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Abstract. The dimension (or “minimal base size”) of a finite permutation group action
is defined to be the smallest power of the action that contains a regular orbit. Although
the concept has appeared before in various contexts, the intention of the current paper is
to survey it from a slightly different viewpoint, with particular emphasis on its behaviour
with respect to G-set constructions. Elementary inequalities relate the dimension to the
degree and closure properties of the action. The dimension is also expressed exactly in
terms of the Möbius function of the subgroup lattice of the permutation group. For ge-
ometric permutation actions, the dimension is related to the geometric dimension of the
space being acted on. The behaviour of the dimension is studied with respect to disjoint
unions, Cartesian products, and wreath products of actions. Use of the wreath product
construction exhibits permutation group actions with arbitrary positive integral dimension
and degree-to-dimension ratio.

1. Introduction

Let G be a finite group. A G-set (X,G) or permutation representation of the group G
consists of a set X, together with a (right) action of G on X via a homomorphism

G→ X!; g 7→ (x 7→ xg) (1.1)

from G into the group X! of all permutations of the set X. The cardinality of the set X
is described as the degree deg(X,G) or deg X. A G-set (X,G) may be construed as an
algebra of unary operations on the set X. It is said to be transitive if it is non-empty,
but has no proper non-empty subalgebras. Transitive subalgebras of a G-set (X,G) are
described as its orbits. The set of orbits of (X,G) is denoted by X/G. For each positive
integer r, the direct power (X,G)r of a G-set (X,G) is the direct power Xr with the
diagonal action

g : (x1, . . . , xr) 7→ (x1g, . . . , xrg) (1.2)
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of the elements g of G. The G-set (X,G) is said to be faithful if (1.1) injects. In this case,
one often identifies G with its image under (1.1) and refers to (X,G) as a permutation
action, describing G as a permutation group on the set X.
For a subgroup H of a group G, let H\G = {Hx | x ∈ G} denote the set of right cosets

of H in G. The transitive G-set (H\G,G) is then defined by g : H\G→ H\G;Hx 7→ Hxg
for x, g in G. Each transitive G-set (X,G) is isomorphic to the G-set (StabG(x) \ G,G)
for the stabilizer StabG(x) = {g ∈ G | xg = x} of an element x of X. A transitive G-set
(X,G) is said to be regular if it is isomorphic to the G-set ({1} \G,G).
The concepts of faithfulness and regularity are related: a transitive G-set (X,G) is

faithful if and only if some power of (X,G), strictly less than the degree deg(X,G), contains
a regular orbit (Proposition 2.2). This observation raises the following:

Problem 1.1. [8, Problem 5.3]. Determine the smallest power of a permutation action
that contains a regular orbit.

For transitive actions, Problem 1.1 may be answered in principle (Theorem 3.2) in terms
of the action of the permutation group by conjugation on its lattice of subgroups. Unless
the point stabilizer is relatively small, however (cf. Theorem 4.2), this method is not very
practicable. A more elementary and conceptual approach seems desirable. The current
paper takes such an approach, working with the dimension of a permutation action as
its smallest power containing a regular orbit (Definition 2.3). Section 3 presents some
fundamental inequalities relating the dimension to the degree, permutation group order,
and to closure properties of the permutation group. (Compare also [1, Proposition], [2],
[6].) Section 4 examines the dimensions of cyclic, symmetric, alternating, and dihedral
actions. Particular attention focuses on the relative merits of the inequalities of Section 3
when applied to these cases: The results are summarized in Table 4.1.
Section 5 computes the dimensions of the actions of automorphism groups of finite

linear, affine, and projective geometries, showing how the permutation group dimension
concept tracks the usual geometric dimensions. The final two sections investigate the
behaviour of the permutation group dimension with respect to three permutation group
constructions: disjoint unions, Cartesian products, and wreath products. As an application
of the wreath product construction, Corollary 7.4 shows how to design a permutation action
with an arbitrary dimension and an arbitrary (integral) ratio of degree to dimension. In
particular, correcting a misleading impression that one might gain from Table 4.1, it yields
a series of permutation actions for which the inequality (3.2) is increasingly ineffective.

2. The dimension

In order to facilitate consideration of the dimension concept, it is convenient to list some
conditions equivalent to regularity and faithfulness of G-sets for a finite group G.

Proposition 2.1. Let (X,G) be a transitive G-set. Then the following conditions are
equivalent:

(a) (X,G) is regular;
(b) ∀x ∈ X, ∀g ∈ G, xg = x⇒ g = 1;
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(c) ∃x ∈ X. ∀1 6= g ∈ G, xg 6= x;
(d) deg X = |G|. �

It is interesting to contrast (c) of Proposition 2.1 with (b) of Proposition 2.2 below. The
distinction between regularity and faithfulness reduces to a question of the order of quan-
tifiers, analogous to the distinction between continuity and uniform continuity.

Proposition 2.2. Let (X,G) be a non-empty G-set. Then the following conditions are
equivalent:

(a) (X,G) is faithful;
(b) ∀1 6= g ∈ G, ∃x ∈ X. xg 6= x;
(c) ∃r < deg X. (X,G)r contains a regular orbit.

Proof. The equivalence of (a) and (b) is immediate. Now if (b) does not hold, there is a non-
identity element g of G such that xg = x for all x in X. But then no element (x1, . . . , xr)
of any power (X,G)r could lie in a regular orbit, since the equation (x1, . . . , xr)g =
(x1, . . . , xr) would contradict (b) of Proposition 2.1. Conversely, suppose that (X,G)
is faithful. Consider r = deg X − 1 and (x1, . . . , xr) ∈ (X,G)r with |{x1, . . . , xr}| = r.
Suppose (x1, . . . , xr)g = (x1, . . . , xr) for g in G. Then x1g = x1, . . . , xrg = xr by (1.2).
Moreover, for the unique element x of the complement of {x1, . . . , xr} in X, one has
xg /∈ {x1, . . . , xr}, whence xg = x. Thus g = 1. Proposition 2.1 (c) then shows that
(x1, . . . , xr) lies in a regular orbit of (X,G)

r. �

Proposition 2.2 shows that some power of a permutation action contains a regular orbit.
The dimension of the action is defined to be the least such power.

Definition 2.3. Let (X,G) be a (finite) permutation action, i.e. a finite, faithful G-set
X. Then the dimension dim X or dim(X,G) is defined to be the least power r for which
(X,G)r contains a regular orbit. An element (x1, . . . , xs) of a regular orbit, and the set
{x1, . . . , xs} of components of such an element, are said to span the action (X,G).

Note that the concept of spanning is well-defined: If (x1, . . . , xs) lies in a regular orbit, and
{x1, . . . , xs} = {y1, . . . , yt}, then (y1, . . . , yt) also lies in a regular orbit. Following Sims
[7, §2] (cf. eg., [6, §3], [2, §1]), the term “base” has been used for “spanning set”, and the
term “(minimal) base size” for “dimension”. The usage proposed in Definition 2.3 is closer
to that customary in linear algebra (cf. Theorem 5.1 below).

3. Equalities and inequalities

This section records various equalities and inequalities to which the dimension dim X of
a finite, faithful action (X,G) is subject. Firstly, note that Proposition 2.2(c) yields the
Diversity Inequality

dim X < deg X. (3.1)
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On the other hand, Proposition 2.1(d) yields the Cardinality Inequality

dim X ≥ logdeg X |G|, (3.2)

since Xdim X contains the |G| elements of a regular orbit.
Recall that the k-closure of a permutation group G on a set X is the automorphism

group Aut(X,Xk/G) of the relational structure on X given by the orbits of (X,G)k [11,
Def. 5.3]. The dimension of the permutation action (X,G) is then related to the closure
properties of G as follows.

Theorem 3.1. For a finite, faithful G-set (X,G),

1 + dim(X,G) ≥ min{k | G = Aut(X,Xk/G)}. (3.3)

Proof. Let r = dimX, and let (x1, . . . , xr) lie in a regular orbit of (X,G)
r. Then

StabG ((x1, . . . , xr)) = {1}. By [11, Th. 5.12], it follows that G = Aut (X,Xr+1/G).
�

The inequality (3.3) is known as the Closure Inequality.

Now let (X,G) be a faithful, finite transitive action. Let H be the stabilizer of an element
of X. Under the uniform probability distribution on G, let

P(Kg ≤ H) (3.4)

denote the probability that a random conjugate Kg of a subgroup K of G lies in the point
stabilizer H. The dimension of (X,G) is then specified exactly in terms of the Möbius
function

µ(K,L) =
∞∑

k=0

(−1)k|{(K1, . . . ,Kk) | K = K0 < K1 < . . . < Kk = L}| (3.5)

of the set of subgroups of G ordered by containment.

Theorem 3.2. For a finite, transitive, faithful G-set (X,G) with point stabilizer H,

dim (X,G) = min{r | 0 <
∑

K≤H

µ(1,K)P(Kg ≤ H)r−1}. (3.6)

Proof. Consider the uniform probability distribution on Xr. By [8, (5.2)], the probability
that a random element of Xr lies in a regular orbit is given as

∑

K≤H

µ(1,K)P(Kg ≤ H)r−1. (3.7)

�
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In the notation of [2, §3], (3.7) specifies B(G, r).

4. Elementary examples

This section computes the dimensions of cyclic actions Cn, symmetric actions Sn, alter-
nating actions An, and dihedral actions Dn of degree n. These elementary examples give
some idea of the relative strengths and weaknesses of the inequalities listed in the previous
section. Firstly, note that

dimCn = 1, (4.1)

since any transitive abelian permutation group is regular. In this case, equality holds in
(3.2) and (3.3) [5, 8.1.24], [10], while (3.1) is as bad as possible.

Theorem 4.1. (a) dimSn = n− 1 for n > 1. (b) dimAn = n− 2 for n > 2.

Proof. (a) No set of n− 2 elements can span Sn, since such a set is fixed pointwise by the
transposition interchanging the remaining two elements. Thus dimSn > n − 2. The only
option left by (3.1) is dimSn = n− 1.

(b) No set of n− 3 elements can span An, since such a set is fixed pointwise by a 3-cycle
permuting the remaining three elements. On the other hand, each set of n − 2 elements
spans, since the only non-identity permutation pointwise fixing such a set is odd. �

As noted in the proof of Theorem 4.1(a), (3.1) is sharp for Sn. On the other hand, Sn is
its own 1-closure, so that (3.3) is maximally bad for Sn. For An, the inequality (3.1) is
almost sharp, while equality holds in (3.3) [4, 1.5.21]. In the cases of both Sn and An, the
inequality (3.2) is asymptotically good for large n, by Stirling’s Formula.

Theorem 4.2. dimDn = 2 for n > 2.

Proof. Let H be a point stabilizer in the action Dn. If n is even, Dn has n subgroups of
order 2. One half of these, being point stabilizers, are conjugates of H. Thus

0 = 1 − 1 =
∑
K≤H

µ(1,K)P(Kg ≤ H)1−1, while
∑
K≤H

µ(1,K)P(Kg ≤ H)2−1 = 1 − 2
n
> 0,

whence dimDn = 2 by Theorem 3.2. If n is odd, the dihedral group Dn again has n
subgroups of order 2. This time, however, all are point stabilizers, and thus conjugate to
H. Then
∑
K≤H

µ(1,K)P(Kg ≤ H)1−1 = 1 − 1 = 0, while
∑
K≤H

µ(1,K)P(Kg ≤ H)2−1 = 1 − 1
n
> 0.

Theorem 3.2 again shows that dimDn = 2 in this case. �

For Dn, the inequality (3.2) takes the form

dimDn ≥ 1 + logn 2. (4.2)

Subject to the integrality constraint for dimDn, the inequality becomes sharp. Now Dn, as
the automorphism group of the undirected graph on Zn with edge set {{x, x+1}|x ∈ Zn},
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is its own 2-closure. Thus (3.3) is almost sharp for Dn. On the other hand, (3.1) for Dn
deteriorates steadily as n increases. Table 4.1 summarizes the answers to the question “Is
the inequality to the left sharp for the action shown at the top?”

∣∣ Cn Sn An Dn
Diversity

∣∣ no yes almost no

Cardinality
∣∣ yes asymptotically asymptotically yes

Closure
∣∣ yes no yes almost

Table 4.1.

5. Geometric actions

The finite permutation actions (X,G) studied in this section are all geometric, in that X
is a space (linear, affine, or projective), and that G consists of automorphisms of the space
X. The goal is to relate the geometric dimension of the space X to the dimension of the
permutation action in the sense of Definition 2.3. Notation is as follows. Let F be a field
of prime power order. The linear space of geometric dimension n is the vector space Fn.
Its group of automorphisms is the general linear group GLn(F ). The general affine group
GAn(F ) is the split extension F

n] GLn(F ) of F
n by GLn(F ), and the affine space An(F )

of dimension n is the geometry of cosets of subspaces in the vector space Fn. Note that
GAn(F ) acts faithfully on An(F ) [3, Theorem III.1]. The projective linear group PGLn(F )
is the quotient GLn(F )/F

∗ of GLn(F ) by its centre, the group F
∗ of homotheties. The

projective space PGn−1(F ) of projective dimension n−1 is the set (Fn−{0})/F ∗ of orbits
of non-zero points of Fn, with subspaces corresponding to positive-dimensional subspaces
of Fn. The action GLn(F ) → {Fn − {0}}! of the linear group factors to an action
PGLn(F ) → PGn−1(F )! of the projective linear group. This action is also faithful [3,
Theorem III.2].

Theorem 5.1. dim(Fn,GLn(F )) = n.

Proof. Consider 1 ≤ r < n, and an element (x1, . . . , xr) of (Fn, GLn(F ))r. The set
{x1, . . . , xr} spans a proper subspace U of Fn. Choose a basis {e1, . . . , es} for U , and
extend to a basis {e1, . . . , es, es+1, . . . , en} for Fn. Define a non-identity element g of
Gln(F ) by

eig = if i = n then e1 + en else ei. (5.1)

Then (x1, . . . , xr)g = (x1, . . . , xr), so there is no regular orbit in (F
n, GLn(F ))

r. On the
other hand, for a basis {f1, f2, . . . , fn} of Fn, the stabilizer of (f1, f2, . . . , fn) in GLn(F )
is trivial. �

Theorem 5.2. dim(An(F ),GAn(F )) = n+ 1.

Proof. Consider 0 ≤ r < n, and an element (y0, y1, . . . , yr) of (An(F ), GAn(F ))r+1.
Consider the translation t : Fn → Fn; y 7→ y − y0, an element of GAn(F ). For 1 ≤
i ≤ r, define xi = yit. Define the non-identity element g of GLn(F ) ≤ GAn(F ) by (5.1).
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Then (y0, y1, . . . , yr)tgt
−1 = (y0, y1, . . . , yr) with 1 6= tgt−1 ∈ GAn(F ), so that (An(F ),

GAn(F ))
r+1 contains no regular orbit. On the other hand, for a basis {f1, . . . , fn} of Fn,

the stabilizer of (0, f1, . . . , fn) in GAn(F ) is trivial [3, Theorem III.1]. �

Theorem 5.3. dim(PGn−1(F ),PGLn(F )) = n+ 1 for |F | > 2.

Proof. Consider r ≤ n, and an element (x1F ∗, . . . , xrF ∗) of (PGn−1(F ),PGLn(F ))r. If
{x1, . . . , xr} spans a proper subspace U of Fn, define the non-identity element g of GLn(F )
by (5.1). Then (x1F

∗, . . . , xrF
∗)gF ∗ = (x1F

∗, . . . , xrF
∗). If r = n and {x1, . . . , xn} is a

basis for Fn, choose 1 6= k ∈ F ∗. Then define an element h of GLn(F ) by

xih = if i = 1 then xi else kxi. (5.2)

Note that hF ∗ is a non-identity element of PGLn(F ). However, (x1F
∗, . . . , xnF

∗)hF ∗ =
(x1F

∗, . . . , xnF
∗). Thus (PGn−1(F ),PGLn(F ))

r contains no regular orbit. On the other
hand, for a basis {f1, . . . , fn} of Fn, the stabilizer of (f1F ∗, . . . , fnF ∗, (f1 + . . . + fn)F ∗)
in PGLn(F ) is trivial [3, Theorem II.2]. �

For |F | = 2, note (PGn−1(F ), PGLn(F )) = (Fn − {0}, GLn(F )), so that

|F | = 2 ⇒ dim(PGn−1(F ),PGLn(F )) = n (5.3)

by Theorem 5.1.

6. Disjoint unions and Cartesian products

Throughout this section, let (X,G) be a finite permutation action of dimension d spanned
by a set {a1, . . . , ad}, and let (Y,H) be a finite permutation action of dimension e spanned
by a set {b1, . . . , be}. The aim is to show that the disjoint union and Cartesian product
of (X,G) and (Y,H) are faithful permutation actions, having dimensions expressible in
terms of dimX and dimY .
The disjoint union (X,G) + (Y,H) = (X + Y,G × H) of (X,G) and (Y,H) is the

(G×H)-set on the disjoint union X + Y of X with Y given by the action

z(g, h) = if z ∈ X then zg else zh (6.1)

of elements (g, h) of G×H [4, 1.7.8], [9, p.37].

Lemma 6.1. For r < dimX + dimY , the power (X + Y )r contains no regular orbit of
G×H.

Proof. Consider (z1, . . . , zr) in (X+Y )
r. Now |X∩{z1, . . . , zr}| < d or |Y ∩{z1, . . . , zr}| <

e. In the first case, Proposition 2.1(c) gives a non-identity element g of G fixing X ∩
{z1, . . . , zr} pointwise. Then (z1, . . . , zr)(g, 1) = (z1, . . . , zr). In the second case, there is a
non-identity element h of H with (z1, . . . , zr)(1, h) = (z1, . . . , zr). Proposition 2.1(c) then
shows that (X + Y )r contains no regular orbit. �
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Lemma 6.2. The disjoint union (X + Y,G×H) is faithful, being spanned by
(a1, . . . , ad, b1, . . . , be).

Proof. Suppose (a1, . . . , ad, b1, . . . , be)(g, h) = (a1, . . . , ad, b1, . . . , be). Then (a1, . . . , ad)g =
(a2, . . . , ad) by (6.1), whence g = 1 by Proposition 2.1(b). Similarly, (b1, . . . , be)h =
(b1, . . . , be) and h = 1. Thus (a1, . . . , ad, b1, . . . , be) spans X + Y by Proposition 2.1(c). In
particular, X + Y is faithful by Proposition 2.2(c). �

Theorem 6.3. The disjoint union (X,G) + (Y,H) of finite permutation actions is again
a permutation action, with

dim(X + Y ) = dimX + dimY. (6.2)

Proof. Combine Lemmas 6.1 and 6.2. �

The Cartesian product (X,G) × (Y,H) = (X × Y,G × H) of (X,G) and (Y,H) is the
(G×H)-set on the Cartesian product X × Y given by the action

(x, y)(g, h) = (xg, yh) (6.3)

of elements (g, h) of G×H [4, 1.7.9], [9, p. 37].

Lemma 6.4. For r < max{dimX,dimY }, the power (X × Y )r contains no regular orbit
of G×H.

Proof. Without loss of generality, suppose r < dimX. Consider an element ((x1, y1), . . . ,
(xr, yr)) of (X × Y )r. By Proposition 2.1(c), there is a non-identity element g of G
with (x1, . . . , xr)g = (x1, . . . , xr). Then by (6.3), one has ((x1, y1), . . . , (xr, yr))(g, 1) =
((x1, y1), . . . , (xr, yr)) with (g, 1) 6= (1, 1). Proposition 2.1(c) then shows that (X × Y )r

contains no regular orbit. �

Lemma 6.5. The Cartesian product (X × Y,G × H) is faithful, being spanned by a
max{d, e}-subset of X × Y .

Proof. Without loss of generality, suppose dimX ≥ dimY . If d > e, pick be+1, . . . , bd
arbitrarily from Y . Suppose ((a1, b1), . . . , (ad, bd))(g, h) = ((a1, b1), . . . , (ad, bd)). Then
(a1, . . . , ad)g = (a1, . . . , ad) implies g = 1 by Proposition 2.1(b), and similarly (b1, . . . , bd)h
= (b1, . . . , bd)⇒ (b1, . . . be)h = (b1, . . . , be)⇒ h = 1. Thus (g, h) = (1, 1), and Proposition
2.1(c) shows that ((a1, b1), . . . , (ad, bd)) spans X × Y . In particular, X × Y is faithful by
Proposition 2.2(c). �

Theorem 6.6. The Cartesian product (X,G) × (Y,H) of finite permutation actions is
again a permutation action, with

dim(X × Y ) = max{dimX,dimY }. (6.4)
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Proof. Combine Lemmas 6.4 and 6.5. �

7. Wreath products

Continue the notation of the previous section. The wreath product group G o (Y,H) has
GY ×H as its underlying set. Elements of GY are written as functions s : Y → G. The
group multiplication in G o (Y,H) is defined by

(s, h)(t, h′) = (y 7→ ys · yht, hh′). (7.1)

The wreath product action (X,G) o (Y,H) = (X × Y,G o (Y,H)) is the (G o (Y,H))-set on
the Cartesian product X × Y given by the action

(x, y)(s, h) = (x · ys, yh) (7.2)

of elements (s, h) of Go(Y,H) [4, 1.7C], [9, p.40]. The wreath product action (X,G)o(Y,H)
will be shown to be faithful, and its dimension will be determined.

Lemma 7.1. For r < dimX · deg Y and |G| 6= 1, the power (X × Y )r contains no regular
orbit of G o (Y,H).

Proof. Consider an element ((x1, y1), . . . , (xr, yr)) of (X × Y )r. If |{y1, . . . , yr}| < deg Y ,
define s : Y → G, using a non-identity element of g of G, by

ys = if y ∈ {y1, . . . , yr} then 1 else g. (7.3)

Then (s, 1) is a non-identity element of G o (Y,H), but ((x1, y1), . . . , (xr, yr))(s, 1) =
((x1, y1), . . . , (xr, yr)) by (7.2). Now if {y1, . . . , yr} = Y , there is an element y of Y
such that |{i | yi = y}| < dim(X,G). Let {ij | 1 ≤ j ≤ t} = {i | yi = y}. Then by Propo-
sition 2.1(c), there is a non-identity element g of G with (xi1 , . . . , xit)g = (xi1 , . . . , xit).
Define s : Y → G by

yis = if yj = y then g else 1. (7.4)

Certainly (s, 1) is a non-identity element of G o (Y,H), but ((x1, y1), . . . , (xr, yr))(s, 1) =
((x1, y1), . . . , (xr, yr)) by (7.2). Proposition 2.1(c) then shows that (X × Y )r contains no
regular orbit. �

Lemma 7.2. The wreath product (X×Y,G o(Y,H)) is faithful, being spanned by the direct
product of the spanning set {a1, . . . , ad} for X with Y .

Proof. Suppose that the element (s, h) of G o (Y,H) fixes {a1, . . . , ad} × Y pointwise, so
that

∀1 ≤ i ≤ d, ∀y ∈ Y, (ai · y
s, yh) = (ai, y) (7.5)
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by (7.2). Certainly h = 1, by the second component of the equality in (7.5). Now for each
element y of Y , (7.5) yields (a1, . . . , ad)y

s = (a1, . . . , ad). Since (a1, . . . , ad) spans (X,G),
it follows that ys = 1. Thus (s, h) is the identity element of G o (Y,H). �

Theorem 7.3. The wreath product (X,G) o (Y,H) of finite permutation actions is again
a permutation action. Moreover,

|G| = 1 ⇒ dim(X,G) o (Y,H) = dim(Y,H), (7.6)
while

|G| > 1 ⇒ dim(X,G) o (Y,H) = dim(X,G) · deg(Y,H). (7.7)

Proof. The faithfulness of the wreath product follows by Lemma 7.2. If G is trivial, then
G o (Y,H) is isomorphic to H and (X,G) o (Y,H) is similar to (Y,H), so that (7.6) holds.
On the other hand, (7.7) follows by Lemmas 7.1 and 7.2. �

Corollary 7.4. For m > 0 and n > 1, one has

dimCn o Cm = m (7.8)
and

degCn o Cm
dimCn o Cm

= n. (7.9)

Proof. Use (4.1) and (7.7). �

Studying Table 4.1, one might be led to believe that the Cardinality Inequality (3.2)
is always effective for large permutation groups. However, for the permutation actions
X = C2 o Cm, Corollary 7.4 shows that

(dimX)−1 logdegX |G| = m
−1 log2m 2

mm→ 0 (7.10)

as m → ∞. Thus (3.2) weakens steadily for these actions: If m is large, there are many
powers of C2 o Cm that do not contain any regular orbit, even though their cardinality
would be large enough to contain one.
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