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Abstract. The paper counts the number of reduced quasigroup words of a

particular length in a certain number of generators. Taking account of the
relationship with the Catalan numbers, counting words in a free magma, we

introduce the term peri-Catalan number for the free quasigroup word counts.

The main result of the paper is an exact recursive formula for the peri-Catalan
numbers, structured by the Euclidean Algorithm.

The Euclidean Algorithm structure does not readily lend itself to standard

techniques of asymptotic analysis. However, conjectures for the asymptotic
behavior of the peri-Catalan numbers, substantiated by numerical data, are

presented. A remarkable aspect of the observed asymptotic behavior is the

so-called asymptotic irrelevance of quasigroup identities, whereby cancelation
resulting from quasigroup identities has a negligible effect on the asymptotic

behavior of the peri-Catalan numbers for long words in a large number of
generators.

1. Introduction

In the free magma on one generator x, the number of words of length n (i.e.,
with n occurrences of the letter x) is given by the Catalan number Cn (in the
natural leaf-counting indexation of [8, Rem. 5.5]). More generally, the number
of words of length n in the free magma on s generators is given as snCn. Now
consider the free quasigroup on s generators. The word problem was solved by
Evans in a notable paper which gave one of the earliest applications of confluence
(the “Diamond Lemma”) in rewriting systems [1] [2, §I.3]. We now quantify Evans’
normal form theorem by asking for the number of reduced words of length n, which
we define as the peri-Catalan number P sn (§4.1). In the language of geometric group
theory, we are interested in the growth rate of a free quasigroup (compare [4]).

In our terminology, the Greek qualifier περι has the sense of “around” (as in
“perimeter”), in reference to the fact that the free quasigroup sits around the free
magma. The close relationship between the Catalan numbers and the peri-Catalan
numbers is reinforced by our conjectured formula

(1.1) lim
n→∞

logP sn
logCn + n log 3s− log 3

' 1− 0.019 . . .

s− log
(
(1 +

√
5)/2

)
for the asymptotic behavior of the peri-Catalan numbers. We do not have an
interpretation for the numerical constant 0.019 . . . appearing in the numerator of
the fraction on the right hand side of (1.1).

The main result of the paper is the recursive formula (4.15) for the peri-Catalan
numbers P sn. The formula is structured around the Euclidean Algorithm. More
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specifically, for each partition n = (n − k) + k of length two, with n − k ≥ k,
and for each call to the Division Algorithm within the Euclidean Algorithm for
computing gcd(n, k), there is a corresponding summand in the recursion formula.
The appearance of the golden ratio in the conjectured formula (1.1) may be related
to the fact that the Fibonacci numbers provide the worst cases for runs of the
Euclidean Algorithm [7, §4.5.3, Th. F].

Section 2 gives the background definitions for equationally-defined quasigroups,
as algebras (Q, ·, /, \) with basic operations of multiplication ·, right division /, and
left division \ that satisfy identities such as x · (x\y) = y. This identity corresponds
to one of the Latin square properties for the body of the multiplication table of
a finite quasigroup, specifically that each element y appears in the row labeled
by x, namely in the column labeled by x\y [14, Defn. 11.6(a)]. Thus x · (x\y)
is not reduced as a quasigroup word of length 3, and will not contribute to the
peri-Catalan number P 2

3 .
Section 3 recalls the triality symmetry (S3-action) of the language of quasigroups.

The recursion formula for P sn is based on an inductive process creating a quasigroup
word of length n by applying one of the three basic operations to a pair of reduced
words whose lengths sum to n (§4.2). The triality notation of Section 3 is used
in §4.3 to give an efficient and non-repetitive treatment of the cancelations that
take place in the inductive process. This application of triality is comparable to
its use in the streamlining of the proof of Evans’ normal form theorem [12]. The
Euclidean Algorithm notation (generally following [14, §1.6]) is introduced in §4.4.
The double inductive proof of the main Theorem 4.9 is then given in §4.5.

The recursive formula that is provided by Theorem 4.9 does not appear to be
readily amenable to the standard methods of asymptotic analysis. Nevertheless,
the concluding Section 5 provides some conjectured results based on an alternative
approach. In particular, Conjecture 5.2 suggests the asymptotic behavior (1.1) for
all generator counts s. The so-called asymptotic irrelevance of quasigroup identities
(Conjecture 5.1) asserts that cancelation resulting from quasigroup identities has a
negligible effect on the asymptotic behavior of the peri-Catalan numbers for long
words in a large number of generators.

We use algebraic notation (with functions following, or as superfixes of, their
arguments) as the default. Note that Sr denotes the symmetric group on r letters.

2. Background

2.1. Magmas, rooted binary trees, and Catalan numbers. A magma (M, ·)
is a set equipped with a single binary operation M ×M →M ; (m1,m2) 7→ m1 ·m2.
Elements of free magmas are described as (magma) words. Words in the free magma
on a singleton alphabet {a} are repeated concatenations of the generator a under
the magma operation. Each word w is determined by a rooted binary tree Bw,
defined recursively as follows:

(a) The tree Ba consists of a single node (which is both root and leaf);
(b) For words u, v, the tree Bu·v has a root with Bu as a left child, and Bv as

a right child.

If Bw has n leaves, then the magma word w has length n. Although varying
conventions are encountered, we define the n-th Catalan number Cn as the number
of magma words of length n in the single generator a (compare [8, §5]). Then the
free magma in s generators has snCn words of length n.
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A magma (Q, ·) is a combinatorial quasigroup if knowing any two arguments in
the equation x · y = z uniquely specifies the third argument for all x, y, z ∈ Q.

2.2. Quasigroups. An equational quasigroup (Q, ·, /, \) is a set equipped with
three basic binary operations, multiplication ·, right division /, and left division
\ such that for all x, y ∈ Q, the following identities are satisfied:

(2.1)
(SL) x · (x\y) = y ; (SR) y = (y/x) · x ;
(IL) x\(x · y) = y ; (IR) y = (y · x)/x .

Note that (IL), (IR) give the respective injectivity of the left multiplication

L(x) : Q→ Q; y 7→ xy

and right multiplication
R(x) : Q→ Q; y 7→ yx

for x ∈ Q, while (SL), (SR) give their surjectivity. Thus an equational quasigroup
(Q, ·, /, \) yields a combinatorial quasigroup (Q, ·). Conversely, a combinatorial
quasigroup (Q, ·) yields an equational quasigroup (Q, ·, /, \) with x/y = xR(y)−1

and x\y = yL(x)−1.
In an equational quasigroup (Q, ·, /, \), the three equations

(2.2) x1 · x2 = x3 , x3/x2 = x1 , x1\x3 = x2

involving the basic operations are equivalent. Introducing the opposite operations

x ◦ y = y · x , x//y = y/x , x\\y = y\x
on Q, the equations (2.2) are further equivalent to the equations

x2 ◦ x1 = x3 , x2//x3 = x1 , x3\\x1 = x2 .

Thus each of the basic and opposite operations

(2.3) (Q, ·), (Q, /), (Q, \), (Q, ◦), (Q, //), (Q, \\)
forms a (combinatorial) quasigroup. In particular, note that the identities (IR) in
(Q, \) and (IL) in (Q,/) yield the respective identities

(DL) x/(y\x) = y ,
(DR) y = (x/y)\x

in the basic quasigroup divisions. The six quasigroups (2.3) are known as the
conjugates, “parastrophes” [9] or “derived quasigroups” [6] of (Q, ·).

2.3. Basic words and parsing trees. In the free quasigroup on an alphabet

{a1, a2, . . . , as}
of s letters, (basic) quasigroup words are repeated concatenations of the generators
under the three basic quasigroup operations ·, /, \. Each basic quasigroup word w
is in one-one correspondence with a basic parsing tree Tw, defined recursively as
follows:

(a) For 1 ≤ i ≤ s, the tree Tai is a single vertex annotated by ai;
(b) For basic words u, v, the tree Tu·v has:

(i) a root annotated by the multiplication,
(ii) Tu as a left child, and Tv as a right child;

(c) For basic words u, v, the tree Tu/v has:
(i) a root annotated by the right division,
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(ii) Tu as a left child, and Tv as a right child;
(d) For basic words u, v, the tree Tu\v has:

(i) a root annotated by the left division,
(ii) Tu as a left child, and Tv as a right child.

Remark 2.1. (a) A basic parsing tree stripped of its annotation yields a binary
rooted tree.

(b) If a basic parsing tree Tu has n leaves, then the basic quasigroup word u has
length n, involving n − 1 basic operations determined by the annotations of the
nodes of Tu.

3. Triality

3.1. Triality action of the symmetric group S3. The symmetric group S3 on
the 3-element set {1, 2, 3} is presented as〈

σ, τ
∣∣σ2 = τ2 = (στ)3 = 1

〉
writing σ and τ for the respective transpositions (12) and (23). The Cayley diagram
of the presentation is

(3.1)
1 ⇐⇒ τ ←→ τσ
l m
σ ⇐⇒ στ ←→ στσ

with ↔ for right multiplication by σ and ⇔ for right multiplication by τ .
Now consider the full set

(3.2) {·, \, //, /, \\, ◦}

of all quasigroup operations, both basic and opposite. For current purposes, it will
be convenient to use postfix notation for binary operations, setting x ·y = xy µ and
rewriting the first equation of (2.2) in the form

(3.3) x1x2 µ = x3 .

The full set (3.2) is construed as the homogeneous space

(3.4) µS3 = {µg | g ∈ S3}

for a regular right permutation action of the symmetric group S3, such that (3.3)
is equivalent to

(3.5) x1gx2gµ
g = x3g

for each g in S3. This action is known as triality.a The six binary operations, in
their positions corresponding to the Cayley diagram (3.1), are displayed in Figure 1.

In the figure, the opposite of each operation µg is given by µσg, so passage to the
opposite operation corresponds to left multiplication by the transposition σ in the
symmetric group S3. The three pairs of opposite operations lie in the respective
columns of Figure 1.

aTriality in this sense is not to be confused with the distinct but related notion ultimately
arising from the action of S3 on the Dynkin diagram D4 (compare, say, [5]).
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x · y = xy µ ⇐⇒ x\y = xy µτ ←→ x//y = xy µτσ

l m

x ◦ y = xy µσ ⇐⇒ x\\y = xy µστ ←→ x/y = xy µστσ

Figure 1. Symmetry of the quasigroup operations.

Remark 3.1. A deeper interpretation of Figure 1, and the relationship between the
basic and the opposite quasigroup operations, is provided by the orthant structure
discussed in [13, Ex. 12.1]. The basic operations constitute one set of representatives
for the three doubleton orthants Ω+,+,Ω−,+,Ω+,−, while the opposite operations
are the three remaining elements of the respective orthants.

3.2. Invertible elements of the monoid of binary words. Just as the left
multiplication by σ in the symmetric group S3 has a simple interpretation, so too
does the left multiplication by τ . Let M be the complete set of all derived binary
operations on a quasigroup, the binary operations that are built up by concatenation
from the basic operations [10, p.293]. Together, these operations constitute the free
algebra on two generators x, y in the variety Q of quasigroups. A multiplication ∗
is defined on M by

(3.6) xy(α ∗ β) = xxyαβ .

The right projection xyε = y also furnishes a binary operation ε.

Lemma 3.2. The set M of all derived binary quasigroup operations forms a monoid
(M, ∗, ε) under the multiplication (3.6), with identity element ε.

Proof. Observe that

xy(α ∗ ε) = xxyα ε = xyα and xy(ε ∗ α) = xxyεα = xyα

for α in M , so ε is an identity element. Consider α, β, γ in M . Then

xy
(
(α ∗ β) ∗ γ

)
= xxy(α ∗ β) γ

= xxxyαβγ

= xxyα(β ∗ γ) = xy
(
α ∗ (β ∗ γ)

)
,

confirming the associativity of the multiplication (3.6). �

The significance of the left multiplication by τ then follows.

Proposition 3.3. For each element g of S3, the binary operation µg is a unit of
the monoid M , with inverse µτg.
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Proof. The (IL) identity x\(x ·y) = y becomes xxyµµτ = y or µ∗µτ = ε. Similarly
the (SL) identity x · (x\y) = y becomes xxyµτ µ = x or µτ ∗ µ = ε. This means
that µ and µτ are mutual inverses.

The (IR) identity (y ·x)/x = y is x//(x◦y) = y. This becomes xxyµσ µτσ = y or
µσ ∗µτσ = ε. Similarly (SR), namely (y/x) ·x = y, may be written as x◦(x//y) = y.
This becomes xxyµτσ µσ = y or µτσ∗µσ = ε. Thus µσ and µτσ are mutual inverses.

The (DR) identity (x/y)\x = y is x\\(x/y) = y, which becomes xxyµτστ µστ = y
or µτστ ∗ µστ = ε. Finally, the (DL) identity x/(y\x) = y is x/(x\\y) = y, which
becomes xxyµστ µτστ = y or µστ ∗ µτστ = ε. Thus µστ and µτστ are mutual
inverses. �

Corollary 3.4. The six quasigroup identities (SL), (IL), (SR), (IR), (DL), (DR) of
§2.2 all take the form

(3.7) xxyµτg µg = y

for an element g of S3.

3.3. Full words and parsing trees. As described in §2.3, basic quasigroup words
in the free quasigroup on an alphabet

(3.8) {a1, a2, . . . , as}

of s generators are repeated concatenations of the letters under the three basic
quasigroup operations ·, /, \, and each word w is in one-one correspondence with a
basic parsing tree Tw. It is sometimes convenient to consider an extended notion
of quasigroup words and parsing trees. Thus full quasigroup words on the alphabet
(3.8) are repeated concatenations of the generators under the full set (3.2) of all
quasigroup operations, both basic and opposite. Full quasigroup words are in one-
one correspondence with full parsing trees, which are defined recursively as follows:

(a) For 1 ≤ i ≤ s, the full parsing tree Fai is a single vertex annotated by ai;
(b) For full parsing trees Fu, Fv and a basic or opposite operation µg from the

set (3.4), the tree Fuv µg has:
(i) a base annotated by µg, along with

(ii) Fu as a left child, and Fv as a right child.

The basic parsing trees are precisely the full parsing trees having no node that is
annotated by an opposite operation µσ, µτσ, or µστ (compare Figure 1).

3.4. Nodal equivalence. A basic quasigroup word u of length n determines a
unique basic parsing tree Tu with n− 1 nodes. The basic parsing tree represents a
so-called nodal equivalence class Fu of 2n−1 full parsing trees, sustaining a regular
action of a permutation group (S2)n−1 known as the nodal group of the basic
quasigroup word u. Each S2-factor of this group, indexed by a node of Tu, is
known as the nodal subgroup for that node. At a given node of a full parsing tree
with annotating operation µg, the non-trivial permutation of the nodal subgroup
switches the two children of the node, and changes the node’s annotation to µσg.
It fixes the remainder of the tree.

The action of the nodal group of a basic quasigroup word on the nodal equivalence
class Fu of full parsing trees extends to an action on the set of corresponding full
quasigroup words.
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Example 3.5. Consider the basic quasigroup word (a·b)/c in the alphabet {a, b, c}.
It determines the nodal equivalence class

{Fab µ c µστσ , Fba µσ c µστσ , Fc ab µµτσ , Fc ba µσ µτσ}
of full parsing trees, represented by the basic parsing tree T(a·b)/c = Fab µ c µστσ .
Similarly, the basic quasigroup word (a · b)/c determines the nodal equivalence
class

(3.9) {ab µ c µστσ, ba µσ c µστσ, c ab µµτσ, c ba µσ µτσ}
of full quasigroup words.

The regular action of the nodal group (S2)2 of the basic word (a · b)/c on the set
(3.9) is displayed in the Cayley diagram

ab µ c µστσ ba µσ c µστσ

c ab µµτσ c ba µσ µτσ

where the (involutive) action of the nodal subgroup of the internal node · is given
by single lines, and the (involutive) action of the nodal subgroup of the root / is
given by double lines.

Each basic quasigroup word of length n is nodally equivalent to any member of a
set of 2n−1 full quasigroup words. Conversely, each full quasigroup word is nodally
equivalent to a unique basic quasigroup word, obtained by using nodal equivalence
to replace any one of the opposite operations µσ, µτσ, or µστ by the respective
basic operation µ, µστσ, or µτ (compare Figure 1).

Convention 3.6. In later sections of the paper, the generic terms quasigroup word
and parsing tree may refer to a basic quasigroup word or basic parsing tree, or to
one of its nodally equivalent full quasigroup words or full parsing trees.

3.5. Reduced words and auxiliary bivariates. The following terminology is
motivated by Evans’ observation that the Diamond Lemma holds for quasigroup
words [1] [2, §I.3].

Definition 3.7. (a) A (basic or full) quasigroup word is reduced if it will not reduce
further via the quasigroup identities.

(b) A (basic or full) parsing tree representing a quasigroup word is reduced if its
corresponding quasigroup word is reduced.

Remark 3.8. Note that a basic quasigroup word or parsing tree is reduced if
and only if any of its nodally equivalent full quasigroup words or parsing trees is
reduced.

Definition 3.9. Let s, a and b be positive integers. The auxiliary bivariate ms(a, b)
denotes the number of (a + b)-leaf parsing trees representing reduced quasigroup
words in s arguments, with an a-leaf basic parsing tree on the left branch, a b-leaf
basic parsing tree on the right branch, and a given (basic or opposite) quasigroup
operation at the root vertex.

Remark 3.10. (a) The triality symmetry of the language of quasigroups (Figure 1)
ensures that the auxiliary bivariate ms(a, b) is invariant under any change of the
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choice of quasigroup operation at the root vertex of an (a+ b)-leaf parsing tree of
the type considered in Definition 3.9.

(b) In particular, ms(a, b) = ms(b, a), since the left hand side counting certain trees
with µg at the root corresponds to the right hand side counting certain trees with
the opposite operation µσg at the root.

(c) By convention, whenever one of the arguments s, a, b of an auxiliary bivariate
is nonpositive, the output of the auxiliary bivariate is zero.

4. Counting quasigroup words

4.1. Peri-Catalan Numbers.

Definition 4.1. Let n and s be natural numbers. The n-th s-peri-Catalan number,
denoted P sn, gives the number of reduced basic quasigroup words of length n in the
free quasigroup on an alphabet of s letters.

Since there are no constants in the language of quasigroups, P sn = 0 if n = 0 or
s = 0. Now in our bookkeeping, there are Cn rooted binary trees with n leaves.
Then over an s-element alphabet, each rooted binary tree may be annotated with
any one of the s letters at each of its n leaves, along with any one of the three basic
quasigroup operations at each of its n − 1 nodes (including the root), to yield a
basic parsing tree. Thus the inequality

(4.1) P sn ≤ 3n−1snCn

provides an upper bound on the n-th s-peri-Catalan number. While the upper
bound is exact only for n < 3, its asymptotic significance (the so-called “irrelevance
of quasigroup identities”) will be discussed in Section 5.

Table 1. The first ten peri-Catalan numbers for s = 1, 2, 3.

n P 1
n P 2

n P 3
n

1 1 2 3

2 3 12 27

3 12 120 432

4 87 1,752 9,531

5 666 28,224 233,766

6 5,478 487,464 6,143,094

7 47,322 8,814,312 169,029,666

8 422,145 164,734,560 4,808,015,253

9 3,859,026 3,156,739,080 140,243,036,202

10 35,967,054 61,689,134,928 4,172,008,467,726

4.2. The inductive process. Consider 1 < n ∈ N and 1 ≤ k < n. We may
construct a quasigroup word of length n by adjoining a reduced word of length n−k
to a reduced word of length k, with one of the three basic quasigroup operations as
the connective. By Definition 3.9, the number of reduced words obtained thus will
be ms(n− k, k) for each connective.
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Disregarding reductions, for each 1 ≤ k < n, we construct 3P sn−kP
s
k basic quasi-

group words of length n in this fashion, and thus obtain

(4.2) P sn = 3

n−1∑
k=1

ms(n− k, k) ≤ 3

n−1∑
k=1

P sn−kP
s
k

as an upper bound on the n-th s-peri-Catalan number.
The next section describes the reductions encountered in the inductive process.

There, use of Convention 3.6 is made to invoke full quasigroup word equivalents
of the basic quasigroup words as they are combined, in order to identify possible
cancelations.

4.3. Root vertex cancelations. Let u and v be reduced quasigroup words, of
respective lengths k and n − k, that are connected by a quasigroup operation µg

to form uv µg at a step of the inductive process, as indicated by the outer level of
boxes in Figure 2.

µg
�
�

�
�

length k

u

length n− k

v

length n− 2k

v′

length k

u

µτg
�
�

�
�

Figure 2. Root vertex cancelation

Proposition 4.2. During the assembly of uv µg within the inductive process, with
reduced word u of length k and reduced word v of length n − k, cancelation occurs
if and only if there is a (necessarily reduced) word v′ of length n − 2k such that
v = uv′ µτg.

Proof. The unique cancelations available are of the form uuv′µτg µg = v′ described
in Corollary 3.4. Since the word v = uv′ µτg is reduced, it follows that the subword
v′ is also reduced. �

The cancelation condition in Proposition 4.2 is illustrated by the inner level of
boxes on the right hand side of Figure 2.

Proposition 4.3. Consider 1 < n ∈ N and 1 ≤ k < n.

(a) The number of cancelations incurred during the inductive process when a
word of length k is connected to a word of length n−k by a given operation
µg from the set (3.4) is ms(n− 2k, k). In particular, no cancelation occurs
when n = 2k.
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(b) The formula

(4.3) ms(n− k, k) = P sn−kP
s
k −ms(n− 2k, k)

holds.

Proof. (a) A reduced word u of length k will appear at most once in a reduced word
v of length n − k with µτg in the root vertex. The number of such configurations
(illustrated by the right-hand box in Figure 2) is given by ms(n− 2k, k).

(b) The formula (4.3) results from (a) and Definition 3.9. �

4.4. The Euclidean Algorithm. The next section presents the main recursive
formula for peri-Catalan numbers. The formula is structured around the Euclidean
Algorithm, using notation established in this paragraph following [14, §1.6].

For 1 < n ∈ N and 1 ≤ k ≤ n−1, let rk−1 = n and rk0 = k. Consider the quotients

qkl and remainders rkl for 1 ≤ l ≤ Lk+1 as given below, resulting from calls to the
Division Algorithm in the computation of gcd(n, k) by the Euclidean Algorithm:

rk−1 = qk1r
k
0 + rk1 , . . . , r

k
l−2 = qkl r

k
l−1 + rkl , . . . , r

k
Lk−1 = qkLk+1r

k
Lk

+ rkLk+1 .(4.4)

Here, rkLk+1 = 0 and gcd(n, k) = rkLk . Define quantities εkl for 0 ≤ l ≤ Lk recursively
by

(4.5) εk0 = 1 and εkl+1 = εkl + qkl+1 .

These quantities, along with the quotients qkl and remainders rkl , are used in the
following section.

4.5. The recursive formula for peri-Catalan numbers.

Lemma 4.4. Using the notation rk−1 = n, rk0 = k, rk−1 = qk1r
k
0 + rk1 , and εk0 = 1

from §4.4, the formula

ms(n− k, k) = (−1)q
k
1−1ms(rk0 , r

k
1 ) +

qk1−1∑
jk0=1

(−1)ε
k
0+j

k
0P srk−1−jk0 rk0

P srk0
(4.6)

holds for 1 < n ∈ N and 1 ≤ k ≤ n− 1.

Proof. It will be shown, by induction on i, that

(4.7) ms(n− k, k) = (−1)ims
(
rk0 , r

k
−1 − (i+ 1)rk0

)
+

i∑
jk0=1

(−1)ε
k
0+j

k
0P srk−1−jk0 rk0

P srk0

for 0 ≤ i < qk1 . Note that (4.7) for i = qk1 − 1 yields (4.6). On the other hand, the
base of the induction, namely (4.7) with i = 0, is given by Remark 3.10(b).
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Now suppose that the induction hypothesis (4.7) holds for 0 ≤ i < qk1 − 1. Then

ms(n− k, k) = (−1)ims
(
rk0 , r

k
−1 − (i+ 1)rk0

)
+

i∑
jk0=1

(−1)ε
k
0+j

k
0P srk−1−jk0 rk0

P srk0

= (−1)i
[
P srk−1−(i+1)rk0

P srk0
−ms

(
rk0 , r

k
−1 − (i+ 2)rk0

)]
+

i∑
jk0=1

(−1)ε
k
0+j

k
0P srk−1−jk0 rk0

P srk0

= (−1)i+1ms
(
rk0 , r

k
−1 − (i+ 2)rk0

)
+ (−1)ε

k
0+(i+1)P srk−1−(i+1)rk0

P srk0
+

i∑
jk0=1

(−1)ε
k
0+j

k
0P srk−1−jk0 rk0

P srk0

= (−1)i+1ms
(
rk0 , r

k
−1 − (i+ 2)rk0

)
+

i+1∑
jk0=1

(−1)ε
k
0+j

k
0P srk−1−jk0 rk0

P srk0

by (4.3) and Remark 3.10(b), as required for the induction step. �

Corollary 4.5. The formula

ms(n− k, k) = (−1)ε
k
1ms(rk0 , r

k
1 ) +

qk1−1∑
jk0=1

(−1)ε
k
0+j

k
0P srk−1−jk0 rk0

P srk0
(4.8)

holds for 1 < n ∈ N and 1 ≤ k ≤ n− 1.

Proof. Note that (−1)ε
k
1 = (−1)1+q

k
1 = (−1)q

k
1−1 by (4.5), so (4.8) is a restatement

of (4.6). �

Lemma 4.6. Using the notation of §4.4, suppose that ms(n− k, k) is given by

K(n, k) + (−1)ε
k
lms(rkl−1, r

k
l ) +

l−1∑
i=0

qki+1−1∑
jki =0

(−1)ε
k
i+j

k
i P srki−1−jki rki

P srki
(4.9)

for 1 < n ∈ N, 1 ≤ k ≤ n − 1, and 0 < l ≤ Lk, with an additive term K(n, k).
Then ms(n− k, k) =

K(n, k) + (−1)ε
k
l+1ms(rkl , r

k
l+1) +

l∑
i=0

qki+1−1∑
jki =0

(−1)ε
k
i+j

k
i P srki−1−jki rki

P srki
(4.10)

follows.

Proof. It will be shown, by induction on h, that

ms(n− k, k) = K(n, k) + (−1)ε
k
l +hms

(
rkl , r

k
l−1 − hrkl

)
(4.11)

+

h−1∑
jkl =0

(−1)ε
k
l +j

k
l P srkl−1−j

k
l r
k
l
P srkl

+

l−1∑
i=0

qki+1−1∑
jki =0

(−1)ε
k
i+j

k
i P srki−1−jki rki

P srki
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for 0 ≤ h ≤ qk1+1. Recalling (4.5), note that (4.11) with h = qkl+1 yields the
expression (4.10) for ms(n − k, k). On the other hand, the base of the induction,
namely (4.11) with h = 0, is given by (4.9).

Starting from (4.11) with h < qk1+1, the induction step is given as ms(n−k, k) =

K(n, k) + (−1)ε
k
l +hms

(
rkl , r

k
l−1 − hrkl

)
+

h−1∑
jkl =0

(−1)ε
k
l +j

k
l P srkl−1−j

k
l r
k
l
P srkl

+

l−1∑
i=0

qki+1−1∑
jki =0

(−1)ε
k
i+j

k
i P srki−1−jki rki

P srki

= K(n, k) + (−1)ε
k
l +h
[
P srkl−1−hr

k
l
P srkl
−ms

(
rkl , r

k
l−1 − (h+ 1)rkl

)]
+

h−1∑
jkl+1=0

(−1)ε
k
l +j

k
l P srkl−1−j

k
l r
k
l
P srkl

+

l−1∑
i=0

qki+1−1∑
jki =0

(−1)ε
k
i+j

k
i P srki−1−jki rki

P srki

= K(n, k) + (−1)ε
k
l +(h+1)ms

(
rkl , r

k
l−1 − (h+ 1)rkl

)
+

h∑
jkl =0

(−1)ε
k
l +j

k
l P srkl−1−j

k
l r
k
l
P srkl

+

l−1∑
i=0

qki+1−1∑
jki =0

(−1)ε
k
i+j

k
i P srki−1−jki rki

P srki

by (4.3) and Remark 3.10(b). �

Proposition 4.7. Let 1 < n ∈ N and 1 < k < n. Then ms(n− k, k) is specified by

P srk−1
P srk0

+

Lk∑
i=0

qki+1−1∑
jki =0

(−1)ε
k
i+j

k
i P srki−1−jki rki

P srki
(4.12)

in the notation of §4.4.

Proof. It will be proved, by induction on l, that ms(n− k, k) =

P srk−1
P srk0

+ (−1)ε
k
l+1ms(rkl , r

k
l+1) +

l∑
i=0

qki+1−1∑
jki =0

(−1)ε
k
i+j

k
i P srki−1−jki rki

P srki
(4.13)

holds for 0 ≤ l ≤ Lk. Note that (4.13) is just (4.10) with

K(n, k) = P srk−1
P srk0

= P snP
s
k

as the additive term.
The induction basis is given by (4.8) in Corollary 4.5. The induction step is

given by Lemma 4.6. Then the proposition is given by (4.13) with l = Lk, since
rkLk+1 = 0 and thus ms(rkLk , r

k
Lk+1) = 0. �

Corollary 4.8. Let 1 < n ∈ N and 1 < k < n. Then ms(n− k, k) is specified by

qk1−1∑
jk0=1

(−1)ε
k
0+j

k
0P srk−1−jk0 rk0

P srk0
+

Lk∑
i=1

qki+1−1∑
jki =0

(−1)ε
k
i+j

k
i P srki−1−jki rki

P srki
(4.14)

in the notation of §4.4.
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Proof. Note that P s
rk−1

P s
rk0

cancels the i = 0, jki = 0 summand in the term

Lk∑
i=0

qki+1−1∑
jki =0

(−1)ε
k
i+j

k
i P srki−1−jki rki

P srki

of (4.12) in Proposition 4.7. Thus (4.14) specifies ms(n − k, k) in the same way
that (4.12) does. �

As there are no constants in the language of quasigroups, P s0 = 0. Corollary 4.8
and (4.2) then yield the main result.

Theorem 4.9. For 1 < n ∈ N, the n-th s-peri-Catalan number P sn is given by

(4.15) 3

n−1∑
k=1

{ qk1−1∑
jk0=1

(−1)ε
k
0+j

k
0P srk−1−jk0 rk0

P srk0
+

Lk∑
i=1

qki+1−1∑
jki =0

(−1)ε
k
i+j

k
i P srki−1−jki rki

P srki

}
in the notation of §4.4.

Example 4.10. We compute the fourth 2-peri-Catalan number as follows. For
k = 1, 2, 3, the table

k = 1 k = 2 k = 3
4 = 4 · 1 + 0 4 = 2 · 2 + 0 4 = 1 · 3 + 1

3 = 3 · 1 + 0

displays the relevant runs of the Euclidean Algorithm, yielding L1 = 0, L2 = 0,
and L3 = 1 in the notation of §4.4.

We then compute P 2
4 as

P 2
4 =3

3∑
k=1

{ qk1−1∑
jk0=1

(−1)ε
k
0+j

k
0P srk−1−jk0 rk0

P srk0
+

Lk∑
i=1

qki+1−1∑
jki =0

(−1)ε
k
i+j

k
i P srki−1−jki rki

P srki

}

=3

{ 3∑
j10=1

(−1)1+j
1
0P 2

4−j10
P 2
1 +

1∑
j20=1

(−1)1+j
2
0P 2

4−2j20
P 2
2

+

0∑
j30=1

(−1)1+j
3
0P 2

4−3j31
P 2
3 +

2∑
j31=0

(−1)ε
3
1+j

3
1P 2

3−j31
P 2
1

}

=3

{
(P 2

3P
2
1 − P 2

2P
2
1 + P 2

1P
2
1 ) + P 2

2P
2
2 + (P 2

3P
2
1 − P 2

2P
2
1 + P 2

1P
2
1 )

}
=1, 752

to obtain the value displayed in Table 1.

5. Asymptotic behavior

Theorem 4.9, and in particular the form of the recursive expression (4.15) for
the n-th s-peri-Catalan number P sn, do not readily lend themselves to an analytical
asymptotic estimate comparable with the estimate

Cn ∼
4n√
πn3
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for the Catalan numbers that results from their generating function [3, I.2.4(33)].
Instead, we will sketch out a conjectured alternative approach, and present some
numerical data in its support. The approach depends on the close relationship
between the Catalan numbers and the peri-Catalan numbers.

5.1. Asymptotic irrelevance of quasigroup identities. The foundation of our
approach is the following.

Conjecture 5.1 (Asymptotic irrelevance of quasigroup identities). In the large,
cancelation resulting from the quasigroup identities has a negligible effect on the
asymptotic behavior of the peri-Catalan numbers P sn.

In Conjecture 5.1, the phrase “in the large” refers informally to large values of
s for almost all values of n. Heuristically, referring to Figure 2, cancelation by a
quasigroup identity would require the assignment of the k variables in the first copy
of the word u to match exactly with the assignment of the k variables in the second
copy of u. Such an event should be relatively unlikely when there is a large total
of s variables available.

5.2. The effect of asymptotic irrelevance. We conjecture that

(5.1) lim
s→∞

lim
n→∞

logP sn
logCn + n log 3s− log 3

= 1

under the assumption of asymptotic irrelevance, and in particular, we conjecture
that the indicated limits exist.

Figure 3. Plots of logP sn/
(

logCn + n log 3s− log 3
)

for s = 1, 3, 6, 12.
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As initial evidence, we offer Figure 3, which displays plots of the quotients

(5.2)
logP sn

logCn + n log 3s− log 3

for s = 1, 3, 6, 12, and n ≤ 2800 on the horizontal axis. The curves for the respective
s-values appear in order from the bottom to the top. Based on this evidence,
we conjecture that, for a given value of s, the sequence of terms (5.2) increases
monotonically with n. Now the denominator in (5.2) is the logarithm of the upper
bound from (4.1), the total number of words of length n, on s generators, in the
language of quasigroups. The numerator in (5.2) is the logarithm of P sn, the total
number of reduced words of length n on s generators. Thus the terms (5.2) are
bounded above by 1, and under our conjecture of monotonicity, the inner limit in
(5.1) would exist.

Now again, based on evidence as initially exhibited in Figure 3, and then with
greater detail as in §5.3 below, we conjecture that the sequence of these inner limits
increases with s. The upper bound of 1 still applies, and thus the outer limit in
(5.1) would exist. That this limit is 1 is essentially the content of the conjecture of
asymptotic irrelevance.

While Figure 3 is useful for exhibiting qualitative features, in particular the
monotonicities, it is less useful for gaining quantitative insight. Thus it is worth
mentioning a second numerical experiment, where the values of logP 12

n − logCn,
over intervals of n up to n = 2800, were analyzed in Matlab. Linear regressions of
these values were obtained as 3.576n−1.102 (with very tight error bars). The slope
of the linear regression matches log 36 ' 3.583 to three significant digits, while the
(negated) intercept matches log 3 ' 1.099 to the same accuracy.

5.3. Dependence on the number of generators. We present approximations
to the values of

(5.3) 1− lim
n→∞

logP sn
logCn + n log 3s− log 3

for 1 ≤ s ≤ 100 in Table 2. The entries, which provide a numerical measure for
the effect of cancelation by the quasigroup identities, are presented in the format
“Me-N” standing for M × 10−N . The quotient

logP s2000
logC2000 + 2000 log 3s− log 3

is used as a proxy for the limit. The function of s represented by Table 2 was fitted
to the rational function

0.01929

s− 0.4811
by Matlab, with very tight 95% confidence bounds. On this basis, noting that the
logarithm of the golden ratio is 0.4812, we formulate the following, which subsumes
the unlabeled conjectures of §5.2.

Conjecture 5.2. We have the approximate values

lim
n→∞

logP sn
logCn + n log 3s− log 3

' 1− 0.019 . . .

s− log
(
(1 +

√
5)/2

)
for all generator counts s. In particular, the limit exists.

We do not currently have a conjectured interpretation for the numerator 0.019 . . . .
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Table 2. Decreasing impact of quasigroup identities as s increases

1 ≤ s ≤ 25 26 ≤ s ≤ 50 51 ≤ s ≤ 75 76 ≤ s ≤ 100

370e-4 561e-6 255e-6 161e-6

137e-4 536e-6 250e-6 159e-6

800e-5 514e-6 244e-6 157e-6

551e-5 493e-6 239e-6 154e-6

415e-5 474e-6 234e-6 152e-6

330e-5 456e-6 229e-6 150e-6

272e-5 439e-6 225e-6 148e-6

231e-5 424e-6 220e-6 146e-6

200e-5 409e-6 216e-6 144e-6

176e-5 396e-6 212e-6 142e-6

157e-5 383e-6 208e-6 140e-6

141e-5 371e-6 204e-6 138e-6

128e-5 359e-6 200e-6 136e-6

117e-5 349e-6 197e-6 135e-6

108e-5 340e-6 193e-6 133e-6

997e-6 329e-6 190e-6 131e-6

928e-6 320e-6 186e-6 130e-6

867e-6 311e-6 183e-6 128e-6

813e-6 303e-6 180e-6 126e-6

765e-6 295e-6 177e-6 124e-6

722e-6 288e-6 174e-6 123e-6

683e-6 281e-6 172e-6 122e-6

648e-6 274e-6 169e-6 121e-6

616e-6 268e-6 166e-6 119e-6

587e-6 261e-6 164e-6 118e-6

References

[1] T. Evans, “On multiplicative systems defined by generators and relations I. Normal form
theorems”, Proc. Cambridge Philos. Soc. 47 (1951), 637–649.

[2] T. Evans, “Varieties of loops and quasigroups”, pp. 1–26 in Quasigroups and Loops: Theory

and Applications (O. Chein, H.O. Pflugfelder and J.D.H. Smith, eds.), Heldermann, Berlin,
1990.

[3] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cam-

bridge, 2009.
[4] R.I. Grigorchuk, “Degrees of growth of finitely generated groups and the theory of invariant

means” (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 939–985.
[5] J.I. Hall and G.P. Nagy, “On Moufang 3-nets and groups with triality”, Acta Sci. Math.

(Szeged) 67 (2001), 675–685.

[6] I.M. James, “Quasigroups and topology,” Math. Zeitschr. 84 (1964), 329–342.
[7] D.E. Knuth, The Art of Computer Programming, Vol. 2. Seminumerical Algorithms, 3rd.

ed., Addison-Wesley, Reading, MA, 1998.



ENUMERATION OF QUASIGROUP WORDS 17

[8] L. Long and J.D.H. Smith, “Catalan loops”, Math. Proc. Cambridge Philos. Soc., 149 (2010),

no. 3, 445-453.
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