction step is
(7.2). Let {ei,...,e!} be the standard basis for E'. In each algebra O™ of
real skew-symmetric matrices for n > i, the basis element e} of E' appears

as the difference EU+1):J — Ei.(i+1) of elementary matrices. According to
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Theorem 6.2, the action of E® on O" in the monic Thomas sum (7.2) is
described entirely by the specification of the action of the maps K(ef', €])
on el for 0 <t < nand 0 < k < t. By comparing with the various
repeated commutators in the Lie algebra o(n + 1,R) of skew-symmetric

. . j=1
matrices, these actions are seen to be zero except for e K(el', €]') = el and

e;‘]K(e;‘.e;‘) = —eﬂl{ in the case s < j — 1, together with e] K (e}, e]) =
—e} and eiﬂf&'(e?,e?) = ¢} in the case s > j — 1. In similar fashion, the
action of O™ on E™ is described entirely by the specification of the action of
the maps K(eg,e};") onelfor0<j<l<n0<k<m<nand0<i<n
Again comparing with the various repeated commutators in the Lie algebra

o(n + 1,R) of skew-symmetric matrices, these actions are seen to be zero

except for ¢£‘K(ef.e;;}) =el, el K(el,el) = —e?, e}‘f\’(e}_l,e;—l) = —el,
and e?‘l&'(e;‘l.e{,") = ¢". This completes the description of O"*" as the
Thomas sum (7.2). o

Corollary 7.2. In the Thomas sum (7.2), the action of E™ on O™ is
wrreducible.

Proof. Let = be a non-zero element of a non-trivial submodule J of O™,
Suppose the expression of z as a linear combination of standard basis ele-
ments of E¥ for k < n includes a particular standard basis element ¢! with
a non-zero coefficient. Then —rK (e}, e}') is the orthogonal projection of x
onto the subspace of E" ! @ --- @ B! spanned by

fef list <n—1}ufel!|1<j<i-1}, (7.3)

and then 2K (el', e') K (e}, 1, €}, ) is the orthogonal projection of = onto the
subspace of E" "' @ ... @ E' spanned by e!. Thus e! lies in J.

For i > j > 1, one has efK (e} ,€]) = e;_l. Similarly, for i < j < n,
one has e!K (e}, e") = —e!~". Thus J contains (7.3).

Finally, let e; be a standard basis element of E for 1 < s < n. Fori < s,
one has e in (7.3), and then the equation e K(e]',e}) = —e; shows that

e} € J. Fori > s, implying j < i — 1, one has ejfl in (7.3), and then the
equation e;-'llf(e?,e?_,_l) = —ej shows that €] € J. Thus J is improper.

O

Corollary 7.3. In the Thomas sum (7.2), the action of O™ on E" is
irreductble.

Proof. Let = be a non-zero element of a non-trivial submodule J of E".
Suppose
T =riel +-- 4+ rpeq,

where i is the smallest index such that x - el # 0. It will first be shown
that €} € J. If i = n, the result is immediate. If i = n — 1, it follows

from zK (el 2 el %) = —rel ;. If i < n— 2, it follows from zK (e}, el) =
—r;e?. Next, since ef_; K(e} 2,ef™!) = —e® and el K (e, el']') = ¢p for
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1 <4< n—2 one finds that ¢! € J in any case. Finally, the equations

erK(eh ' el) = ep and enK (el ™', e}™") = —el for 1 < s < n show that
each standard basis element e}, and thus each element of E", lies in the
submodule .J. O

Let O(n, 1) denote the group of automorphisms of the (n+1)-dimensional
real space equipped with the quadratic form of signature (+,...,+, ). Let
o(n,1) denote the Lie algebra of O(n,1), and O™ the comtrans algebra
obtained from o(n, 1) via (6.2).

Corollary 7.4. The comtrans algebra O™ decomposes as the Thomas sum
On,l v Eﬂ- @ Oﬂ (74)

dual to (7.2).

Proof. Using Proposition 5.3, the result follows from the symmetric space
duality between o(n,1) and o(n + 1,R) (cf. Sec. XI.10 of [5]). O
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