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ON THE STRUCTURE OF BARYCENTRIC ALGEBRAS 

A. B. ROMANOWSKA AND J. D. H. SMITH 

Abstract. Barycentric algebras are decomposed as collections of algebra- 
ically open convex sets indexed by their semilattice replicas. They are char- 
acterized as subalgebras of Ptonka sums of convex sets. Their structure is 
analyzed completely. 

1. Introduction. Let E be a real vector space. For each real number r, 
one may define a binary operation _r on E by the affine combination 

(•.•) r' •: x • • •:; ½,y) -• •yr= •(• - •) + y•. 

This makes (E, it) an idempotent, entropic [10, 128(ii)1 algebra- a mode 
in the sense of [10]. For (E, a), the entropic property just means that 

xyr_ zt_r s ---- xzs yts r 

for any r, s in R and x, y, z, t in E. Let I ø denote the open unit interval 
]0, 1[ (the interior of the closed unit interval I = [0, 1]). Then subalgebras 
(C,I ø) of the reduct (E,I ø) of (E,R) are just convex subsets C of E. The 
Class C of convex sets, i.e., of such subalgebras (C, I ø) of reducts of real 
vector spaces (E,n) under arline combinations (1.1) with r e I ø, does not 
form a variety in the sense of universal algebra [10, page 17], since it is not 
closed under the taking of homomorphic images [10, Example 122]. The 
variety generated by __C is the variety B_B_ of barycentric algebras. According 
to [10, Theorem 214], an algebra (B,I ø) of type [10, page 5] I ø --• {2} is a 
barycentric algebra if and only if it satisfies the identities 

(•.2) 

(•.a) 
(1.4) 

xxp = x (idempotence), 

xyp = yxp' (skew-commutativity), and 
xypzq = xyz(q/ (p'q') ) (p'q')' (skew-associativity), 
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for p, q in I ø, where p' = 1 -p. Barycentric algebras have also been studied 
under the names "semiconvex set" [2], [13], [14] and "convexor" [3], [41, 
[11], [12]. Convex sets (C,I ø) may be recognized amongst all barycentric 
algebras as being cancellative: 

(1.5) ¾ p • I ø, ¾ x, y, z • C, xyp = xzp • y = z 

[10, Theorem 269]. 
The significance of barycentric algebras is that they provide a gen- 

eral algebraic framework for the study of convexity. Convexity is closely 
connected with order, and barycentric algebras give a uniform treatment of 
convex sets and semilattices. Section 2 below presents a list of examples of 
barycentric algebras illustrating this uniform treatment. The main purpose 
of the paper is to present three theorems describing the structure of general 
barycentric algebras, formulating precisely the way they combine order and 
convexity. The theorems are stated in the fourth section, after a description 
in Section 3 of some algebraic construction methods based on semilattices. 
The theorems are the Decomposition Theorem 4.4, the Characterization 
Theorem 4.5, and the Structure Theorem 4.6. The Decomposition Theo- 
rem is proved in the fifth section, which examines the "algebraically open" 
barycentric algebras defined in Section 4. The sixth section then gives the 
proof of the Characterization and Structure Theorems. 

2. Examples of barycentric algebras. The examples presented here are 
of two main types: either theoretically significant, or having such curious 
structural features that they provide interesting test cases for the theorems 
of Section 4. 

EXAMPLE 2.1 (real arline spaces): Let E be a real vector space. Then the 
algebra (E, I•)of (1.1)describes E as a real arline space [10, Corollary 256]. 
Its reduct (E, I ø) is a barycentric algebra. Note that fixing the base point 
0 recovers the real vector space structure from the affine space (E, I•). 
EXAMPLE 2.2 (convex sets): A convex set (C,I ø) is a subalgebra of the 
reduct (E,I ø) of an arline space (E,l•) as in Example 2.1. Convex sets are 
also characterized as barycentric algebras that are cancellative in the sense 
of (1.5). As in [7, 4.3] or the proof of [10, Theorem 269], each convex set 
C embeds into a minimal real arline space (CR+V, R) called its affine hull. 
EXAMPLE 2.3 (semilattices): A semilattice (H,o) is an idempotent, com- 
mutative semigroup. A semilattice becomes a barycentric algebra (H, I ø) 
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(an Iø-semilattice in the terminology of [10, page 31]) on defining 

(2.1) xyp- xoy 

for all p in I ø. The skew-commutativity (1.3) follows from the commuta- 
tivity of o, and the skew-associativity (1.4) follows from its associativity. 
Semilattices carry an additional order structure in one of two dual ways. A 
join semilattice (H, +) gives an ordered set (H, _<+) with 

(2.2) x_•+ y•:*x+y--y, 

while a meet semilattice (H,-) gives an ordered set (H, _•.) with 

(2.3) x _<.y •:* x.y = x. 

EXAMPLE 2.4 (the extended reals)' Part of the usefulness of barycentric 
algebras in analysis is that they give an algebraic structure to the set It © = 
It U {oc} of extended reals. The barycentric algebra (ltø•,I ø) has (lt, I ø) 
of Example 2.1 as a subalgebra, while xocp = oc for any x in It •ø, p in I ø. 

EX^MrLE 2.5 (simplicial complexes) [7, page 15], [10, Exercise 282]' Let 
K be the (geometric realization of) a simplicial complex. Then there is a 
barycentric algebra KU{oc} with xyp = o• if x and y are not contained in 
a simplex; if x and y are contained in a simplex, which is a convex set, then 
xyp is the usual convex combination within that simplex. 

EX^MPLE 2.6 (the "T")' Let T = [0, 1]U]0, 1]. The closed interval [0, 1] is 
called the crossbar of the T and ]0, 1] is called the vertical. For x, y both 
contained within [0, 1] or within ]0, 1], define xyp to be the usual convex 
combination. For x in [0, 1] and y in ]0, 1], define xyp- yp E]0, 1]. The 
T is /12 of [3] or the "blocked space" •. of [2]. It may be coordinatized 
as a subalgebra of the direct square of the extended reals. The crossbar 
embeds as [0, 1] -• It •ø x It•; x H (0, x), while the vertical embeds as 
]0, x y (y, 
EX^MPLE 2.7 (subalgebra modes)' Since barycentric algebras are modes, 
the general theory of [10] applies to them. In particular, given a barycentric 
algebra (B, Iø), one obtains new barycentric algebras (B$, I ø) and (BP, I ø) 
using complex products [10, (144)] on the sets B$ of all subalgebras of 
(B, I ø) and B P of all finitely-generated subalgebras of (B, I ø) [10, Corollary 



434 A. B. ROMANOWSKA and J. D. H. SMITH 

3. Semilattice sums. Semilattices form the basis for a range of general 
algebraic construction techniques, known generically as "semilattice sums." 
The most elegant of these is the Ptonka sum [10, Definition 236], introduced 
by Ptonka [9] under the name "sum of a direct system" as a generalization 
of A. H. Clifford's "strong semilattice of semigroups" [1], [8, 1.8.7]. The 
description of Ptonka sums in [10, 2.3] was based on meet semilattices, 
but for current purposes it is more natural to consider a join semilattice 
(H, +), simultaneously an/ø-semilattice (H,I ø) as in Example 2.3. As a 
partial order (H, _•+), the set H is the set of objects of a small category 
(H) having unique morphism x -• y if and only if x _•+ y. Consider the 
category (I ø) whose objects are Iø-algebras, algebras (A,I ø) of type [10, 
page 5] I ø -• {2) such as barycentric algebras. The morphisms of (I ø) 
are Iø-homomorphisms. Suppose given a covariant functor F ß (H) -• 
(Iø). Then the Ptonka sum of the algebras hF (for h in H) is the disjoint 
union HF - UheY hF of the underlying sets, equipped with the/ø-algebra 
structure given by 

(3.1) p_'hFxkF--•(h+k)F; (x,y) Hx(h-•h+k)Fy(k--•h+k)Fp_ 

for each p in I ø and h, k in H. Note that there is an/ø-algebra homomor- 
phisin •rF ' (HF, I ø) --• (H,Iø), called the projection, having restrictions 
• ß (hF, I ø) -• ({h),Iø). The subalgebras (hF, I ø) of the Ptonka sum 
(HF, I ø) are called the Ptonka fibres. As an example, the barycentric al- 
gebra of extended reals (Example 2.4) is a Ptonka sum over the 2-element 
join semilattice H - {0 _•+ 1}. The fibre OF is the barycentric algebra 
(1•,I ø) as in Example 2.1, while 1F is the singleton ({c•),Iø). The mor- 
phism (0 -• 1)F is the unique mapping I• -• {c•). Ptonka sums give a way 
of constructing many new barycentric algebras. 

PROPOSITION 3.1. A Ptonka sum oœ barycentric algebras is itseft a barycen- 
tric algebra. 

PRoof: The identities (1.2) (1.4) specifying barycentric algebras are 
"regular" in the sense of [10, Proposition 238]. A Ptonka sum satisfies all 
the regular identities satisfied by each of its fibres. Thus a Ptonka sum of 
barycentric algebras is a barycentric algebra. ! 

The extended reals, for example, are obtained as the Ptonka sum by 
the functor F from the 2-element semilattice {0 _•+ 1) with OF - (1•,I ø) 
and IF = ({c•},Iø). 
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A special case of Proposition 3.1 is that a Ptonka sum of convex sets 
is a barycentric algebra. The Characterization Theorem 4.5 below will 
characterize all barycentric algebras as subalgebras of Ptonka sums of convex 
sets. 

The conditions on a Ptonka sum, although natural, are very strong, 
and do not obtain in general. It is not true that each algebra of type 
I ø -• {2} projecting onto an Iø-semilattice (H,I ø) is a Ptonka sum over that 
semilattice. In [10, Definition 623], a more general construction method 
called the "Lallement sum" was introduced, extending and adapting some 
semigroup-theoretical work of Lallement [5, 2.19]. In fact, as was shown 
by [10, Theorem 624], these Lallement sums have extremely broad applica- 
bility. The full generality of Lallement sums is not required here, but the 
concepts underlying them are needed, in the context of/ø-algebras. 

To begin with, define a sink [10, page 73] $ in an/ø-algebra (A,I ø) 
to be a subset S of A satisfying 

(3.2) VpßI ø, Vx, yßA, (xßSoryßS)=•xypßS. 

Sinks are automatically subalgebras. A congruence 0 on (A, I ø) is said to 
preserve the sink (S, I ø) if the restriction of the natural projection A -• Aø; 
a •-• a ø to the subalgebra (S,I ø) injects. The algebra (A,I ø) is said to be 
an envelope of a subalgebra (S,I ø) if (S,I ø) is a sink of (A,I ø) such that 
equality is the only congruence on (A,I ø) preserving (S,Iø). For exam- 
ple, the closed unit interval (I, I ø) is an envelope of the open unit interval 
(•o,•o). 

The version of Lallement sums to be used here is as follows (cf. [10, 
6.2]). 
D•.r•T•O• 3.2' Let H be an/ø-semilattice (H, I ø) and a join semilattice 
(H,+,_•+). Suppose given an envelope (Ea,I ø) of an /ø-algebra (Ca,l") 
for each element h of H. For each h _•+ k in (H, _•+), suppose given an 
lø-homomorphism •a,• ' (Ca, I ø) -• (E•,I ø) such that: 

(a) •ba,a is the injection of Ca into Ea; 
(b) V pß I ø, (Ca0a,a+a,)(Ca,0a,,a+a,)_p c_ Ca+k,; 
(c) V h + h' _• k, V a ß Ca, V b ß Ca,, V p ß I ø, 

(aOa,a+a,) = (aOa,) 

(d) V k ß H, E& = {a&a,•la <+ k, a ß Ca}. 
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Then the disjoint union B = UheHCa equipped with the operations 

(3.3) _p' Ch • Ch' -• Ch4-h'; (9, b) •--• (a•h,h4. h,)(b•h,,h4. h,)_ 

for each p in I ø is called the coherent Lallement sum of the algebras (Ch, I ø) 
over the semilattice H by the mappings (ha,k, or more briefly a coherent 
Lallement sum. 

Note that the left hand side of the equality in (c) is defined, since 
(aqba,a+a,)(bqba,,a+a,)p_ 6 CA+A, holds by condition (b). The conditions 
(a) -- (d) are best viewed as generalizations of the functoriality in Ptonka 
sums, where the envelopes coincide with their sinks. A coherent Lallement 
sum has a projection •r ß (B,I ø) -• (H,Iø), an Iø-homomorphism with 
restrictions (Ca,I ø) -• ({h),Iø). The subalgebras (Ca,I ø) of (B,I ø) are 
also called the fibres of the Lallement sum. 

In the proof of the Characterization Theorem 4.5 below to be given 
in Section 6, a certain extra condition on coherent Lallement sums is con- 
sidered. This condition is 

V h, h' _<+ k _<+ t, V a C Ch, V b C Ch,, 
(3.4) 

a•h,k = b•h',k • a•h,t = b•h',t. 

The significance of condition (3.4) resides in the following 

PROPOSITION 3.3. If a coherent LaIIement sum satist]es condition (3.4), 
then it is a subalgebra oœ the Plonka sum oœ its envelopes. 

PROOF: A functor F' (H) --• (I ø) will be defined. For k in H, the object 
kF is the envelope (E•,Iø). For k <•+ •, a morphism (k -• •)F' E• -• Et 
is needed. Now by (d) of Definition 3.2, each element x of E/• is of the 
form a(bh,k for a in Ch with h _•+ k. Define x(k -. •)F to be a(bh,t. This 
is certainly an element of Et. The definition is good, since if x - a•h,• = 
b•h',k for b in Ch, with h' _•+ k, then a•h,t = b•h,,t by condition (3.4). 
To see that (k -• t)F is an /ø-homomorphism, consider x - aqbh,• and 
y -- bqbh,,• in Ek. Then for p in I ø, 

x(k -• t)Fy(k -• t)Fp-(a(bh,e)(bq•h,,e)p 
---- (a•h,h4-h') (b•h',h4-h') 
• (a•h,h4_h,) (b•h,,h4_h,)P_•h4_h,,k(k --• •)F 
= p(k e)F = xyp(k e)F, 
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the second and fourth equalities holding by (c) of Definition 3.2 while the 
third holds by definition of (k -• œ)F. Thus (k -• œ)F is indeed an l ø- 
homomorphism. Also x(k -• k)F = aqSa,k = x, so (k -• k)F is the identity 
on kF. Now suppose k _<+ œ _<+ m in H. Then x(k -• e)(e = 
aqba,•(œ • m)F - ac)•,,• - x(k -• re)F, completing the verification that 
F' (H) -• (l ø) is a functor. It remains to check that the Lallement sum 
B is a subalgebra of the Ptonka sum by the functor F. Consider elements 
a = aqb•,• and b - bqb•,,a, of B. Then for pin I ø, the proeuct abp in 
the Ptonka sum is calculated as a(h -• h q- h')Fb(h' -• h q- h')F p_ = 
(aqb•,•+h,)(bqb•,,•+a,)p_, which by (3.3) is just the product abp in the Lalle- 
ment sum. 1 

4. Structure theorems for barycentric algebras. In this section, the 
three main theorems describing the structure of barycentric algebras are 
formulated. The first of these is the Decomposition Theorem 4.4. As its 
name implies, it describes how barycentric algebras break up into smaller 
pieces. These pieces are certain convex sets, and they are indexed by a 
semilattice associated with the barycentric algebra. This semilattice is the 
(lø)-semilattice replica [10, page 17] (BR, I ø) of the barycentric algebra 
(B,Iø). The semilattice (BR, I ø) is the quotient (BP, I ø) of (B,I ø) by 
the semilattice replica congruence p such that any /ø-homomorphism f ß 
(B,I ø) -• (H,I ø) from (B,I ø) to an /ø-semilattice (H,I ø) factors as f = 
(nat p)f' through a unique homomorphism f''(BP, I ø) -• (H,Iø). Thus 
the congruence p identifies precisely those elements of B which are identified 
in all Iø-homomorphisms from (B, I ø) to some Iø-semilattice. 

The semilattice replica of a barycentric algebra may be given an ex- 
plicit description in terms of "walls" of the barycentric algebra. Recall that 
a subset X of a barycentric algebra (B,I ø) is a subalgebra of (B,I ø) iff 

(4.1) V p • I ø, V x, y • B, (x • X and y • X) =• xyp • X. 

A subset W of B is said to be a wall [10, page 61] of (B,I ø) iff 

(4.2) ¾ p • I ø, ¾ x, y • B, (x • W and y • W) •:• xyp • W. 

Thus walls are special subalgebras. Each barycentric algebra has the im- 
proper wall (B, Iø). If the barycentric algebra is a convex set, then the walls 
in the sense of (4.2) are just the walls in the geometric sense [6, page 8]. 
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(Some authors also use the term "face," although the word "face" may be 
used with different meanings. Compare also the concept of "filter" as used 
in semigroup theory [8, 1.8.2].) The set of walls of a barycentric algebra 
(B,I ø) is partially ordered by inclusion. From (4.2), the intersection of a 
family of walls is again a wall. For a subset X of B, let IX] denote the 
intersection of all walls of B containing X. Then the set of walls of B forms 
a join semilattice under the operation W q- W • = [W U Wq. For a singleton 
X - {x), write [{x)] = Ix]. Such walls are called principal walls. 

LEMMA 4.1. For any x, y in B and p in I ø, one has Ix] + [y] = [xyp]. 

P}tooF' On the one hand xyp e [xyp] implies x,y ß [xyp] by (4.2), so 
Ix], [y] C_ [xy_p] and Ix] q- [y] _<+ [xy_p]. On the other hand, since x and y 
are contained in the subalgebra [x] q- [y], one has xyp ß [x] q- [y], whence 
[xyp_] <_+ Ix] + 

Lemma 4.1 shows that the principal walls of the barycentric algebra 
(B,I ø) form a subsemilattice (H, q-) of the join semilattice of all walls. 
Moreover, it shows that the mapping 

(4.3) B • H; x • Ix] 

is an Iø-homomorphism from the barycentric algebra (B, I ø) onto the I ø- 
semilattice (H, I ø) of principal walls. 

Walls also have a topological significance. If the affine hull of a convex 
set is a finite-dimensional Euclidean space, then the convex set is open in 
its affine hull if[ it has no proper non-empty walls (see [10, Exercise 386] 
and Proposition 5.1 below, cf. also [7, 4.4]). This motivates the following 
DEFINITION 4.2: A barycentric algebra is said to be algebraically open if[ 
it has no proper non-empty walls. 

It also raises the 

PROBLEM 4.3: Under what topologies on its affine hull is a convex set open 
there if and only if it is algebraically open? 

It will be shown below (Proposition 5.2) that algebraically open bary- 
centric algebras are ncesssarily convex sets. 

TIfEOREM 4.4 (Decomposition Theorem). The semilattice replica oœa bary- 
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centtic aIgebra is its semilattice of principal walls. The fibres over the 
semilattice are algebraically open convex sets. 

The theorem will be proved in Section 5. (It was adumbrated some- 
what by [2, Example 2.3] and comparable results of semigroup theory [8, 
1.8]. Skornjakov [12, page 4] also reports that his pupil "V. V. Ignatov 
showed that each convexor [barycentric algebra] decomposes as a semi- 
lattice of affine convexors [convex sets]," referring to the thesis [4].) 

The formulation of the Characterization Theorem needs no prelimi- 
nary definitions, given the concept of Ptonka sum from Section 3. 

THEOREM 4.5 (Characterization Theorem). An Iø-aIgebra is a barycentric 
algebra if and only if it is a subalgebra of a Ptonka sum of convex sets. 

The Characterization Theorem will be proved in Section 6. 
The last of the main theorems is the Structure Theorem, which will 

be given a categorical formulation. Let B denote the category whose ob- 
-- 

jects are barycentric algebras and whose morphisms are Iø-homomorphisms 
between them. A new category T of barycentric structures will be definedß 

-- 

Its objects are barycentric structures •r• = (c)a,k ß Ca • Ek I h _<+ k 
in H). They consist of a join semilattice H, an algebraically open convex 
set (Ch,I ø) for each h in H, a convex set envelope (Eh,I ø) of (Ch,I ø) for 
each h in H, and an. Iø-homomorphism •a,• ' Ca • E• for each h _<+ k 
in H such that (3.4) and the conditions (a) (d) of Definition 3.2 are 
satisfied. The morphisms f ß •u = (•a,• ' Ca • E• I h <+ k in 
H) --} •t, = (c)•,,k, C•, • E•, I h' <+ in H') of T are semi- 
lattice homomorphisms f ß (H,+) -• (H',+) with Iø-homomorphisms 
fh'(Ea,I ø) --} (E•f,I ø) for each h in H, restricting to Iø-homomorphisms 

ß C' I ø , fa (Ca,I ø) -• ( a f, ) such that the diagrams 

(4.4) 

Ch 

E• 

fh 

fk 

, E•s 

commute for each h _<+ k in H. 
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THEOREM 4.6 (Structure Theorem). There are functors d ' B • T__ (known 
as decomposition) and L ß _T -. B_ (known as Lallement sum) by which 
the category B__ of barycentric algebras is equivalent to the category T__ of 
barycen trics truer ures. 

The Structure Theorem 4.6 gives a complete analysis of the structure 
of barycentric algebras and their homomorphisms (to within a knowledge 
of convex sets). It will be proved in Section 6. 

5. Walls, sinks, and the Decomposition Theorem. In this section, 
the Decomposition Theorem 4.4 is proved. The proof is based on the con- 
cepts of "sink" as in (3.2) and "wall" as in (4.2). Note that the complement 
of a wall is a sink. Conversely, although the complement of a sink need 
not be a subalgebra, the complement is a wall if it is a subalgebra. The 
concepts are related further, as shown by 

PROPOSITION 5.1. Let (B, I ø) be a barycentric algebra. Then the following 
conditions are equivalent: 

(i) (B,I ø) is algebraically open; 
(ii) (B,I ø) has no proper non-empty wall; 
(iii) (B,I ø) has no proper non-empty sink; 
(iv) there is no Iø-epimorphism (B,I ø) • ({0, 1},I ø) onto the 

two-element join semilattice {0 _<+ 1}. 

p}too•: If IBI _< •, the equivalence is clear, so assume BI > •. The 
equivalence of (i) and (ii) is Definition 4.2. Since the complement of a proper 
non-empty wall is a proper non-empty sink, (iii) implies (ii). Conversely, 
assume (ii) holds. Suppose (iii) is false, so that (B,I ø) has a proper non- 
empty sink S. Consider the set of subalgebras of (B, I ø) contained in the 
complement of S. This set is partially ordered by inclusion, and is closed 
under unions of chains. Zorn's Lemma gives a maximal element W. It 
will be shown that W is a wall of (B, Iø). This contradicts (ii), since W, 
containing a singleton {x} with x in the complement of S, is non-empty. 
Suppose xyplies in W for x,y in B and pin I ø. For W to be a wall, 
both x and y must lie in W. Suppose by contradiction that x is not in W. 
(Skew-commutativity (1.3) shows that no generality is lost by focussing on 
x rather than y.) By the maximality of W, some element z of the subalgebra 
of (B, I ø) generated by W and x lies in S. Now z • x, since x • S implies 
xyp • S FI W - O, a contradiction. Nor does z lie in W, again since S FI W 



ON THE STRUCTURE OF BAR¾CENTRIC ALGEBRAS 441 

is empty. Repeated application of idempotence, skew-commutativity and 
skew-associativity shows that z is of the form wxq for some q in I ø and w 
in W. But for r -- q/(1 - p + pq) and s - (1 - p) / (1 - p + pq) one has that 
W contains wxypr_ - ywxqs - yzs • $ (3 W, the required contradiction 
proving that (ii) implies (iii). Now (iv) implies (ii) since a proper non- 
empty wall W furnishes an Iø-epimorphism (W -, {0}).((B-W) -• {1}). 
Conversely, (ii) implies (iv) since the preimage of 0 under an Iø-epimorphism 
(B,I ø) • ({0 _<+ 1},I ø) is a proper non-empty wall of (B,Iø). 1 

The next proposition depends on the way sinks arise from a breakdown 
of cancellativity. 

PROPOSITION 5.2. A barycentric algebra is algebraically open only if it is 
a convex set. 

PROOF: Let (B,I ø) be an algebraically open barycentric algebra. If (B,I ø) 
has less than two elements, then it is certainly a convex set. So assume for 
the rest of the proof that B has at least two elements. Suppose that (B, I ø) 
is not a convex set. Then by [10, Theorem 269], condition (1.5) breaks 
down, i.e. there are elements a •: b and x of B such that 

(5.1) 3 p • I ø. xap = xbp. 

By [7, Lemma 2], (5.1) is equivalent to 

(5.2) V p • I ø, xap = xbp. 

For each q in I ø and y in B, define 

Rq(y) ' (B,I ø) --• (B,Iø); z H zyq. 

Since barycentric algebras are modes, the mappings (5.3) are Iø-homomor- 
phisms. The truth and equivalence of (5.1) and (5.2) show that the equalizer 
$ of Rq(a) and Rq(b) is a non-empty subalgebra of (B,I ø) independent of 
the choice of q. It is a proper subalgebra, since a,b • $ implies a - 
aRp(a) = aRp(b) = abp = hap' = bRp,(a) = bRp,(b) = b, a contradiction. 
But S is a sink of (B, Iø), since for s in S, y in B, q in I ø, one has 

ysqap = ysa(p/(q'p')) (q'p')' = ysb((p/(q'p')) (q'p')' = ysqbp, 
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whence ysq 6 $. By Proposition 5.1, the existence of the proper non-empty 
sink S contradicts the algebraic openness of (B, Iø). ! 

The Decomposition Theorem 4.4 may now be proved, using the nota- 
tion of Section 4. 

PROOf or THEOREM 4.4: Let (B, I ø) be a barycentric algebra. Let er be 
the kernel of the homomorphism (4.3), so that xery iff Ix] = [y]. Then er 
contains the semilattice replica congruence p. The p-classes, as barycentric 
algebras, have no non-trivial semilattice quotients. Thus they are alge- 
braically open by Proposition 5.1(iv). By Proposition 5.2, they are convex 
sets. It remains to show that er actually coincides with p. 

Now for b in B, one has 

(5.4) 

certainly a ß b p implies [a] _< [bP]. Conversely, note that [a] •q b p is a non- 
empty wall of b p, since xyp ß [a] N b p with x, y ß b p implies x, y ß [a], so 
X, y ß [a] f-] b p. But b p, being algebraically open, has no proper non-empty 
walls. Thus [a] Vi b p - b p, whence b p <_ [a] and [b p] <_ [a], completing the 
verification of (5.4). 

Also, considering the semilattice replica (B p, I ø) as a join semilattice 
(B p, <+), one has 

(5.5) 

for each b in B. Certainly cp <+ b p implies cbp ß cP-{-b p --' b p _< [bP], whence 
c ß [bP], so that [b p] > U{c p [c p _<+ bP}. On the other hand, the right hand 
side of (5.5) is the preimage in (B,I ø) under nat p of the principal wall 
{c p [ c p <+ b p} of the semilattice (BP, I ø) generated by b p. Now preimages 
of walls under epimorphisms are walls, so that [b p] is contained in the right 
hand side of (5.5). 

To complete the proof of Theorem 4.4, assume x a y in B. Then by 
(5.4), one has [x p] = [/] = [y] = [yP]. The expression (5.5) then shows 
X p •_+ yP and yP _•+ X p, whence x p = yP or x p y. Thus er is also contained 
in p, so that p and er do indeed coincide. ! 

6. Proof of the Characterization and Structure Theorems. The 

proof of the Characterization Theorem 4.5 will follow easily in this section 
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during the course of the proof of the Structure Thereom 4.6. The "de- 
composition" functor D ß B-- -• T-- is based on the decomposition (4.3) of a 
barycentric algebra (B,I ø) over its /ø-semilattice replica (H,Iø), the join 
semilattice of principal walls. For k in H, define the convex set Cte to be 
the pre-image of k under (4.3). Define the pre-envelope Pte over k to be the 
subalgebra (5.5) of (B,I ø) for b p - Cte. The envelope Ete will then be ob- 
tained as a quotient of the pre-envelope Pte by a certain congruence la on it. 
Note that for p in I ø, the mapping Rp(b) ' ([bP],I ø) -• (b•,Iø); x • xbp (as 
in (5.3)) is an Iø-homomorphism. By [7, Lemma 2], i.e. by the equivalence 
of (5.1) and (5.2), the kernel of Rp(b) is independent of the choice of p in 
I ø. Define the congruence late or la on Pte to be the intersection of all these 
kernels as b ranges through 

LEMMA 6.1. The congruence late on 
preserving 

PROOF: Since the convex set Cte is cancellative, the kernel of each Rp(b) 
preserves Cte, whence their intersection late does also. Now suppose that a 
congruence t) on Pte preserves Cte. If x t)y, then for each b in Cte and p in 
I ø one has b t• b =• xbp t• ybp. But xbp, ybp • Cte. Since t) preserves Cte, the 
equality xbp - ybp or x]•p(b) - yRp(b) holds. Hence x late y and 

COROLLARY 6.2. T/•e kernel of Rp(b) ß (Pk,I ø) -• (Cte, I ø) is independent 
of tl•e choice of b in 

PROOF: The kernel preserves Cte, and thus is contained in late by Lemma 6.1. 
But the kernel also contains late, by the definition of the latter. 

Consider the quotient Ete - P•' of Pte. Lemma 6.1 shows that Ck 
(identified with C•) is a subalgebra of Ete preserved only by equality. Since 
Cte is a sink of Pte, it is also a sink of Ete. Thus Ete is an envelope of the 
algebraically open convex set 

LEMMA 6.3. The envelope Ete is a convex set. 

P•toor: It will be shown that the barycentric algebra Ete = P• is cancella- 
tive. Suppose x•z•p = y•z•p for x,y, z in Pte, so that xzplayzp. Then 
for all q in I ø, b in Cte, one has xRq(b)zRq(b)p_ = xz_pRq(b) = yzp_Rq(b) = 
yRq(b)zRq(b)_p. But PteRq(b) is contained in the cancellative algebra C•, so 
that xRq(b) = yRq(b), whence x • = y• as required. ! 
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(6.1) 

For each h _•+ k in H, there is an Iø-homomorphism 

/•a,k ' Ca -• Ek; x H x •, 

the restriction to Ca of the natural projection nat /•k ß Pk • Ek. This 
completes the definition of the barycentric structure (I)y -- ((,ba,k ' Ca • 
Ek I h _• + k in H) associated by the decomposition functor D with the 
barycentric algebra (B, I ø) having semilattice H of principal walls. 

LEMMA 6.4. The Iø-homomorphisms (6.1) satisfy (3.4) and the conditions 
(a)- (d) of Definition 3.2. 

PROOF: Condition (a) is immediate, since /•a preserves Ca. For (b), 
consider elements a of Ca and b of Ca,. Then abp lies in Ca+k,. But 

(a•a,a+a,)(b•a,,a+a,)p_ - (anat •ua+a,)(bnat 
- abpnat 

-- 

verifying (b). The left hand side of (c) becomes 

abp_nat •u• - (a nat •u•)(bnat •u•)p_, 

and thus coincides with the right hand side of (c). Condition (d) is imme- 
diate from the definition of E•. To verify (3.4), consider c in Ck and d in 
De, along with p, q in I ø. Then a•a,• - b•a,,•, implies acp = bcp. Thus 

: p_ : ac_pp_q : : 

the second equahty holding by the entropic law [10, 128(ii)]. Now aRq(d), 
bR•(d), and cdq_ lie in the cancellative algebra (Ck,Iø). Thus aRq(d) = 
bRq(d), whence alalb and aC•h,l -- bC•h',l, as required. ! 

For a barycentric algebra morphism •9 ß (B,I ø) -• (B',Iø), the T- 
morphism f = t•D is defined as follows. The semilattice homomorphism 
f'(H,I ø) -• (H',I ø) is given by the commutative diagram 

(n,,ro) , (n,, ,to) 

nat Pl •nat pt 
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in B-, where the vertical arrows are the projections onto the semilattice 

replicas. The Iø-homomorphisms .fh ' (Ea,I ø) --• (E•f,I ø) are given by the 
commutative diagrams 

in B-, where nat p•f ( a•,I ø) -• (Eaf, ) denotes the natural projection 
of the pre-envelope P• onto the corresponding envelope E• in B•D. To 
see that fa is well-defined by (6.3), suppose a pa b. Choose an element cO 
of C•f with c in Ca (this is always possible, by the definition of f). Then 
for p in I ø, the equality acp = bcp implies at)cOp = bOcOp, so that at)p• bO 
as required. To check that f = OD is a T_-morphism, the commutativity of 
the diagrams (4.4) remains to be checked. But (4.4) becomes 

(6.4) 

o) , o) 

, 

whose commutativity follows from that of (6.3). It is straightforward to 
verify that D ß B-- -• T-- is actually a functor. 

The next step in the proof of the Structure and Characterization Theo- 
rems begins with the definition of the "Lallement sum" functor L ß _T -• B_. 
Given a barycentric structure (I)y -- (•ba,k ' Ca -• Ek [ h _• + k in H), 
form the Lallement sum •b•/L = (B, I ø) with B = Uae•/Ca and the I ø- 
operations defined as in (3.3). By Proposition 3.3, this Lallement sum 
is a subalgebra of a Ptonka sum of its envelopes, which as convex sets are 
barycentric algebras. By Proposition 3.1, it follows that (I)•/L - (B,I ø) 
is a barycentric algebra. Given a T--morphism f ß q)H -• q)H', a mapping 
fL ß q)HL --• q)y,L is defined as the disjoint union 'Uaey (fa ' Ca -• C•). 
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Suppose given elements a of Ch, b of Ch,, and p of I ø. Then 

Here the first and fourth equalities hold by (3.3) and the definition of 
fL, the second equality holds since fh+h' ' Eh+h, -• E•f+h,f is an I ø- 
homomorphism, and the third holds by (4.4). Thus fL is a B-morphism. 

-- 

It is then straightforward to see that L ß T -•/3 is functorial. 

The proof of the Characterization Theorem 4.5 is a corollary of the 
following 

LEMMA 6.5. A barycentric algebra B is naturally isomorphic to BDL. 

PROOF: Suppose given a barycentric algebra B. Then for a in Ch, b in Ch,, 
p in I ø, the product ab_p in BDL is given as (aq•h,h+h,)(bq•h,,h+h,)_p = a•b•p_, 
where/• is the maximal congruence on the pre-envelope Ph+h, preserving 
Ch+h,. But a•b•p = abt 7' = abp, the original product in (B,Iø). Thus 
(B,I ø) and (BDL, I ø) are naturally isomorphic. 1 
PROOF OF THEOREM 4.5' As observed above, the Lallement sum (I)HL of 
a barycentric structure (I)/• is a subalgebra of a Ptonka sum of convex sets. 
But a barycentric algebra B is naturally isomorphic to the Lallement sum 
(I)/•L of the barycentric structure (I)/• = BD. 

PROOF OF THEOREM 4.6: It follows from Lemma 6.5 that the composite 
functor DL is naturally equivalent to the identity on B_B_. It thus remains 
to be shown that the composite LD is naturally equivalent to the identity 
on T. Let (I) H : ((•h,k ' Ch '--} Ek I h _< + k in H) be a barycentric 

-- 

structure. Form the Lallement sum (I)HL = (B, Iø). It projects onto the 
/ø-semilattice (H,Iø), with fibres (Ch,I ø) for h in H. Since these fibres 
are algebraically open, Proposition 5.1(iv) shows that H is the semilattice 
replica of (I)HL. For k in H, form the pre-envelope P& = U{Ch [ h _<+ k in 
H}, a subalgebra of (B, Iø). By (3.3) and condition (c) of Definition 3.2, the 
mapping -tdh_<+ & (qSh,• ' Ch ---} E&) ' P& --} E• is an Iø-homomorphism. By 
Definition 3.2(d), it surjects. Let A be its kernel. Thus P• is isomorphic to 
E&. By condition (a) of Definition 3.2, the congruence A preserves C&. By 
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Lemma 6.1, ), is contained in the congruence p on Pk. Conversely, suppose 
xpy for some x in Ca and y in Ca,. Then there is some z in Ck and p in 
I ø such that the equation xzp = yzp holds in 4•/L. By (3.3), this means 
that the relation (xq•a,•)(zq•,•)p = (yq•a,,•)(zq•:,•:)p holds in the convex set 
(E•,Iø). But (E•,I ø) is cancellative, so x4a,• = yq•a,,k, i.e. x•y. Thus the 
congruences )• and • on P• agree. This shows that the envelope P•' built 
in •,tLD agrees with the algebra E• = P• in the barycentric structure 
4•/. Furthermore, the homomorphisms nat • ß Ca -• P•' built in •tLD 
agree with the homomorphisms nat ,• = 4a,• ' Ca -• E• of the barycentric 
structure (I)•/. I 
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