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Abstract. Comonoid, bi-algebra, and Hopf algebra structures are stud-
ied within the universal-algebraic context of entropic varieties. Attention
focuses on the behavior of setlike and primitive elements. It is shown that
entropic Jónsson-Tarski varieties provide a natural universal-algebraic
setting for primitive elements and group quantum couples (generaliza-
tions of the group quantum double). Here, the set of primitive elements
of a Hopf algebra forms a Lie algebra, and the tensor algebra on any
algebra is a bi-algebra. If the tensor algebra is a Hopf algebra, then the

underlying Jónsson-Tarski monoid of the generating algebra is cancella-
tive. The problem of determining when the Jónsson-Tarski monoid forms
a group is open.

1. Introduction

The aim of this paper is to consider comonoid, bi-algebra, and Hopf alge-
bra structure within the context of universal algebra. The general categorical
setting for such structure is provided by symmetric monoidal categories (or
“symmetric tensor categories”, compare [11, p. 69]), with an associative tensor
product and a unit object. Now an algebra (A,Ω) of type τ : Ω → N is said to
be entropic if the operation

ω : Aωτ → A; (a1, . . . , aωτ ) 7→ a1, . . . , aωτω

is a homomorphism for each operator ω in Ω. With homomorphisms as mor-
phisms and the free algebra on one generator as unit, a variety V of universal
algebras forms a symmetric monoidal category if its algebras are entropic, as
discussed by Davey and Davis some thirty years ago [1]. In many senses,
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the current paper is a natural sequel to their work. Its focus is on those as-
pects of the bi-algebra and Hopf algebra structures which are peculiar to the
universal-algebraic setting of entropic varieties, most notably concentrating on
the concepts of setlike and primitive elements. Nevertheless, some standard
Hopf algebra arguments are occasionally repeated here, both because they may
not be familiar to universal algebraists, and because the set-theoretical details
may differ in the current setting where a ring structure is being replaced by
the free algebra on one generator.

The main novelty of the paper lies in the universal-algebraic treatment of
primitive elements. Here, the natural context is provided by entropic Jónsson-
Tarski varieties, which are characterized by their inclusion of a commutative
monoid structure defined by derived operations [2]. The absence of general
invertibility in these monoids is the major issue that arises, for example in the
construction of a Lie bracket of primitive elements in Corollary 4.8. Again,
while Corollary 5.4 shows that the commutative monoid of a Jónsson-Tarski
algebra A is cancellative if the tensor algebra of A (free monoid over A in the
sense of [1]) is a Hopf algebra, the question of determining when that cancella-
tive commutative monoid is an abelian group emerges as the open Problem 5.5.

The plan of the paper is as follows. Section 2 gives a quick review of those
categorical and elementary properties of tensor products in entropic varieties
(beyond what is discussed in [1]) that are needed for the purposes of the paper,
including a definition of the rank of a tensor (§2.1). Basic definitions and
properties of monoids, comonoids, bi-algebras, and Hopf algebras in an entropic
variety are presented in Section 3. These include a universal-algebraic version
of Sweedler notation (also suitable for noncoassociative comultiplications), and
a discussion of setlike elements of comonoids in an entropic variety (§3.4). The
keystone of the paper consists of Section 4, focused on the concept of primitive
elements of a comonoid in an entropic Jónsson-Tarski variety. Theorem 4.9
shows that the primitive elements of any Hopf algebra in an entropic Jónsson-
Tarski variety form a Lie algebra. Theorem 5.2 exhibits the tensor algebra AT

over an entropic Jónsson-Tarski algebra A as a bi-algebra where each element of
A is primitive. The tensor algebra becomes a Hopf algebra when the Jónsson-
Tarski monoid of A is an abelian group (Corollary 5.3). In Section 6 it is shown
that entropic Jónsson-Tarski varieties form a natural setting for group quantum

couple Hopf algebras, which are constructed in Theorem 6.1. The significance
of these examples is that they are neither commutative nor cocommutative in
general. Furthermore, they embrace a number of known constructions: group
algebras, dual group algebras, and group quantum doubles.

In general, the paper uses the algebraic notations and conventions of [10].
For classical Hopf algebras (or “quantum groups”), one may refer to [3, 5, 11].
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2. Tensor products

Let V be a variety of entropic algebras, often considered as a category with
homomorphisms as morphisms. As examples, one may bear in mind the cat-
egory Set of sets (no nontrivial operations), the category B of barycentric
algebras [6, 7], the category K of unital modules over a commutative, unital
ring K, and the categories of commutative monoids or bounded semilattices.
For algebras A,B in V, the set V(A,B) of homomorphisms from A to B is
a subalgebra of the power Set(A,B) with pointwise operations inherited from
B.

Consider a fixed algebra Y in V. There is a functor V(Y, ) or RY : V → V

with morphism part taking f : X → X ′ to

V(Y,X) → V(Y,X ′); g 7→ gf .

This functor has a left adjoint SY [1, 4], [10, §IV.2.4].

Definition 2.1. For algebras Z, Y in V, the tensor product Z ⊗ Y of Z and
Y is the image ZSY of Z under the object part of the left adjoint SY to the
functor RY : V → V;X 7→ V(Y,X).

The adjoint relationship between SY and RY may be summarized by the
natural isomorphism

(2.1) V(Z ⊗ Y,X) ∼= V
(

Z,V(Y,X)
)

for algebras X,Y, Z in V. The commutativity of the tensor product, in the
form of an isomorphism

(2.2) τ : Z ⊗ Y → Y ⊗ Z

for algebras Y, Z in V, is obtained as a consequence [10, III(3.6.6)]. The general
associativity of the tensor product in an entropic variety is discussed in [1, §3],
and will be used implicitly throughout this paper.

Example 2.2. In the category Set of sets, the general tensor product Z ⊗ Y

of Definition 2.1 is the cartesian product Z × Y , and the adjoint relationship
(2.1) amounts to Currying [10, p. 12].

Example 2.3. InK, the general tensor product Z⊗Y of Definition 2.1 reduces

to the usual tensor product of K-modules [10, §III.3.6].

Example 2.4. In the category B of barycentric algebras, the tensor product
Z ⊗ Y is a special case of the tensor product for modes [9, Proposition 3.5].

Proposition 2.5. Let 1 be the free algebra in V on one generator. Then there

are natural isomorphisms

(2.3) 1⊗A
λA // A A⊗ 1

ρAoo

for each algebra A in V.
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Proof. There is a natural isomorphism V(1, U) ∼= U for each algebra U of V.
The adjoint relationship (2.1) then gives

V(1⊗A,X) ∼= V
(

1,V(A,X)
)

∼= V(A,X)

for each algebra X of V. The uniqueness of adjoints yields 1 ⊗ A ∼= A. The
remainder of (2.3) follows from the commutativity (2.2) of the tensor product.

�

2.1. Tensor rank

Let V be a variety of entropic algebras.

Definition 2.6. Consider Z, Y,X in V.

(a) A bihomomorphism is a function

f : Z × Y → X ; (z, y) 7→ (z, y)f

such that Z → X ; z 7→ (z, y)f is a homomorphism for each y in Y , and
Y → X ; y 7→ (z, y)f is a homomorphism for each z in Z.

(b) The set of all bihomomorphisms from Z × Y to X is written as
V(Z, Y ;X).

Currying (compare Example 2.2) from the right-hand side of (2.1) yields a
bijection

V
(

Z,V(Y,X)
)

∼= V(Z, Y ;X)

with the set of bihomomorphisms, so (2.1) may be rewritten as

(2.4) V(Z ⊗ Y,X) ∼= V(Z, Y ;X) .

Setting X = Z ⊗ Y in (2.4) yields a bihomomorphism

(2.5) ⊗ : Z × Y → Z ⊗ Y ; (z, y) 7→ z ⊗ y ,

corresponding to 1Z⊗Y on the left of (2.4). Elements of the image of (2.5)
inside Z ⊗ Y are described as having tensor rank 1. More generally, a tensor

or element t of Z ⊗ Y is said to have tensor rank r if

(2.6) (z1 ⊗ y1) · · · (zr ⊗ yr)w = t

for some V-word w of minimal arity r such that an expression of t in the form
(2.6) is available. (The existence of such an expression for each tensor t is noted
in [1, p. 70]. Simply put, Z ⊗ Y is generated by the set of elements of tensor
rank 1.)

Example 2.7. The variety Set0 of pointed sets, with a unique nullary oper-
ation selecting a constant 0, and no other basic operations, is entropic. In a
pointed set A with pointed element 0, denote Ar {0} by A♯. Call A♯ the set of
non-zero elements of A. For pointed sets Z and Y , the tensor product Z ⊗ Y

is the disjoint union {0} ∪ (Z♯ × Y ♯). The element 0 has tensor rank 0, while
non-zero elements of Z⊗Y have tensor rank 1. In homotopy theory, this tensor
product is known as the smash product or reduced join [12, §III.2].
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Proposition 2.5 may now be reformulated in “elementary” terms (compare
[1, §2]).

Proposition 2.8. Let 1 be the free V-algebra on a single generator x.

(a) For a ∈ A ∈ V, the isomorphisms (2.3) are implemented as

x⊗ a
✤ λA // a a⊗ x

✤ρAoo .

(b) In particular, 1 carries a commutative monoid multiplication

∇ : 1⊗ 1 → 1;x⊗ x 7→ x

and a comultiplication

∆: 1 → 1⊗ 1;x 7→ x⊗ x

that are mutually inverse.

Proof. The identity element of the monoid 1 is x. For unary words xu and xv,
entropicity gives xuv = xvu, so (xu⊗ xv)∇ = xuv = xvu = (xv ⊗ xu)∇. �

3. Diagrams and definitions

Let A be an algebra in an entropic variety V. Consider the algebra diagrams

(3.1) A⊗A⊗A
1A⊗∇ //

∇⊗1A
��

A⊗A

∇

��
A⊗A

∇
// A

and A⊗A

∇

$$❏
❏❏

❏❏
❏❏

❏❏
❏ A⊗ 1

1A⊗ηoo

ρA

��
1⊗A

η⊗1A

OO

λA

// A

in the category V, the dual coalgebra diagrams

(3.2) A⊗A⊗A A⊗A
1A⊗∆oo

A⊗A

∆⊗1A

OO

A

∆

OO

∆
oo

and A⊗A
1A⊗ε //

ε⊗1A

��

A⊗ 1

1⊗A A

∆

dd❏❏❏❏❏❏❏❏❏❏

λ−1

A

oo

ρ−1

A

OO

in the category V, the bi-algebra diagram

(3.3) 1⊗ 1
∇ // 1 1

η
����
��
��
�

∆ //1oo 1⊗ 1

η⊗η

��
A⊗A

∆⊗∆

��

∇ //

ε⊗ε

OO

,,❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨ A
∆ //

ε

__❃❃❃❃❃❃❃
A⊗A

A⊗A⊗A⊗A
1A⊗τ⊗1A

//

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡
A⊗A⊗A⊗A

∇⊗∇

OO
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in the category V, and the antipode diagram

(3.4) A⊗A
S⊗1A // A⊗A

∇

��✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻✻
✻

A
εA //

∆

DD✟✟✟✟✟✟✟✟✟✟✟✟✟✟

∆

��✻
✻✻

✻✻
✻✻

✻✻
✻✻

✻✻
✻ 1

ηA

// A

A⊗A
1A⊗S

// A⊗A

∇

DD✟✟✟✟✟✟✟✟✟✟✟✟✟✟

in the category V, all of which are commutative diagrams. The bottom arrow
in the bi-algebra diagram makes use of the “twist” isomorphism τ of (2.2),
while the top row of the diagram uses the multiplication and comultiplication
from Proposition 2.8(b).

3.1. Basic definitions

Definition 3.1. Let V be an entropic variety.

(a.1) A monoid in V is a V-algebra A with a V-homomorphism

∇ : A⊗A → A

known as multiplication, and a V-homomorphism η : 1 → A known as
the unit, such that the algebra diagrams (3.1) commute.

(a.2) Let A and B be monoids in V. Then a monoid homomorphism f : A →
B is a V-homomorphism such that the diagrams

A

f

��

A⊗A

f⊗f

��

∇oo

B B ⊗B
∇

oo

and A

f

��

1
ηoo

1

��
B 1

η
oo

commute.
(b.1) A comonoid in V is a V-algebra A with a V-homomorphism

(3.5) ∆: A → A⊗A; a 7→
(

(aL1 ⊗ aR1) · · · (aLna ⊗ aRna )
)

wa

known as comultiplication, and a V-homomorphism ε : A → 1 known
as the counit, such that the coalgebra diagrams (3.2) commute.
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(b.2) Let A and B be comonoids in V. A comonoid homomorphism f : A →
B is a V-homomorphism such that the diagrams

B
∆ // B ⊗B

A

f

OO

∆
// A⊗A

f⊗f

OO and B
ε // 1

A

f

OO

ε
// 1

1

OO

commute.
(c) A bi-algebra in V is a monoid and comonoid A in V such that the bi-

algebra diagram (3.3) commutes. A bi-algebra homomorphism f : A →
B is a monoid and comonoid homomorphism between bi-algebras A

and B.
(d) A Hopf algebra in V is a bi-algebra A in V with a V-homomorphism

S : A → A known as the antipode, such that the antipode diagram (3.4)
commutes.

Remark 3.2. (a) Monoids in entropic varieties were studied in [1, §4].
(b) The image in (3.5) is written in a universal-algebraic version of the well-

known Sweedler notation for Hopf algebra comultiplications. A more compact
but rather less explicit version of this notation is

(3.6) a∆ = aL ⊗ aR ,

with the understanding that the tensor rank of the image is not implied to
be 1. In contrast to the usual Sweedler notation, the notation (3.6) is also
appropriate for noncoassociative comultiplications.

Definition 3.3. Let A or (A,∇, η,∆, ε, S) be a Hopf algebra in an entropic va-
riety V. Then Aop denotes the structure (A, τ∇, η,∆τ, ε, S) on the underlying
set A.

3.2. Basic properties

The primary example for Definition 3.1(d) is the following.

Example 3.4. Suppose that V is the category K of unital modules over a
commutative, unital ring K. Then the object 1 is the free module K. A
Hopf algebra is a K-module A equipped with structure making the diagrams
(3.1)–(3.4) commute.

Definition 3.5. Let V be an entropic variety.

(a) A monoid, bi-algebra, or Hopf algebra A in V is commutative if τ∇ =
∇.

(b) A comonoid, bi-algebra, or Hopf algebraA in V is called cocommutative

if ∆τ = ∆.

Proposition 3.6. Let A be a Hopf algebra in an entropic variety V, with

antipode S.
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(a) The map S : A → Aop is a bi-algebra homomorphism.

(b) If A is commutative or cocommutative, then S2 = 1A.

Proof. The equivalent statements for Hopf algebras (as in Example 3.4) may
be proved by commuting diagrams that are equally valid in a general entropic
variety V (compare, e.g., [11, Proposition 9.1]). �

3.3. Tensor products of monoids

Definition 3.7. LetV be an entropic variety, with free algebra 1 on a singleton
{x}.

(a) Given monoids A and B in V, with respective multiplications ∇A and
∇B, the composite ∇A⊗B of the following

A⊗B ⊗A⊗B
1A⊗τB,A⊗1B
−−−−−−−−−→ A⊗A⊗B ⊗B

∇A⊗∇B−−−−−→ A⊗B

defines a tensor product multiplication.
(b) Given monoids A and B in V, with respective units ηA and ηB, the

composite ηA⊗B of

1
∆
−→ 1⊗ 1

ηA⊗ηB
−−−−−→ A⊗B ,

where the first map is given by Proposition 2.8(b), defines a tensor

product unit.

For the following result, see [1, Theorem 4.2].

Proposition 3.8. For monoids A and B in an entropic variety V, the tensor

product A⊗B of A and B in V forms a monoid in V under the tensor product

multiplication and unit.

The tensor product of monoids serves to give an interpretation of the bi-
algebra diagram (3.3).

Lemma 3.9. Let A be a bi-algebra in an entropic variety V. Then the comul-

tiplication and counit are monoid homomorphisms.

Proof. The bi-algebra diagram (3.3) for A, and more specifically the quadran-
gle above the dotted arrow from A ⊗ A ⊗A ⊗ A to A⊗ A, with the top right
quadrangle, show that in a bi-algebra, the comultiplication is a monoid homo-
morphism. Note that the dotted arrow mentioned gives the multiplication on
A⊗A. Similarly, the top left quadrangle and the triangle in the diagram show
that the counit is a monoid homomorphism. �

In the following sense, the converse of Lemma 3.9 also holds (compare [11,
Proposition 7.5]).

Corollary 3.10. Let A be a monoid and comonoid in an entropic variety V.

Then A is a bi-algebra if and only if the comultiplication and counit are monoid

homomorphisms.
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3.4. Setlike elements of comonoids

Definition 3.11 ([11, p. 40]). Let A be a comonoid in an entropic variety V.
Let 1 be the free V-algebra on {x}. Then an element a of A is said to be setlike
if ∆: a 7→ a⊗ a and aε = x.

Remark 3.12. The term “grouplike” is also used (compare [5, p. 8]).

The following results about setlike elements serve as a foil for the main
results concerning primitive elements in §4 below (compare §4.5). The current
results are well-known when the entropic variety V is the variety K of unital
modules over a commutative, unital ring K, but their proof does warrant some
care in the general universal-algebraic situation.

Proposition 3.13. Let A1 be the set of setlike elements of a bi-algebra A in

an entropic variety V, with unit η : 1 → A;x 7→ 1. Then A1 is closed under

the multiplication · given by

A1 ×A1 → A1; (a, b) 7→ (a⊗ b)∇ ,

and (A1, ·, 1) forms a monoid.

Proof. Consider setlike elements a, b of A. Then by the commuting of the lower
pentagon in (3.3), one has

(a · b)∆ = (a⊗ b)∇∆ = (a⊗ b)(∆⊗∆)(1A ⊗ τ ⊗ 1A)(∇⊗∇)

=
(

(a⊗ a)⊗ (b⊗ b)
)

(1A ⊗ τ ⊗ 1A)(∇⊗∇)

=
(

(a⊗ b)⊗ (a⊗ b)
)

(∇⊗∇) = (a · b)⊗ (a · b) .

Furthermore, one has (a · b)ε = (a ⊗ b)∇ε = (aε ⊗ bε)∇ = (x ⊗ x)∇ = x by
Proposition 2.8(b) and the commuting of the top left quadrangle of (3.3), so
(A1, ·) is a semigroup.

Proposition 2.8(b) and the commuting of the top right quadrangle of (3.3)
yield 1∆ = xη∆ = x∆(η ⊗ η) = (x ⊗ x)(η ⊗ η) = xη ⊗ xη = 1 ⊗ 1, while the
commuting of the top central triangle of (3.3) gives 1ε = xηε = x, so (A1, ·, 1)
becomes a monoid. �

Corollary 3.14. If A is a Hopf algebra in V, then (A1, ·, 1) is a group, with

inversion given by the antipode S.

Proof. Let a be a setlike element of A. By Proposition 3.6, one has

aS∆τ = a∆(S ⊗ S) = (a⊗ a)(S ⊗ S) = aS ⊗ aS .

Thus aS∆ = aS ⊗ aS. Again by Proposition 3.6, one has aSε = aε = 1, so
aS ∈ A1. The commuting of (3.4) shows that aS · a = a∆(S ⊗ 1A)∇ = aεη =
xη = 1, and similarly a · aS = a∆(1A ⊗ S)∇ = 1, so the element a is invertible
in (A1, ·, 1), with inverse aS. �
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4. Primitive elements of comonoids in Jónsson-Tarski varieties

4.1. Jónsson-Tarski varieties

A variety of universal algebras is a Jónsson-Tarski variety if there is a derived
binary operation + and nullary operation (constant) selecting a subalgebra {0}
such that the identities

0 + x = x = x+ 0

hold [2, 8]. In this section, the Jónsson-Tarski varieties under consideration are
entropic.

Example 4.1. (a) If K is a commutative, unital ring, then the variety K of
unital modules over K is an entropic Jónsson-Tarski variety, with the usual
interpretation of + and 0.

(b) The variety of commutative monoids (N,+, 0) forms an entropic Jónsson-
Tarski variety.

(c) The variety of lower-bounded join semilattices forms an entropic Jónsson-
Tarski variety. Tensor products in this variety, there denoted by S0, were
studied in [1, §6].

Example 4.1(b) is typical of entropic Jónsson-Tarski varieties, in the sense
of the following (well-known) argument.

Lemma 4.2. Let A be an algebra in an entropic Jónsson-Tarski variety V.

Then (A,+, 0) is a commutative monoid.

Proof. By entropicity, the identity

(x+ y) + (z + t) = (x+ z) + (y + t)

holds in A. Setting y = 0 gives the associativity of (A,+, 0), while setting
x = t = 0 gives the commutativity. �

4.2. Invertibility

For an algebra A in an entropic Jónsson-Tarski variety V, the question of
invertibility of elements of the commutative monoid (A,+, 0) of Lemma 4.2
is a fundamental issue, for example in connection with the Lie structure in-
troduced below. Of course, this question is trivial in the classical context
of Example 4.1(a). If u is an invertible element of the commutative monoid
(A,+, 0), with inverse v, then the expression a − u for a general element a of
A will denote a+ v in A.

Lemma 4.3. Let A be an algebra in an entropic Jónsson-Tarski variety V.

(a) Suppose that u is an invertible element of (A,+, 0). Then for each

element a of A, the tensor rank 1 element u ⊗ a is invertible in (A ⊗
A,+, 0).

(b) Suppose that (A,∇, η) is a monoid in V. Let u be an invertible element

of (A⊗A,+, 0). Then u∇ is invertible in (A,+, 0).



JÓNSSON-TARSKI HOPF ALGEBRAS 1597

Proof. (a) If u + v = 0 in A, then u ⊗ a+ v ⊗ a = (u + v) ⊗ a = 0 ⊗ a = 0 in
A⊗A.

(b) If u+ v = 0 in A⊗A, then u∇+ v∇ = (u+ v)∇ = 0∇ = 0 in A. �

4.3. Primitive elements

Lemma 4.4. Let A be an algebra in an entropic Jónsson-Tarski variety V.

Let 1 be the free V-algebra on {x}. Suppose that η : 1 → A;x 7→ 1 is a V-

homomorphism. Then the map

∆: A → A⊗A; a 7→ a⊗ 1 + 1⊗ a

is a V-homomorphism.

Proof. Consider an n-ary operator ω in the type of V, and elements a1, . . . , an
of A. Then

a1 · · · anω∆ = a1 · · · anω ⊗ 1 + 1⊗ a1 · · · anω

= [(a1 ⊗ 1) · · · (an ⊗ 1)ω] + [(1⊗ a1) · · · (1⊗ an)ω]

= [(a1 ⊗ 1) + (1⊗ a1)] · · · [(an ⊗ 1) + (1⊗ an)]ω

= a1∆ · · ·an∆ω

as required, the penultimate equality holding by entropicity. �

Definition 4.5. Let A be a comonoid in an entropic Jónsson-Tarski variety V.
Let 1 be the free V-algebra on {x}, and let η : 1 → A;x 7→ 1 be a V-morphism.
Then an element a of A is said to be primitive if ∆: a 7→ a ⊗ 1 + 1 ⊗ a and
aε = 0.

Remark 4.6. The secondary condition aε = 0 in Definition 4.5 follows directly
from the primary condition a∆ = a ⊗ 1 + 1 ⊗ a when the monoid (A,+, 0) of
Lemma 4.2 is an abelian group (cf. [3, Prop. III.2.6]).

The following result may be viewed as an analogue of Proposition 3.13.

Proposition 4.7. Let A be a comonoid in an entropic Jónsson-Tarski vari-

ety V. Let 1 be the free V-algebra on {x}, and let η : 1 → A;x 7→ 1 be a

V-morphism. Let A0 be the set of primitive elements of A. Then A0 is a

subalgebra of A, and in particular a submonoid of (A,+, 0).

Proof. Consider an n-ary operation ω of V, and primitive elements a1, . . . , an
of A. Since the comultiplication ∆ is a V-homomorphism, one has

a1 · · · anω∆ = a1∆ · · ·an∆ω

= [(a1 ⊗ 1) + (1⊗ a1)] · · · [(an ⊗ 1) + (1⊗ an)]ω

= [(a1 ⊗ 1) · · · (an ⊗ 1)ω] + [(1⊗ a1) · · · (1⊗ an)ω]

= a1 · · · anω ⊗ 1 + 1⊗ a1 · · · anω .

Also, since the counit ε is a V-homomorphism, one has

a1 · · · anωε = a1ε · · · anεω = 0 · · · 0ω = 0,
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so a1 · · · anω is primitive. Finally, 0∆ = 0 = 0 + 0 = 0⊗ 1 + 1⊗ 0 and 0ε = 0,
so 0 is primitive. �

Corollary 4.8. Suppose that A is a bi-algebra in V. Suppose that a and b

are primitive elements of A, such that (a⊗ b)∇ and (b⊗ a)∇ are invertible in

(A,+, 0). Then the Lie bracket

(4.1) [a, b] = (a⊗ b)∇− (b⊗ a)∇

is a primitive element of the comonoid reduct (A,∆, ε), and an invertible ele-

ment of the monoid (A,+, 0).

Proof. First, note that [a, b] is invertible in (A,+, 0), with inverse [b, a]. The
comultiplication ∆ is a ∇-homomorphism, and the multiplication ∇ is a V-
homomorphism, so

(a⊗ b)∇∆ = (a∆⊗ b∆)∇

=
(

(a⊗ 1 + 1⊗ a)⊗ (b⊗ 1 + 1⊗ b)
)

∇

=
(

a⊗ 1⊗ b⊗ 1 + a⊗ 1⊗ 1⊗ b+ 1⊗ a⊗ b⊗ 1 + 1⊗ a⊗ 1⊗ b
)

∇

= (a⊗ b)∇⊗ 1 + a⊗ b+ b ⊗ a+ 1⊗ (a⊗ b)∇ .

Now since (a ⊗ b)∇ is invertible in (A,+, 0), Lemma 4.3(a) implies that the
elements (a⊗ b)∇⊗ 1 and 1⊗ (a⊗ b)∇ are invertible in (A⊗A,+, 0). Thus

(a⊗ b)∇∆− (a⊗ b)∇⊗ 1− 1⊗ (a⊗ b)∇

= a⊗ b+ b⊗ a

= (b⊗ a)∇∆− (b ⊗ a)∇⊗ 1− 1⊗ (b ⊗ a)∇ ,

the latter equality following as above. Since ∆ is a V-homomorphism, one
obtains

[a, b]∆ =
(

(a⊗ b)∇− (b⊗ a)∇
)

∆

= (a⊗ b)∇∆− (b ⊗ a)∇∆

= (a⊗ b)∇⊗ 1− (b⊗ a)∇⊗ 1 + 1⊗ (a⊗ b)∇− 1⊗ (b ⊗ a)∇

= [a, b]⊗ 1 + 1⊗ [a, b] .

Finally, since the counit ε is simultaneously both a V-homomorphism and a
∇-homomorphism, one has

[a, b]ε =
(

(a⊗ b)∇− (b⊗ a)∇
)

ε

= (a⊗ b)∇ε− (b⊗ a)∇ε

= (aε⊗ bε)∇− (bε⊗ aε)∇ = 0 ,

so [a, b] is primitive. �
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4.4. Lie algebras in Hopf algebras

The following result may be viewed as an analogue of Corollary 3.14.

Theorem 4.9. If A is a Hopf algebra in a Jónsson-Tarski variety V, the

primitive elements form a Lie algebra
(

A0,+, [ , ]
)

in V, with inversion given

by the antipode S, and with the Lie bracket (4.1).

Proof. Proposition 4.7 shows that A0 forms an algebra in V. Consider a prim-
itive element a of A. By Proposition 3.6, one has

aS∆τ = a∆(S ⊗ S)

= (a⊗ 1 + 1⊗ a)(S ⊗ S)

= aS ⊗ 1S + 1S ⊗ aS = aS ⊗ 1 + 1⊗ aS ,

the last equality holding by Corollary 3.14. Thus aS∆ = aS ⊗ 1 + 1 ⊗ aS.
Again by Proposition 3.6, one has aSε = aε = 0, so aS ∈ A0.

Now consider the antipode diagram (3.4) for the Hopf algebra A in V. Chase
the element a around the top pentagon, again recalling that 1S = 1:

a⊗ 1 + 1⊗ a
✤ S⊗1A // aS ⊗ 1 + 1⊗ a

✝

∇

""❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋

a
✤

ε
//

❇

∆

AA✂✂✂✂✂✂✂✂✂✂✂✂✂✂✂✂
0
✤

η
// 0 = aS + a

One obtains aS+a = 0: Each element a of A0 is invertible in the commutative
monoid (A0,+, 0).

Lemma 4.3(a) now shows that for primitive elements a and b, the elements
a ⊗ b and b ⊗ a are invertible in (A ⊗ A,+, 0). By Lemma 4.3(b), it follows
that (a ⊗ b)∇ and (b ⊗ a)∇ are invertible in (A,+, 0). By Corollary 4.8, the
Lie bracket [a, b] of (4.1) is a well-defined element of A0, with [b, a] = −[a, b].

For elements a1, a2, a3 of A0, and {i, j, k} = {1, 2, 3}, Lemma 4.3 shows that
all the elements ((ai⊗aj)∇⊗ak)∇ and (ai⊗ (aj ⊗ak)∇)∇ of A are invertible.
Verification of the Jacobi identity in

(

A0,+, [ , ]
)

then becomes routine. �

4.5. Setlike and primitive elements

For summary and comparison, the following table juxtaposes the properties
of setlike elements a in a comonoid (A,∆, ε) in a general entropic variety V,
and primitive elements a in a comonoid (A,∆, ε) in a Jónsson-Tarski variety
V.
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Setlike (all V, with xη = 1) Primitive (Jónsson-Tarski V, with xη = 1)

a∆ = a⊗ a and aε = x a∆ = a⊗ 1 + 1⊗ a and aε = 0

set A1 of setlikes set A0 of primitives

Prop. 3.13: monoid (A1, ·, 1) Prop. 4.7: commutative monoid (A0,+, 0)

Cor. 3.14: group (A1, ·, 1) in Hopf Th. 4.9: Lie algebra
(

A0,+, [ , ]
)

in Hopf

5. Tensor algebras

Let V be an entropic variety, construed as a category. There is a forgetful
functor to V from the category of monoids in V and their homomorphisms.
This forgetful functor has a left adjoint, which builds the free monoid in V over
a given V-algebra.

Definition 5.1. Let A be an algebra in an entropic varietyV. Then the tensor
algebra AT over A is the free monoid in V over A.

5.1. Tensor powers

For an algebra A in an entropic variety V with free algebra 1 on {x}, define
the successive tensor powers

A(0) = 1 and A(n+1) = A(n) ⊗A

for natural numbers n. Recall that the category V is cocomplete [10, §IV.2.2].
Then the tensor algebra is constructed as the coproduct

(5.1) AT =
∐

n∈N

A(n)

of the tensor powers with

∇ : (a1 ⊗ · · · ⊗ ak)⊗ (ak+1 ⊗ · · · ⊗ ak+l) 7→ a1 ⊗ · · · ⊗ ak ⊗ ak+1 ⊗ · · · ⊗ ak+l

and unit η inserting A(0) = 1 into the coproduct (5.1). In [1, p. 80], the tensor
algebra AT was described as the “free monoid generated by A”.

5.2. The tensor bi-algebra

Theorem 5.2. Suppose that A is an algebra in an entropic Jónsson-Tarski

variety V. Then the tensor algebra AT over A carries a uniquely defined bi-

algebra structure in which each element of A is primitive.

Proof. By Lemma 3.9, the comultiplication of a bi-algebra structure on AT

would be a monoid homomorphism with domain AT . Since the tensor algebra
AT is the free monoid in V over A, the desired comultiplication on AT is
uniquely specified as a monoid homomorphism by whatever V-homomorphic
effect it is declared to have on the generating algebra A. By Lemma 4.4, the
map

∆: A → A⊗A; a 7→ a⊗ 1 + 1⊗ a
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is a V-homomorphism. Thus the comultiplication on AT is uniquely defined
by declaring the elements of A to be primitive.

The desired counit on AT is similarly specified as a monoid homomorphism
by whatever V-homomorphic effect it is declared to have on the generating
algebra A. Observe that the map ε : A → 1; a 7→ 0 is a V-homomorphism,
since {0} is a subalgebra of 1. Then the counit on AT is also defined by
declaring the elements of A to be primitive.

By Corollary 3.10, it now remains to show that AT is a comonoid with the
given comultiplication and counit, i.e., that the coalgebra diagrams (3.2) for
AT commute. By the freeness of AT over A, it suffices to chase elements of A
around these diagrams. One obtains

a⊗ 1⊗ 1 + 1⊗ a⊗ 1 + 1⊗ 1⊗ a a⊗ 1 + 1⊗ a
✤1A⊗∆oo

a⊗ 1 + 1⊗ a
❴

∆⊗1A

OO

a
❴
∆

OO

✤
∆

oo

for the coassociativity, and

a⊗ 1 + 1⊗ a
✤ 1A⊗ε //

❴

ε⊗1A

��

a⊗ 1

1⊗ a a✍

∆

ff◆◆◆◆◆◆◆◆◆◆◆◆✤
λ−1

A

oo ❴
ρ−1

A

OO

for the counitality. �

5.3. Tensor algebras as Hopf algebras

Corollary 5.3. If the commutative monoid (A,+, 0) is an abelian group, then

the bi-algebra AT is a Hopf algebra in V.

Proof. Define S : a1 ⊗ · · · ⊗ ak 7→ (−1)kak ⊗ · · · ⊗ a1. The standard proof that
AT is a Hopf algebra when V = K for a commutative, unital ring K carries
over to the general case. �

Corollary 5.4. If AT is a Hopf algebra in V, then the commutative monoid

(A,+, 0) is cancellative.

Proof. By Theorem 4.9, the set AT0 of primitive elements of AT forms an
abelian group (AT0,+, 0). Since the elements of A are primitive elements of AT ,
the commutative monoid (A,+, 0) is a submonoid of the group (AT0,+, 0). �

Problem 5.5. In the context of Corollary 5.4, under what conditions is
(A,+, 0) an abelian group?
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6. Quantum couples in entropic Jónsson-Tarski varieties

The goal of this section is Theorem 6.1, giving a construction of group quan-
tum couple Hopf algebras within a general entropic Jónsson-Tarski variety.
These algebras embrace quantum doubles (compare [13]), group algebras, and
dual group algebras, among others. We begin by establishing two preliminary
conventions.

6.1. Sigma notation

In an entropic Jónsson-Tarski algebra A, use

∑

a∈Ø

a = 0 and
∑

a∈X∪{b}

a =

(

∑

a∈X

a

)

+ b

for a recursive definition of
∑

a∈Y a in A over finite subsets Y of A. Compare
[2, Defn. 1.2(ii)].

6.2. Automorphic action

Consider a group G. Suppose that h is an element of a group H that acts
automorphically (but not necessarily faithfully) on G. For h ∈ H , write the
action of h on G as

h : G → G; g 7→ gh .

Thus (fg)h = fhgh for f, g ∈ G. Then write g−h for (g−1)h (or equivalently,
for (gh)−1).

6.3. The quantum couple

For a finite group G, and a group H that acts automorphically (but not
necessarily faithfully) on G, the Hopf algebra D that is constructed in the
following theorem is known as the quantum couple of H and G. If H is not
commutative, then D is not commutative. If G is not commutative, then D is
not cocommutative.

Theorem 6.1. Let V be an entropic Jónsson-Tarski variety. Let G be a finite

group with identity element e. Let GV be the free V-algebra over the set G.

Let H be a (not necessarily finite) group with identity element i. Suppose that

H acts automorphically (but not necessarily faithfully) on G. Let HV be the

free V-algebra over the set H. Write D = HV ⊗GV , and write h|g for h⊗ g

with elements g of G and h of H. Define a multiplication ∇ : D ×D → D by

(6.1) (h|f ⊗ k|g)∇ =

{

hk|g if fk = g;

0 otherwise

for f, g ∈ G and h, k ∈ H. Define a unit η : 1 → D;x 7→
∑

g∈G i|g. Define

S : D → D;h|g 7→ h−1|g−h−1
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as the antipode. Define a comultiplication

∆: D → D ⊗D;h|g 7→
∑

gLgR=g

h|gL ⊗ h|gR .

Define a counit ε : D → 1 by

(6.2) (h|g)ε =

{

x if g = e,

0 otherwise.

Then (D,∇, η,∆, ε, S) is a Hopf algebra in V.

Proof. The multiplication is associative, since both (∇ ⊗ 1)∇ and (1 ⊗ ∇)∇

map h1|f1 ⊗ h2|f2 ⊗ h3|f3 to h1h2h3|f3 if fh2

1 = f2 and fh3

2 = f3, and to 0

otherwise. (Note that fh2h3

1 = f3 if and only if fh2

1 = f2, when fh3

2 = f3.)
Also,

(h|f)(xη)∇ = (h|f)⊗





∑

g∈G

i|g



∇ =
∑

g∈G

(h|f)⊗ (i|g)∇ = h|f

=
∑

g∈G

(i|g)⊗ (h|f)∇ =





∑

g∈G

i|g



⊗ (h|f)∇ = (xη)(h|f)∇

verifies the unit laws. Thus (D,∇, η) is a monoid in V.
Consider an element h|g of D, and verifying the coassociativity at h|g. One

has

(h|g)∆(∆ ⊗ 1) =
∑

gLgR=g





∑

gLLgLR=gL

h|gLL ⊗ h|gLR ⊗ h|gR





and

(h|g)∆(1⊗∆) =
∑

gLgR=g





∑

gRLgRR=gR

h|gL ⊗ h|gRL ⊗ h|gRR



 .

Both of these sums equal
∑

g1g2g3=g

h|g1 ⊗ h|g2 ⊗ h|g3 ,

completing the verification. For counitality, one has

(h|g)∆(ε⊗ 1) =
∑

gLgR=g

(h|gL)ε⊗ h|gR = x⊗ h|g = (h|g)λ−1
D

and

(h|g)∆(1 ⊗ ε) =
∑

gLgR=g

h|gL ⊗ (h|gR)ε = (h|g)⊗ x = (h|g)ρ−1
D

as required. Thus (D,∆, ε) is a comonoid in V.
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For the antipode diagram (3.3), there are two separate cases to consider.
Chasing an element h|e (for h ∈ H) around the upper pentagon, one has

∑

gLgR=e h|g
L ⊗ h|gR ✤ S⊗1GV //∑

gLgR=e h
−1|(gL)−h−1

⊗ h|gR
❴

∇

��
h|e

✤
ε

//
❴

∆

OO

x
✤

η
//∑

gR∈G i|gR

since (gL)−1 = gR if and only if gLgR = e. Chasing an element h|g with
e 6= g ∈ G around the upper pentagon, one has

∑

gLgR=g h|g
L ⊗ h|gR

✤ S⊗1GV //∑
gLgR=g h

−1|(gL)−h−1

⊗ h|gR
❴

∇

��
h|g

✤
ε

//
❴

∆

OO

0
✤

η
// 0

since (gL)−1 6= gR if gLgR = g 6= e. The commuting of the lower pentagon is
similar.

It remains to be shown that (D,∇, η,∆, ε, S) is a bi-algebra. To this end, it
is convenient to abbreviate the multiplication definition (6.1) as (h|f⊗k|g)∇ =
δfkghk|g, and the counit definition (6.2) as (h|g)ε = δgex, using the Kronecker
delta. Now consider the bi-algebra diagram (3.3). For the commuting of the
lower pentagon, one has

h|f ⊗ k|g
❴

∆⊗∆

��

✤ ∇ // δfkghk|g
✤ ∆ // δfkghk|g

L ⊗ hk|gR

h|fL ⊗ h|fR ⊗ k|gL ⊗ k|gR ✤
1A⊗τ⊗1A

// h|fL ⊗ k|gL ⊗ h|fR ⊗ k|gR
❴
∇⊗∇

OO

for g ∈ G and h ∈ H , as required. Note the use of the abbreviated Sweedler
notation here, e.g. k|gL⊗ k|gR in place of

∑

gLgR=g k|g
L⊗ k|gR. Furthermore,

note that fk = g and fLfR = f imply fLkfRk = fk, so fLk = gL and
fRk = gR with gLgR = g.

For the commuting of the top right quadrangle in (3.3), one has

xη∆ =
∑

g∈G

i|g∆ =
∑

g∈G

∑

gLgR=g

i|gL ⊗ i|gR =
∑

f,g∈G

i|f ⊗ i|g

=
∑

f∈G

i|f ⊗
∑

g∈G

i|g = (x ⊗ x)(η ⊗ η) = x∆(η ⊗ η) ,
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as required. For the commuting of the top left quadrangle in (3.3), one has

δfeδge(x⊗ x)
✤ ∇ // δfeδgex = δfkgδgex

h|f ⊗ k|g ✤
∇

//
❴

ε⊗ε

OO

δfkghk|g
❴
ε

OO

for f, g ∈ G and h, k ∈ H , while for the commuting of the top middle triangle
in (3.3), one has xηε =

∑

g∈G(i|g)ε =
∑

g∈G δgex = x. �

6.4. Special cases

IfV is the variety of vector spaces over a field, the quantum couple specializes
to various well-known Hopf algebras.

Example 6.2. If the group G in Theorem 6.1 is trivial, the quantum couple
D specializes to the group algebra of the group H (compare [5, Ex. 1.6]).

Example 6.3. If the automorphism group H in Theorem 6.1 is trivial, the
quantum couple D specializes to the dual group algebra of the finite group G

(compare [5, Ex. 2.1]).

Example 6.4. If the automorphism groupH in Theorem 6.1 is the finite group
G acting on itself by conjugation, then the quantum couple D specializes to
the quantum double of the group G (compare [13]).

Thus the quantum couple construction serves to implement versions of these
algebras in a general entropic Jónsson-Tarski variety.
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