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Abstract. We study the connections between one-sided Hopf algebras
and one-sided quantum quasigroups, tracking the four possible invertibil-
ity conditions for the left and right composite morphisms that combine
comultiplications and multiplications in these structures. The genuinely
one-sided structures exhibit precisely two of the invertibilities, while it
emerges that imposing one more condition often entails the validity of all
four. A main result shows that under appropriate conditions, just one
of the invertibility conditions is sufficient for the existence of a one-sided
antipode. In the left Hopf algebra which is a variant of the quantum
special linear group of two-dimensional matrices, it is shown explicitly
that the right composite is not injective, and the left composite is not
surjective.

1. Introduction

Suppose that V is a strict symmetric monoidal category, for example a
category of vector spaces under the tensor product, or a category of sets
under the Cartesian product. A bimagma (A,∇,∆) in V is an object A of
V equipped with V-morphisms giving a magma structure or multiplication
∇ : A⊗A → A, and a comagma structure or comultiplication ∆: A → A⊗A,
such that ∆ is a magma homomorphism. (The latter bimagma condition
is equivalent to its dual: ∇ is a comagma homomorphism.) The bimagma
incorporates two dual morphisms in V: the left composite

(1.1) G : A⊗ A
∆⊗1A // A⊗ A⊗ A

1A⊗∇ // A⊗ A

(“G” for “Gauche”) and the right composite

(1.2) a : A⊗ A
1A⊗∆ // A⊗ A⊗ A

∇⊗1A // A⊗ A

(“a” for “Droite”). The qualifiers “left” and “right” refer to the side of the
tensor product on which the comultiplications appear.
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Within a Hopf algebra (whose antipode is not necessarily invertible),
the left and right composites are invertible. This observation underlies the
formulation of an extension of the concept of a Hopf algebra to accommodate
nonassociative multiplications and noncoassociative comultiplications: A
bimagma is a quantum quasigroup whenever its left and right composites
are invertible [21]. The self-dual concept of a quantum quasigroup subsumes
various non-self-dual nonassociative generalizations of Hopf algebras that
have appeared in the literature, especially in the context of the octonions
or function spaces on the 7-sphere [2, 12, 13, 16].

The antipode S of a Hopf algebra (A,∇,∆, η, ε, S) is specified as a two-
sided inverse for the identity mapping 1A on A within the convolution
monoid V(A,A). Left and right Hopf algebras are bimonoids (A,∇,∆, η, ε)
equipped with an endomorphism S of A which is only required respectively
to be a left or right inverse for 1A in the convolution monoid [9, 14, 15, 18].
One-sided Hopf algebras are motivated by the physical idea of a boson-
fermion correspondence, which finds concrete expression in various versions
of the MacMahon master theorem of combinatorics [6, 7, 8, 14]. The rather
delicate nature of genuinely one-sided Hopf algebras is readily appreciated
by noting that within the category of sets with Cartesian product, left Hopf
algebras are necessarily Hopf algebras (in other words, groups with diagonal
comultiplication).

A left or right quantum quasigroup is a bimagma in which the respective
left or right composite is invertible [22]. For example, if G is a group,
consider the braiding

(1.3) G⊗G → G⊗G; g ⊗ h 7→ h⊗ h−1gh

in the category of sets under the Cartesian product (here written using
tensor product notation, including for ordered pairs at the element level)
[11, XIII(1.12)]. The corresponding R-matrix, obtained by applying a final
symmetry to the braiding (1.3), may be written as the right composite

(1.4) g ⊗ h �1G⊗∆// g ⊗ h⊗ h �∇⊗1G // h−1gh⊗ h

of a bimagma (G,∇,∆) with diagonal comultiplication and multiplication
∇ : g ⊗ h 7→ h−1gh. The right composite (1.4) is invertible, with two-sided
inverse x ⊗ y 7→ yxy−1 ⊗ y. The multiplication of (G,∇,∆) appears as
the conjugation right quasigroup that Joyce has described as “the quandle
ConjG” [10]. Indeed, consideration of the right composite (1.4) embeds the
use of quandles in knot theory into the more general context of R-matrices.

The aim of the current paper is to study the invertibility properties of left
and right composites in one-sided Hopf algebras and quantum quasigroups,
clarifying the relationships between these distinct extensions of the Hopf
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algebra concept. The basic definitions are recorded in Section 2. Although
the definitions of one- and two-sided quantum quasigroups do not involve
any analogue of the antipode in general, such analogues have been used in
earlier nonassociative versions of Hopf algebras. The four so-called inverse
properties involved, coming in left/right and internal/external flavors, are
discussed in Section 3. In this context, Example 3.4 exhibits an elementary
nonassociative structure with a right antipode that is not a left antipode.

The key breakdown of the invertibility of the left and right composites
is realized by the lemmas of Section 4. For example, the left composite
is a section in a left Hopf algebra, and a retract in a right Hopf algebra.
Table 1 summarizes the invertibility conditions. Of all four possible one-
sided invertibility relationships, precisely two obtain in any genuinely one-
sided Hopf algebra or quantum quasigroup.

Section 5 examines those conjunctions of invertibility conditions which
are generally sufficient for a one-sided Hopf algebra or quantum loop to
become a Hopf algebra. Previous results are recalled in §§5.1–5.2, while
new results are presented in §§5.3–5.4. The essence of the new conditions is
that often, when three of the four possible invertibility conditions in a row
of Table 1 hold, then the fourth follows as a consequence. For example, if
the left composite of a left Hopf algebra A is invertible, then A is actually
a two-sided Hopf algebra (Proposition 5.5). In turn, Proposition 5.9 shows
when a right quantum loop and left Hopf algebra becomes a two-sided Hopf
algebra.

Section 6 refines the preceding results in the special situation where the
underlying symmetric monoidal category is compact closed, so that objects
are paired to dual objects with evaluation and coevaluation morphisms.
This happens, for instance, in the case of finite-dimensional vector spaces.
A non-linear example is provided by finite semilattices (§6.2). The main
result, Theorem 6.9, creates a left antipode for a bimonoid whenever the
right composite has a suitable section.

The paper concludes with an examination of the left Hopf algebra S̃Lq(2),
the smallest of the left Hopf algebras supporting a quantum version of the
MacMahon master theorem [18]. Proposition 7.7 exhibits a specific non-
zero element of the kernel of the right composite, while Theorem 7.8 shows
that the left composite is not surjective.

Algebraic notation is used throughout the paper, with functions to the
right of, or as superfixes to, their arguments. Thus compositions are read
from left to right. These conventions serve to minimize the proliferation of
brackets.
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2. Structures in symmetric monoidal categories

The general setting for the algebras studied in this paper is a (strict)
symmetric monoidal category (V,⊗,1), with a symmetry τ : A⊗B → B⊗A
and explicitly written isomorphisms

1⊗ A
λA // A A⊗ 1

ρAoo

for objects A and B. The standard example is provided by the category
K of vector spaces over a field K, or modules over a commutative ring K.
This section records some basic definitions applying to objects in V. While
these definitions are mostly bread-and-butter for Hopf algebra experts, they
may be less familiar to other algebraists.

2.1. Magmas and bimagmas.

Definition 2.1. Let V be a symmetric monoidal category.

(a) A magma (A,∇) is left unital if it has a V-morphism η : 1 → A
such that (η⊗ 1A)∇ = λA. It is right unital if it has a V-morphism
η : 1 → A such that (1A ⊗ η)∇ = ρA. Then it is unital if it has
a V-morphism η : 1 → A with respect to which it is both left and
right unital.

(b) A comagma (A,∆) inV is counital if it has aV-morphism ε : A → 1
such that ∆(ε⊗ 1A) = λ−1

A and ∆(1A ⊗ ε) = ρ−1
A .

(c) A bimagma (A,∇,∆) is biunital if its magma (A,∇) is unital, its
comagma (A,∆) is counital, and the diagram

1⊗ 1
∇ // 1 1

η
����
��
��
��

∆ //1oo 1⊗ 1

η⊗η

��
A⊗ A

∇ //

ε⊗ε

OO

A
∆ //

ε

__>>>>>>>>

A⊗ A

commutes.

Remark 2.2. Consider an object A in a concrete monoidal category V.

(a) It is often convenient to write λ−1
A : A → 1⊗A; a 7→ 1⊗a, and dually

for ρ−1
A .

(b) A magma multiplication on A is often denoted by juxtaposition,
namely (a⊗ b)∇ = ab, or with a · b as an infix notation, for elements
a, b of A.

(c) If A is a unital magma, write η : 1 → A; 1 7→ 1 with the convention
of (a). Then with the convention of (b), unitality takes the familiar
form 1 · a = a = a · 1 for a in A.
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(d) A comagma comultiplication on A is often denoted by a version of
Sweedler notation adapted to the general noncoassociative situation,
namely a∆ = aL⊗aR. Note that coassociativity then takes the form

(2.1) aLL ⊗ aLR ⊗ aR = aL ⊗ aRL ⊗ aRR

for an element a of A. Given coassociativity, the classical Sweedler
notation is recovered by replacing the superscripts, when taken in
lexicographic order, by successive subscript numbers. For example,
each side of (2.1) is then written as a1 ⊗ a2 ⊗ a3.

2.2. Antipodes.

Definition 2.3. Let (A,∇,∆, η, ε) be a left- or right-unital and counital
bimagma with a morphism S : A → A.

(a) The morphism S : A → A is a left antipode if εη = ∆(S ⊗ 1A)∇.
(b) The morphism S : A → A is a right antipode if εη = ∆(1A ⊗ S)∇.
(c) The morphism S : A → A is an antipode if it is both a left and a

right antipode.

Remark 2.4. In the Sweedler notation of Remark 2.2, Definition 2.3(a)
becomes

(2.2) aLSaR = aεη

for a ∈ A. Similarly, Definition 2.3(b) becomes

(2.3) aεη = aLaRS

for a ∈ A.

2.3. Unilateral and bilateral Hopf algebras.

Definition 2.5. Let V be a symmetric monoidal category.

(a) A unital magma (A,∇, η) in V is said to be a monoid if it satisfies
the associative law (∇⊗ 1A)∇ = (1A ⊗∇)∇.

(b) A counital comagma (A,∆, ε) in V is a comonoid if it satisfies the
coassociative law ∆(∆⊗ 1A) = ∆(1A ⊗∆).

(c) A biunital bimagma (A,∇,∆, η, ε) in V is a bimonoid if (A,∇, η) is
a monoid and (A,∆, ε) is a comonoid.

Definition 2.6. Let V be a symmetric monoidal category.

(a) A bimonoid (A,∇,∆, η, ε) in V is a left Hopf algebra if it has a left
antipode S : A → A.

(b) A bimonoid (A,∇,∆, η, ε) in V is a right Hopf algebra if it has a
right antipode S : A → A.
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(c) A bimonoid (A,∇,∆, η, ε) in V is said to be a Hopf algebra if it
has an antipode S : A → A. In contrast to the conventions of some
authors (compare [5, Def’n. 5.3.10], for example), we do not demand
invertibility of the antipode.

2.4. Quantum quasigroups and loops.

Definition 2.7. Let V be a symmetric monoidal category.

(a) A left quantum quasigroup (A,∇,∆) is a bimagma in V for which
the left composite morphism (1.1) is invertible.

(b) A right quantum quasigroup (A,∇,∆) is a bimagma in V for which
the right composite morphism (1.2) is invertible.

(c) A quantum quasigroup (A,∇,∆) is a bimagma in V where both the
left and right composite morphisms are invertible.

Definition 2.8. Suppose that (A,∇,∆, η, ε) is a biunital bimagma in a
symmetric monoidal category V.

(a) Suppose that (A,∇,∆) is a left quantum quasigroup in V. Then
(A,∇,∆, η, ε) is said to be a left quantum loop.

(b) Suppose that (A,∇,∆) is a right quantum quasigroup in V. Then
(A,∇,∆, η, ε) is said to be a right quantum loop.

(c) Let (A,∇,∆) be a quantum quasigroup in V. Then (A,∇,∆, η, ε)
is a quantum loop.

Remark 2.9. The concepts of these definitions provide genuine extensions
of the concept of a Hopf algebra, since Hopf algebras are quantum loops
[21, Prop. 4.1]. In particular, consider a Hopf algebra A in the category of
vector spaces over a field, under the tensor product. The comultiplication
of A provides a coaction that makes A into a right comodule algebra over
itself, with a one-dimensional algebra of coinvariants [3, Example 6.2.5(1)].
Then the right composite of the quantum loop A is the canonical map of
this comodule algebra structure [3, Example 6.4.8(1)].

3. Inverse properties

3.1. Moufang-Hopf algebras and Hopf quasigroups. The Moufang-
Hopf algebras of Benkart et al. [2, Def’n. 1.2], and the Hopf quasigroups
of Klim and Majid [12, Def’n. 4.1], are almost bimonoids (A,∇,∆, η, ε),
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but not requiring associativity of the multiplication, equipped with an IP-
antipode morphism S : A → A such that the external left IP-antipode dia-
gram

(3.1) A⊗ A⊗ A
S⊗1A⊗1A // A⊗ A⊗ A

1A⊗∇ // A⊗ A
∇ // A

A⊗ A

∆⊗1A

OO

ε⊗1A
// 1⊗ A

η⊗1A
// A⊗ A

∇

;;xxxxxxxxx

the internal right IP-antipode diagram

(3.2) A⊗ A
1A⊗ε //

1A⊗∆
��

A⊗ 1
1A⊗η // A⊗ A

∇

##F
FF

FF
FF

FF

A⊗ A⊗ A
1A⊗S⊗1A

// A⊗ A⊗ A
∇⊗1A

// A⊗ A
∇

// A

the external right IP-antipode diagram

(3.3) A⊗ A⊗ A
1A⊗1A⊗S // A⊗ A⊗ A

∇⊗1A // A⊗ A
∇ // A

A⊗ A
1A⊗ε

//

1A⊗∆

OO

A⊗ 1
1A⊗η

// A⊗ A
∇

;;xxxxxxxxx

and internal left IP-antipode diagram

(3.4) A⊗ A

∆⊗1A
��

ε⊗1A // 1⊗ A
η⊗1A // A⊗ A

∇

##F
FF

FF
FF

FF

A⊗ A⊗ A
1A⊗S⊗1A

// A⊗ A⊗ A
1A⊗∇

// A⊗ A
∇

// A

all commute. [For the “IP-antipode” terminology, see Remark 3.2 below.] In
Moufang-Hopf algebras, cocommutativity and an additional left Moufang-
Hopf identity [2, (1.5)] are required. Hopf quasigroups are said to have the
Moufang property [12, p.3077] if they satisfy the left Moufang-Hopf identity.

3.2. Inverse-property loops.

Definition 3.1. Let (A,∇,∆, η, ε) be a biunital bimagma in a symmetric,
monoidal category V, equipped with a V-morphism S : A → A.

(a) (A,∇,∆, η, ε, S) is a left inverse-property (or LIP) Hopf loop in V if
the external and internal left IP-antipode diagrams (3.1) and (3.4)
commute. In this case, S is said to be a left IP-antipode.

(b) (A,∇,∆, η, ε) is a right inverse-property (or RIP) Hopf loop in V if
the internal and external right IP-antipode diagrams (3.2) and (3.3)
commute. In this case, S is said to be a right IP-antipode.
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(c) (A,∇,∆, η, ε) is an inverse-property (or IP) Hopf loop in V if it is
both a left and right inverse-property Hopf loop. In this case, S is
said to be an IP-antipode.

Remark 3.2. A Hopf quasigroup is a coassociative IP Hopf loop. Thus
the “IP-antipode” terminology of §3.1 is consistent with (and motivated
by) that of Definition 3.1(c). For the classical inverse properties, see [23,
§I.4.1].

A two-sided version of the following appeared as [12, Prop. 4.2(a)], for
the case where (A,∆, ε) is a comonoid.

Proposition 3.3. Let (V,⊗,1) be a symmetric, monoidal category.

(a) If (A,∇,∆, η, ε, S) is a left inverse property Hopf loop in V, then S
is an antipode.

(b) If (A,∇,∆, η, ε, S) is a right inverse property Hopf loop in V, then
S is an antipode.

Proof. (a): Biunitality implies

∆(S ⊗ 1A)∇ = ρ−1
A (1A ⊗ η)(∆⊗ 1A)(S ⊗ 1A ⊗ 1A)(1A ⊗∇)∇

and ρ−1
A (1A⊗η)(ε⊗1A)(η⊗1A)∇ = εη. Thus the commuting of the external

left IP-antipode diagram (3.1) implies ∆(S ⊗ 1A)∇ = εη. Similarly,

∆(1A ⊗ S)∇ = ρ−1
A (1A ⊗ η)(∆⊗ 1A)(1A ⊗ S ⊗ 1A)(1A ⊗∇)∇

and ρ−1
A (1A ⊗ η)(ε⊗ 1A)(η ⊗ 1A)∇ = εη, so the commuting of the internal

left IP-antipode diagram (3.4) implies ∆(1A ⊗ S)∇ = εη.

(b) is dual to (a). �

3.3. A loop example. Recall that a quasigroup is a set Q with a binary
multiplication ∇ : Q×Q → Q; (x, y) 7→ xy such that the left multiplications

L(x) : Q → Q; q 7→ xq

and right multiplications

R(x) : Q → Q; q 7→ qx

are bijective for all x in Q. The quasigroup Q is a loop if it contains an
identity element e such that L(e) = R(e) = idQ [20, 23].
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Example 3.4. Consider the loop Q with identity element 1 and

(3.5)

Q 1 2 3 4 5

1 1 2 3 4 5
2 2 1 5 3 4
3 3 5 4 1 2
4 4 3 2 5 1
5 5 4 1 2 3

for the multiplication table. Take counit ε : Q → {∗}, comultiplication
∆: Q → Q × Q; x 7→ (x, x), and a unit η : {∗} → Q; ∗ 7→ 1. This
builds a quantum loop (Q,∇,∆, η, ε) in the symmetric, monoidal category
(Set,×, {∗}) [21], where the 3-cycle S = (3 4 5) is a right antipode. While
3 · 3S = 3 · 4 = 1, note that one has 3S · 3 = 4 · 3 = 2 ̸= 1, so the right
antipode S is not a left antipode. In particular, Proposition 3.3(b) serves
to confirm that the loop Q cannot be a right inverse property (Hopf) loop
in Set. Indeed, (3 · 3)3S = 4 · 4 = 5 ̸= 3, so the external right IP-antipode
diagram (3.3) does not commute.

Example 3.4 extends linearly to a quantum loop KQ in the symmetric
monoidal category (K,⊗, K) for any commutative ring K. The extended
right antipode S is not a left antipode (provided K is nontrivial).

4. Invertibility of composites

4.1. Sections and retracts. In order to avoid any potential confusion
between “right” and “left” inverses, concepts tied to the conventions used
for composition of morphisms, we adopt the neutral terminology of sections
and retracts. Recall that in the category of sets and functions, sections are
injective, while retracts are surjective.

Definition 4.1. Let X and Y be objects of a category C. Consider the
triangle

(4.1) Y
r

  @
@@

@@
@@

@

X
1X

//

s
>>~~~~~~~~

X

in C.

(a) A morphism s : X → Y is said to be a section if there is a morphism
r : Y → X such that (4.1) commutes.

(b) A morphism r : Y → X is said to be a retract if there is a morphism
s : X → Y such that (4.1) commutes.
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(c) Suppose that (4.1) commutes for certain morphisms s : X → Y and
r : Y → X. Then s is a section of or for r, while r is a retract of or
for s.

4.2. Composites in one-sided Hopf algebras.

Lemma 4.2. Let (A,∇,∆, η, ε, S) be a left Hopf algebra within a concrete
symmetric, monoidal category V. Then the left composite G is a section,
with

GS = (∆⊗ 1A)(1A ⊗ S ⊗ 1A)(1A ⊗∇)

as a retract.

Proof. Note the maps

x⊗ y � ∆⊗1A // xL ⊗ xR ⊗ y � 1A⊗∇ // xL ⊗ xRy
_

∆⊗1A
��

xLL ⊗ xLRSxRy xLL ⊗ xLRS ⊗ xRy�
1A⊗∇
oo xLL ⊗ xLR ⊗ xRy�

1A⊗S⊗1A

oo

making use of the associativity of the multiplication. By (2.1) in which x
replaces a, one has

(4.2) xL ⊗ xRL ⊗ xRR = xLL ⊗ xLR ⊗ xR

for y in A. Then for an element y in A, tensoring both sides of (4.2) on the
right with y and applying (1A ⊗ S ⊗ 1A ⊗ 1A)(1A ⊗ 1A ⊗∇)(1A ⊗∇) gives

xLL ⊗ xLRSxRy = xL ⊗ xRLSxRRy = xL ⊗ xRεηy

= xLxRεη ⊗ y = x⊗ y

using (2.2) and counitality for the second and final equalities respectively.
Thus GGS = 1A⊗A. �
Lemma 4.3. Let (A,∇,∆, η, ε, S) be a right Hopf algebra within a concrete
symmetric, monoidal category V. Then the left composite G is a retract,
with

GS = (∆⊗ 1A)(1A ⊗ S ⊗ 1A)(1A ⊗∇)

as a section.

Proof. Note the maps

(4.3) x⊗ y � ∆⊗1A // xL ⊗ xR ⊗ y �1A⊗S⊗1A // xL ⊗ xRS ⊗ y
_

1A⊗∇
��

xLL ⊗ xLRxRSy xLL ⊗ xLR ⊗ xRSy�
1A⊗∇
oo xL ⊗ xRSy�

∆⊗1A

oo
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making use of the associativity of the multiplication. For an element y in A,
tensoring the equation (4.2) on the right with y and applying the function
(1A ⊗ 1A ⊗ S ⊗ 1A)(1A ⊗ 1A ⊗∇)(1A ⊗∇) to each side yields

xLL ⊗ xLRxRSy = xL ⊗ xRLxRRSy = xL ⊗ xRεηy

= xLxRεη ⊗ y = x⊗ y ,

using (2.3) and counitality for the second and final equalities respectively.
Thus GS G = 1A⊗A. �

The following two lemmas are the respective chiral duals of Lemmas 4.2
and 4.3.

Lemma 4.4. Let (A,∇,∆, η, ε, S) be a right Hopf algebra within a concrete
symmetric, monoidal category V. Then the right composite a is a section,
with

aS = (1A ⊗∆)(1A ⊗ S ⊗ 1A)(∇⊗ 1A)

as a retract.

Lemma 4.5. Let (A,∇,∆, η, ε, S) be a left Hopf algebra within a concrete
symmetric, monoidal category V. Then the right composite a is a retract,
with

aS = (1A ⊗∆)(1A ⊗ S ⊗ 1A)(∇⊗ 1A)

as a section.

Proposition 4.6. Suppose that (A,∇,∆, η, ε) is a bimonoid in a concrete
symmetric, monoidal category V.

(a) The equations

GGS = 1A⊗A and aS a = 1A⊗A

hold in V if A is a left Hopf algebra.
(b) Dually the equations

GS G = 1A⊗A and aaS = 1A⊗A

hold in V if A is a right Hopf algebra.
(c) [21] If A is a Hopf algebra, then (A,∇,∆, η, ε) is a quantum loop.

Proof. (a): Apply Lemmas 4.2 and 4.5.

(b): Apply Lemmas 4.3 and 4.4.

(c): Combine (a) and (b). �
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4.3. Summary of invertibility conditions. The following table serves to
summarize the left and right invertibility conditions satisfied by the left and
right composites in left and right Hopf algebras and quantum quasigroups.
In the headings, G′ and a′ respectively denote GS and aS in left and right
Hopf algebras, or the two-sided inverses of G and a in left and right quantum
quasigroups. A bullet in a table entry signifies that the structure labeling
the row of the entry satisfies the invertibility condition labeling its column.

Algebra GG′ = 1A⊗A G′ G = 1A⊗A aa′ = 1A⊗A a′ a = 1A⊗A

Left Hopf • •

Right Hopf • •

Left qgp. • •

Right qgp. • •

Table 1. Invertibility conditions.

5. Sufficient conditions for Hopf algebras

This section discusses conditions, old (§§5.1–5.2) and new (§§5.3–5.4),
guaranteeing that one-sided Hopf algebras or quantum loops become Hopf
algebras. The gist of the new results is that, under many circumstances, the
rows of the table of §4.3 will have four bullets as soon as they have three.

5.1. Previous results. Let K be the symmetric, monoidal category of
unital modules over a commutative, unital ring K under the tensor product.
A comonoid in K is said to be simple if it has exactly two subcomonoids
(one trivial, the other improper) [17, Def’n. 2.1.8]. Then the coradical of
a comonoid is the sum of its simple subcomonoids [17, Def’n. 3.4.1]. A
comonoid in K is pointed if each simple subcomonoid is 1-dimensional [17,
Def’n. 3.4.4].

Theorem 5.1. Let (A,∇,∆, η, ε, S) be a left Hopf algebra in K. Then if
any one of these conditions is satisfied:

(a) the module A is finitely generated [9, Prop. 5];
(b) the monoid (A,∇, η) is left or right Noetherian as a K-algebra [9,

Prop. 6];
(c) the monoid (A,∇, η) is commutative, and K is a field [9, Th. 3(2)];
(d) the monoid (A,∇, η) is commutative, and Noetherian as a K-algebra

[9, Cor. 10];
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(e) the comonoid (A,∆, ε) is pointed [9, Th. 3(3)];
(f) the coradical of (A,∆, ε) is cocommutative [9, Th. 3(4)],

one concludes that (A,∇,∆, η, ε) is a Hopf algebra.

The following result, applied in connection with Theorem 5.1(e), is of
independent interest.

Proposition 5.2. [9, Prop. 5] Let (A,∇,∆, η, ε, S) be a left Hopf algebra
in K. Suppose that the comonoid (A,∆, ε) is pointed. Then the set

A1 = {x ∈ A | a∆ = a⊗ a , aε = 1}
of grouplike elements of A forms a subgroup of the monoid (A,∇, η).

Theorem 5.3. [21, Th. 4.16] Suppose (A,∇,∆, η, ε) is an associative and
coassociative quantum loop in the category K, for a field K. Then the
bimonoid (A,∇,∆, η, ε) uniquely specifies an antipode S to yield a Hopf
algebra (A,∇,∆, η, ε, S).

5.2. The category of sets. Consider the category (Set,×,⊤) of sets and
functions as a symmetric, monoidal category, with the Cartesian product as
tensor product, and a one-element set⊤ as unit object. Note that if (A,∆, ϵ)
is a comonoid in (Set,×,⊤), then the comultiplication is ∆: a 7→ a⊗a [21,
Lemma 3.9]. The simple comonoids are the singleton sets, having just the
improper subcomonoid and a trivial subcomonoid (the empty subset). If
“dimension” is interpreted as cardinality, then each comonoid is pointed, in
the sense that each simple subcomonoid has cardinality 1.

In the notation of Remark 2.2, and with the image of η as {1}, the
antipode conditions reduce to the respective equations aS ·a = 1 and a·aS =
1, for each element a of A. The following lemma is a reformulation, in the
current Hopf algebra language, of a well-known result: If each element of a
monoid has a left inverse, then the monoid is a group. The lemma may be
viewed as an extension of Theorem 5.1(e), or of Proposition 5.2.

Lemma 5.4. Let (A,∇,∆, η, ε, S) be a left Hopf algebra in the category
(Set,×,⊤). Then (A,∇,∆, η, ε, S) is a Hopf algebra.

Proof. Let S be the left antipode. Then for each element a of A, one has
aS · a = 1. In particular, aS

2 · aS = 1 = aS · a, so that aS is invertible. The
equation aS · a = 1 now implies that a = (aS)−1, so that a is invertible, and
aS = a−1. Thus a · aS = 1. �
5.3. One-sided conditions.

Proposition 5.5. Let (A,∇,∆, η, ε, S) be a left Hopf algebra in a concrete
symmetric, monoidal category V. If the left composite G is invertible, then
(A,∇,∆, η, ε, S) is a Hopf algebra.
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Proof. Consider an element a of A. Since (A,∇,∆, η, ε, S) is a left Hopf
algebra, Lemma 4.2 shows that GGS = 1A⊗A. If G is invertible, then one
also has GS G = 1A⊗A. Applying these equal morphisms to the image a⊗1η

of a under λ−1
A (1A ⊗ η), one obtains

aLL ⊗ aLRaRS1η = a⊗ 1η(5.1)

making use of (4.3) for the left hand side. Additional application of εη⊗1A
to each side of (5.1) yields

aLLεη ⊗ aLRaRS1η = aεη ⊗ 1η .(5.2)

By the counitality, aLLεη ⊗ aLR = 1η ⊗ aL, so (5.2) further reduces to

1η ⊗ aLaRS = 1η ⊗ aεη(5.3)

by unitality. Again, unitality yields ρ−1
A (η ⊗ 1A)∇ = 1A, so ρ−1

A (η ⊗ 1A)
injects. Since (5.3) takes the form (aLaRS)ρ−1

A (η ⊗ 1A) = aεηρ−1
A (η ⊗ 1A),

the requirement (2.3) for S to be a right antipode is satisfied. �

Corollary 5.6. Consider a left quantum loop in a concrete symmetric,
monoidal category V. If it forms a left Hopf algebra, then it is actually a
Hopf algebra.

The dual versions of these results are as follows.

Proposition 5.7. Let (A,∇,∆, η, ε, S) be a right Hopf algebra in a concrete
symmetric, monoidal category V. If the right composite a is invertible, then
(A,∇,∆, η, ε, S) is a Hopf algebra.

Corollary 5.8. Consider a right quantum loop in a concrete symmetric,
monoidal category V. If it forms a right Hopf algebra, then it is actually a
Hopf algebra.

5.4. Crossed conditions. The following result presents conditions readily
implying that a right quantum loop and left Hopf algebra forms a two-sided
Hopf algebra.

Proposition 5.9. Consider the category K of vector spaces over a field K.
Suppose that (A,∇,∆, η, ε) is a right quantum loop in K that satisfies the
following properties:

(a) The bimagma (A,∇,∆) is both associative and coassociative;
(b) The comonoid (A,∆, ε) is pointed;
(c) The right quantum loop carries the structure (A,∇,∆, η, ε, S) of a

left Hopf algebra.

Then (A,∇,∆, η, ε, S) forms a Hopf algebra.
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Proof. By Proposition 5.2, the set A1 of setlike elements forms a subgroup in
the monoid (A,∇, η). Since the comonoid (A,∆, ε) is pointed, the structure
(A,∇,∆, η, ε, S) then becomes a Hopf algebra [17, Prop. 7.6.3]. �

The dual version of Proposition 5.9 is as follows.

Corollary 5.10. Consider the category K of vector spaces over a field K.
Suppose that (A,∇,∆, η, ε) is a left quantum loop in K that satisfies the
following properties:

(a) The bimagma (A,∇,∆) is both associative and coassociative;
(b) The comonoid (A,∆, ε) is pointed;
(c) The left quantum loop carries the structure (A,∇,∆, η, ε, S) of a

right Hopf algebra.

Then (A,∇,∆, η, ε, S) forms a Hopf algebra.

In the following chapter, it will be shown (with considerably more work)
that the hypotheses (b) and (c) of Proposition 5.9 and Corollary 5.10 are
actually superfluous in many situations.

6. Creating one-sided antipodes

This chapter investigates how sections for composites entail the existence
of one-sided antipodes. The arguments are developed from the context of
multiplier Hopf algebras [24, §4].

6.1. Duality in compact closed categories.

Definition 6.1. A categoryV is compact closed if it is symmetric monoidal,
and if, for each object A, there is a dual object A∗, along with an evaluation
morphism ev : A⊗ A∗ → 1 and coevaluation morphism coev : 1 → A∗ ⊗ A,
such that the diagrams

(6.1) A⊗ 1
1⊗ coev//

ρA
��

A⊗ A∗ ⊗ A

ev⊗1
��

A 1⊗ A
λA

oo

and 1⊗ A∗ coev⊗1//

λA∗
��

A∗ ⊗ A⊗ A∗

1⊗ ev
��

A∗ A∗ ⊗ 1ρA∗
oo

commute.

Remark 6.2. Let A be an object in a concrete compact closed category V.

(a) The evaluation morphism may be written as

ev : A⊗ A∗ → 1;x⊗ χ 7→ xχ .
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(b) The coevaluation morphism may be written as

coev : 1 → A∗ ⊗ A; 1 7→ ϵl ⊗ er

with Sweedler-like conventions for the image. Specific versions are
given in (6.2) and (6.5) below.

(c) The elements of A∗ are described as characters of A.

Example 6.3. Suppose that A is a finitely generated free unital module
over a commutative ring K (e.g., a finite-dimensional vector space over a
field K). Suppose that V is the full subcategory of K on the object class of
all finitely generated free modules. Then A∗ = K(A,K). Let {e1, . . . , en}
be a basis for A, with corresponding dual basis {ϵ1, . . . , ϵn} given by e

ϵj
i = δij

for 1 ≤ i, j ≤ n. Then

(6.2) ϵl ⊗ er =
n∑

i=1

ϵi ⊗ ei

according to the Sweedler notation of Remark 6.2. The commuting of the
diagrams (6.1) corresponds to the equations

xϵl ⊗ er =
n∑

i=1

xϵiei = x and ϵl ⊗ erχ =
n∑

i=1

ϵieχi = χ

for x ∈ A and χ ∈ A∗.

Lemma 6.4. Let A be an object in a concrete compact closed category V.
Consider elements x1 ⊗ y1 and x2 ⊗ y2 of A⊗ A. Suppose that

(6.3) (x1 ⊗ y1)(1⊗ χ) = (x2 ⊗ y2)(1⊗ χ)

for each character χ of A. Then x1 ⊗ y1 = x2 ⊗ y2.

Proof. One has

x1 ⊗ y1 = x1 ⊗ y1ϵ
l ⊗ er = (x1 ⊗ y1)(1⊗ ϵl)⊗ er

= (x2 ⊗ y2)(1⊗ ϵl)⊗ er = x2 ⊗ y2ϵ
l ⊗ er = x2 ⊗ y2

by (6.1) and (6.3). �
6.2. Finite semilattices. This brief optional section works through an
example of duality in a non-linear setting (compare [1, §6]). Let V be
the category of finite join semilattices with lower bounds 0 (commutative,
idempotent monoids (A,+, 0), ordered by x ≤ y iff x + y = y) and semi-
lattice homomorphisms that preserve the lower bounds (i.e., monoid homo-
morphisms). Then V is a symmetric, monoidal category, with tensor unit
1 = {0, 1} [4, 19].

For an object A ofV, consider A∗ = V(A,1), with the pointwise bounded
semilattice structure inherited from 1. Within the theory of ordered sets,
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elements of A∗ are described as characters of A, inspiring the terminology
of Remark 6.2(c). Each element α of A determines a character α̂ with

(6.4) aα̂ = 1 ⇔ α ≤ a

for each element a of A. Conversely, each element f of A∗ appears as the
character α̂ for α = min{a ∈ A | af = 1}.

The coevaluation is given by

(6.5) coev : 1 → A∗ ⊗ A; 1 7→
∑
α∈A

α̂⊗ α .

The commuting of the first diagram (6.1) then corresponds to the equation

a
∑
α∈A

α̂⊗ α =
∑
α∈A

aα̂⊗ α =
∑
α≤a

α = a

for a ∈ A. Now consider

(1⊗ χ̂)(coev⊗ 1)(1⊗ ev) =
(∑

α∈A

α̂⊗α⊗ χ̂
)
(1⊗ ev) =

∑
α∈A

α̂⊗αχ̂ =
∑
χ≤α

α̂

for χ ∈ A. For each element a of A, one has

a
∑
χ≤α

α̂ = 1 ⇔ ∃ α ≥ χ . aα̂ = 1 ⇔ ∃ α ≥ χ . α ≤ a ⇔ χ ≤ a .

Comparison with (6.4) then shows that

χ̂ =
∑
χ≤α

α̂ ,

ensuring the commutativity of the second diagram (6.1).

6.3. Characteristic morphisms. This section introduces concepts which
will be needed in §6.4 below.

Definition 6.5. Let (A,∆) be a comagma in a concrete compact closed
category V.

(a) Set Rχ = (1A⊗∆)(1A⊗ 1A⊗χ)(1A⊗ ρA) for each character χ of A.
(b) Set Lχ = (∆⊗ 1A)(χ⊗ 1A⊗ 1A)(λA⊗ 1A) for each character χ of A.
(c) A V-morphism M : A⊗A → A⊗A is said to be right characteristic

if it commutes with Rχ for each character χ of A.
(d) Dually, a V-morphism M : A ⊗ A → A ⊗ A is described as left

characteristic if it commutes with Lχ for each character χ of A.

Proposition 6.6. Let (A,∇,∆) be a coassociative bimagma in a concrete
compact closed category V.

(a) The right composite morphism a is right characteristic.
(b) Dually, the left composite morphism G is left characteristic.
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Proof. For a⊗b in A⊗A, one has (a⊗b)aRχ = abL⊗bRLbRRχ. On the other
hand, (a⊗ b)Rχa = (a⊗bLbRχ)a = abLL⊗bLRbRχ. Then by coassociativity,

abLL ⊗ bLRbRχ = (a⊗ bLL ⊗ bLR ⊗ bR)(∇⊗ 1A ⊗ χ)(1⊗ ρA)

= (a⊗ bL ⊗ bRL ⊗ bRR)(∇⊗ 1A ⊗ χ)(1⊗ ρA) = abL ⊗ bRLbRRχ

as required for (a). The proof of (b) is dual. �

In the context of Lemmas 4.4 and 4.5, the following result is worthy of
note.

Proposition 6.7. (a) Suppose that (A,∇,∆, η, ε, S) is a left Hopf algebra
within a concrete compact closed category V. Then the section

aS = (1A ⊗∆)(1A ⊗ S ⊗ 1A)(∇⊗ 1A)

of the right composite a is right characteristic.

(b) Suppose that (A,∇,∆, η, ε, S) is a right Hopf algebra within a concrete
compact closed category V. Then the retract

aS = (1A ⊗∆)(1A ⊗ S ⊗ 1A)(∇⊗ 1A)

of the right composite a is right characteristic.

Proof. For a⊗ b in A⊗A, one has (a⊗ b)aSRχ = abLS ⊗ bRLbRRχ. On the
other hand, (a⊗b)Rχa = (a⊗bLbRχ)aS = (a⊗bLaS)·bRχ = abLLS⊗bLRbRχ.
Then by coassociativity,

abLLS ⊗ bLRbRχ = (a⊗ bLL ⊗ bLR ⊗ bR)(1A ⊗ S ⊗ 1A ⊗ 1A)(∇⊗ ρA)

= (a⊗ bL ⊗ bRL ⊗ bRR)(1A ⊗ S ⊗ 1A ⊗ 1A)(∇⊗ ρA) = abLS ⊗ bRLbRRχ

as required. �

The dual of Proposition 6.7 becomes relevant in the context of Lemmas 4.2
and 4.3.

Corollary 6.8. (a) Suppose that (A,∇,∆, η, ε, S) is a right Hopf algebra
within a concrete compact closed category V. Then the section

GS = (∆⊗ 1A)(1A ⊗ S ⊗ 1A)(1A ⊗∇)

of the left composite G is left characteristic.

(b) Suppose that (A,∇,∆, η, ε, S) is a left Hopf algebra within a concrete
compact closed category V. Then the retract

GS = (∆⊗ 1A)(1A ⊗ S ⊗ 1A)(1A ⊗∇)

of the left composite G is left characteristic.
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6.4. From right composite sections to left antipodes. The following
result may be viewed as a partial converse to Lemma 4.5. The hypothesis
it imposes on the section as is justified by Proposition 6.7(a).

Theorem 6.9. Let V be a concrete compact closed category. Suppose that
(A,∇,∆, η, ε) is a bimonoid in V for which the right composite a has a
right characteristic section as, so that asa = 1A⊗A. Then

(6.6) S = λ−1
A (η ⊗ 1A)as(1A ⊗ ε)ρA

is a left antipode for the bimonoid (A,∇,∆, η, ε).

Proof. For an element a of A, write (1⊗a)as = al⊗ar, using a Sweedler-like
notation. Note that

(6.7) aS = (1⊗ a)as(1A ⊗ ε)ρA = al · aεr .

Also,

(6.8) 1⊗ a = (al ⊗ ar)a = ala
L
r ⊗ aRr

implies

1⊗ aε = ala
L
r ⊗ aRε

r = ala
L
r a

Rε
r ⊗ 1 = alar ⊗ 1

by counitality. The equation

(6.9) 1 · aε = alar

then results by multiplication.
For a character χ of A, applying Rχas = asRχ to the left hand equation

of (6.8) yields

(6.10) (1⊗ aLaRχ)as = al ⊗ aLr a
Rχ
r .

Now by counitality and the fact that elements of A∗ are V-morphisms:

(1⊗ a)as(1A ⊗ χ) = (al ⊗ ar)(1A ⊗ χ) = al ⊗ (aLεr aRr )χ = al ⊗ aLεr aRχ
r

= al ⊗ (aLr a
Rχ
r )ε = (al ⊗ aLr a

Rχ
r )(1A ⊗ ε) = (1⊗ aLaRχ)as(1A ⊗ ε)

= (aLaRχ)S = (aLSaRχ) = aLS ⊗ aRχ = (aL ⊗ aR)(S ⊗ 1A)(1A ⊗ χ)

for each character χ of A. Lemma 6.4 then implies the first equation of

(aL ⊗ aR)(S ⊗ 1A) = (1⊗ a)as = al ⊗ ar .

Applying ∇, and recalling (6.9), yields aLSaR = 1 · aε, verifying that S is a
left antipode. �

The dual of Theorem 6.9 provides a converse to Lemma 4.3, with the
hypothesis on Gs being justified by Corollary 6.8(a).
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Corollary 6.10. Let V be a concrete compact closed category. Suppose that
(A,∇,∆, η, ε) is a bimonoid in V for which the left composite G has a left
characteristic section Gs, so that GsG = 1A⊗A. Then

(6.11) S = ρ−1
A (1A ⊗ η)Gs(ε⊗ 1A)λA

is a right antipode for the bimonoid (A,∇,∆, η, ε).

7. A left-sided quantum group

This section will motivate and summarize the construction of the left
Hopf algebra that was exhibited in [18], and examine two properties of its
composite morphisms. Let K be a field, with a chosen nonzero element q.
Consider an alphabetically ordered set {a < b < c < d}, generating a free
monoid {a, b, c, d}∗, which extends linearly to the free algebra K{a, b, c, d}∗.
The polynomial algebra K[a, b, c, d] is the quotient of K{a, b, c, d}∗ obtained
by imposing mutual relations of commutativity between the elements of
{a, b, c, d}.

The examples of the first two sections are very well-known Hopf algebras.
However, it should be noted that their properties are often obtained by
repeated Ore extensions [11, §§IV.4–6], whereas we prefer to emphasize the
“rewriting rule” approach — see Remark 7.3(b) — which best lends itself
to the construction of the left Hopf algebra appearing in §7.3.

7.1. The Hopf algebra SL2.

Definition 7.1. The matrix bialgebra M(2) is obtained by equipping the
polynomial algebra K[a, b, c, d] with the comultiplication summarized by

(7.1) ∆:

[
a b
c d

]
7→

[
a⊗ a+ b⊗ c a⊗ b+ b⊗ d
c⊗ a+ d⊗ c c⊗ b+ d⊗ d

]
=

[
a b
c d

]
⊗

[
a b
c d

]
and counit summarized by

(7.2) ε :

[
a b
c d

]
7→

[
1 0
0 1

]
using matrices as place-holders, and a mnemonic at the end of (7.1).

Now consider the quotient SL2 of the matrix algebra (M(2),∇, η) obtained
by imposing the relation

(7.3) ad− bc = 1 .

The algebra SL2 becomes a Hopf algebra with comultiplication (7.1) and
counit (7.2), when equipped with the antipode

(7.4) S :

[
a b
c d

]
7→

[
d −b
−c a

]
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again defined by using matrices as place-holders, and producing a magma
homomorphism S : (SL2,∇) → (SL2, τ∇).

7.2. The quantum group SLq(2).

Definition 7.2. As an algebra, the quantum matrix bialgebra Mq(2) is the
quotient of K{a, b, c, d}∗ that is obtained by imposing the six commutation
relations

ba = qab , dc = qcd , ca = qac , db = qbd ,(7.5)

cb = bc , and da = ad+ (q − q−1)bc .

The coalgebra structure is given by the comultiplication (7.1) and counit
(7.2).

Remark 7.3. (a) Note that Mq(2) reduces to M(2) when q = 1.

(b) The commutation relations (7.5) enable the elements of Mq(2) to be
represented by words in normal form: linear combinations of free monoid
elements aeabebcecded in which the respective powers of a, b, c, d appear in
alphabetical order. To this end, one may express the commutation relations
in the form

ba → qab , dc → qcd , ca → qac , db → qbd ,(7.6)

cb → bc , and da → ad+ (q − q−1)bc

that emphasizes their role as a collection of rewriting rules.

(c) The commutation relations in the top line of (7.5) may be expressed in
the symbolic form

(7.7)

[
b
d

]
◦
[
a
c

]
= q

[
a
c

]
◦
[
b
d

]
and

(7.8)
[
c d

]
◦
[
a b

]
= q

[
a b

]
◦
[
c d

]
using the entrywise or Hadamard product ◦ of matrices. The relations (7.7)
are known as the column relations, while the relations (7.8) are known as
the row relations.

The quantum group SLq(2) is obtained as the quotient of the quantum
matrix bialgebra Mq(2) obtained by imposing the algebra relation

(7.9) ad− q−1bc = 1

whose left hand side is described as the quantum determinant. The bialgebra
SLq(2) becomes a Hopf algebra when equipped with the antipode

(7.10) S :

[
a b
c d

]
7→

[
d −qb

−q−1c a

]
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defined as usual by using matrices as place-holders, and producing a magma
homomorphism S : (SLq(2),∇) → (SLq(2), τ∇). Note that SLq(2) reduces
to SL2 when q = 1.

7.3. The left Hopf algebra S̃Lq(2). Consider the quotient S̃Lq(2) of the
free algebra K{a, b, c, d}∗ that is obtained by imposing the commutation
relations

ca = qac , da− qbc = 1 ,(7.11)

db = qbd , ad− q−1cb = 1 .

Note the appearance of the row relations (7.8) and twisted versions of the
quantum determinant relation (7.9). The algebra becomes a bialgebra when
equipped with the comultiplication (7.1) and counit (7.2) [18, p.157].

The commutation relations (7.11) may be expressed in the form

ca → qac , da → qbc+ 1 ,(7.12)

db → qbd , cb → qad− q1

of rewriting rules, analogous to the rewriting rules (7.6) for Mq(2).

Definition 7.4. (a) A word in the free monoid {a, b, c, d}∗ is said to be
irreducible if it does not contain a subword of the form ca, db, da, or cb.

(b) Let B denote the set of irreducible words in the free monoid {a, b, c, d}∗.

Lemma 7.5. [18, p.157] The rewriting rules (7.12) are confluent, and each

element of S̃Lq(2) has a unique irreducible normal form. In particular, the

set B forms a basis of the vector space S̃Lq(2).

Theorem 7.6. [18, p.157] Define a linear map S : S̃Lq(2) → S̃Lq(2) by
(7.10) and S : B → B;x1x2 . . . xr−1xr 7→ xS

r x
S
r−1 . . . x

S
2x

S
1 for xi ∈ {a, b, c, d}.

Then S̃Lq(2) is a left Hopf algebra with S as one of the left antipodes, but
not a right antipode.

7.4. Non-injectivity of the right composite.

Proposition 7.7. The nonzero element

(7.13) (dc− qcd)⊗ a+ q2(cb− bc)⊗ c

of the tensor square of S̃Lq(2) lies in the kernel of the right composite.

Proof. Observe that (7.13) is nonzero, since it reduces as

(dc− qcd)⊗ a+ q2(cb− bc)⊗ c

= (dc− qcd)⊗ a+ q2(qad− q1− bc)⊗ c

= −q3(1⊗ c) + q3(ad⊗ c)− q2(bc⊗ c)− q(cd⊗ a) + dc⊗ a
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in terms of the lexicographically ordered basis B⊗B of the tensor square of

S̃Lq(2). Now by (1.2) and (7.1), one has
(
(dc−qcd)⊗a+q2(cb−bc)⊗c

)
a =

dca⊗ a− qcda⊗ a+ dcb⊗ c− qcdb⊗ c

+ q2cbc⊗ a− q2bc2 ⊗ a+ q2cbd⊗ c− q2bcd⊗ c

= (q2bc2 + qc)⊗ a− (q3adc− q3c+ qc)⊗ a+ q2bcd⊗ c

− (q3ad2 − q3d)⊗ c+ (q3adc− q3c)⊗ a− q2bc2 ⊗ a

+ (q3ad2 − q3d)⊗ c− q2bcd⊗ c = 0

as required. �
7.5. Non-surjectivity of the left composite.

Theorem 7.8. The left composite of the left Hopf algebra S̃Lq(2) is not
surjective.

Proof. Consider an element x of the set B from Definition 7.4(b). Suppose
that x ⊗ 1 lies in the image of the left composite, say as the image of an
element yl ⊗ yr of the tensor square, written in Sweedler-like notation (and
thus not necessarily of tensor rank 1). Since B⊗B is a basis for the tensor
square, the elements yl may and will be taken from B. Then

(7.14) (yl ⊗ yr)G = yLl ⊗ yRl yr = x⊗ 1 .

Applying 1S̃Lq(2) ⊗ ε to the final equation of (7.14) yields

x⊗ 1 = yLl ⊗ yRε
l yεr = yLl y

Rε
l ⊗ yεr = yl ⊗ yεr(7.15)

with the final equality holding by counitality. Applying ρS̃Lq(2) to (7.15)

yields x = yl · yεr . Thus yl ⊗ yr is indeed of tensor rank 1, with x = yl and
yεr = 1.

Now take x = a, so that a⊗1 = (a⊗yr)G = aL⊗aRyr = a⊗ayr+ b⊗ cyr
according to (7.1). Thus a⊗ (ayr − 1)+ b⊗ cyr = 0 . Respective projections

to a⊗ S̃Lq(2) and b⊗ S̃Lq(2) yield ayr = 1 and cyr = 0 . According to (7.11)
one then has q−1c = q−1cayr = acyr = 0 , which contradicts Lemma 7.5. �
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[3] S. Dǎscǎlescu, C. Nǎstǎsescu, Ş. Raianu, Hopf Algebras: An Introduction, Dekker,

New York, NY, 2001.
[4] B.A. Davey, G. Davis, Tensor products and entropic varieties, Algebra Universalis

21 (1985), 68-88.
[5] P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor Categories, American Mathe-

matical Society, Providence, RI, 2015.



24 U. N. IYER, J. D. H. SMITH, AND E. J. TAFT

[6] D. Foata, G.-N. Han, A new proof of the Garoufalidis-Lê-Zeilberger quantum
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