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Abstract. The paper provides a brief survey of extension theory for 
Mal’tsev varieties based on centrality and monadic cohomology. Exten-
sion data are encoded in the form of a seeded simplicial map. Such a
map yields an extension if and only if it is unobstructed. Second coho-
mology groups classify extensions, and third cohomology groups classify 
obstructions.

1 Introduction

Extension theory for Mal’tsev varieties was developed in [9, Chapter 6], gener-
alising earlier treatment of special cases such as groups (cf. [3], [7]), commutative 
algebras (cf. [1]), loops [6], and other “categories of interest” [8]. Because of re-
newed attention being paid to the topic, as evidenced by recent publications such 
as [4], a brief survey of the theory appears timely. With the exception of parts of 
Section 2, the context throughout the paper is that of a Mal’tsev variety V. An 
extension of a V-algebra R is considered as a V-algebra T equipped with a con-
gruence α such that R is isomorphic to the quotient T α of T by the congruence 
α.

The essential properties of centrality in Mal’tsev varieties are recalled in Sec-
tion 2. Section 3 describes the “seeded simplicial maps” which provide a concise 
encoding of the raw material required for constructing an extension (analogous to 
the “abstract kernels” of [7]). Section 4 gives a brief, algebraic description of the 
rudiments of monadic cohomology, culminating in the Definition 4.2 of the obstruc-
tion of a seeded simplicial map as a cohomology class. Theorem 5.2 then shows 
that a seeded simplicial map yields an extension if and only if it is unobstructed. 
The final s ection d iscusses t he c lassification of  ex tensions by  se cond cohomology 
groups, and of obstructions by third cohomology groups. Against this background, 
the pessimism expressed in [5] (“To classify the extensions . . . is too big a project 
to admit of a reasonable answer”) appears unwarranted.
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For concepts and conventions not otherwise explained in the paper, readers are
referred to [10]. In particular, note the general use of postfix notation, so that
composites are read in natural order from left to right.

2 Centrality in Mal’tsev varieties

Recall that a variety V of universal algebras is a Mal’tsev variety if there is a
derived ternary parallelogram operation P such that the identities

(x, x, y)P = y = (y, x, x)P

are satisfied. Equivalently, the relation product of two congruences is commutative,
and thus agrees with their join. Moreover, reflexive subalgebras of direct squares
are congruences [9, Proposition 143].

Consider two congruences γ and β on a general algebra, not necessarily in a
Mal’tsev variety. Then γ is said to centralise β if there is a congruence (γ|β) on
β, called a centreing congruence, such that the following conditions are satisfied [9,
Definition 211]:

(C0): (x, y) (γ|β) (x′, y′) ⇒ x γ x′;
(C1): ∀(x, y) ∈ β, π0 : (x, y)(γ|β) → xγ ; (x′, y′) 7→ x′ bijects;
(C2): (RR): ∀(x, y) ∈ γ, (x, x) (γ|β) (y, y);

(RS): (x, y) (γ|β) (x′, y′) ⇒ (y, x) (γ|β) (y′, x′);
(RT): (x, y) (γ|β) (x′, y′) and (y, z) (γ|β) (y′, z′) ⇒ (x, z) (γ|β) (x′, z′).

In a Mal’tsev variety V, centreing congruences are unique [9, Proposition 221].
Moreover, for each congruence α on an algebra A in V, there is a unique largest
congruence η(α), called the centraliser of α, which centralises α [9, 228]. Note that
α ◦ η(α) centralises α ∩ η(α) [9, Corollary 227].

If R is a member of a variety V of universal algebras, then the category of R-
modules is the category of abelian groups in the slice category V/R. For example, if
A is an algebra in a Mal’tsev variety V having nested congruences β ≤ γ such that
γ centralises β, then β(γ|β) → Aγ is an Aγ-module. Indeed, given a1 β a0 γ b0 β b2

in A, one has
(a0, a1)(γ|β) + (b0, b1)(γ|β) = (a0, a3)(γ|β)

for a2 given by (a0, a2)(γ|β)(b0, b2) using (C1) and then for a3 given similarly by
(a0, a1)(γ|β)(a2, a3).

3 Seeded simplicial maps

The data used for the construction of extensions are most succinctly expressed
in terms of simplicial maps. These are described using the direct algebraic approach
of [9], to which the reader is referred for fuller detail. Compare also [2].

Let εi
n be the operation which deletes the (i + 1)-th letter from a non-empty

word of length n. Let δi
n be the operation which repeats the (i+1)-th letter in a non-

empty word of length n. These operations, for all positive integers n and natural
numbers i < n, generate (the morphisms of) a category ∆ called the simplicial
category. A simplicial object B∗ in V is (the image of) a functor from ∆ to V. A
simplicial map is (the set of components of) a natural transformation between such
functors. Generically, the morphisms of a simplicial object B∗ are denoted by their
preimages in ∆, namely as εi

n : Bn → Bn−1 and δi
n : Bn → Bn+1. (In other words,

one treats simplicial objects as heterogeneous algebras in V.)
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Given (θ0, . . . , θn−1) ∈ V(X, Y )n, the simplicial kernel ker(θ0, . . . , θn−1) is the
largest subalgebra K of the power Xn+1 for which the θi and the restrictions of
the projections from the power model the identities satisfied by the simplicial εi

n

and εi
n+1. For example, the simplicial kernel of a single V-morphism θ0 : X → Y

is K = {(x0, x1) ∈ X2 | x0θ
0 = x1θ

0}, the usual kernel of θ0, modelling the single
simplicial identity ε0

2ε
0
1 = ε1

2ε
0
1 by π0θ0 = π1θ0 for πi : K → X; (x0, x1) 7→ xi.

For each positive integer n, removing all operations from ∆ that involve words
of length greater than n leaves the simplicial category ∆n truncated at n. Functors
from ∆n are called simplicial objects truncated at dimension n. Truncated simpli-
cial objects may be extended to full simplicial objects by successively tacking on
simplicial kernels. In such cases one may omit the epithet “truncated,” speaking
merely of simplicial objects, even when one has only specified the lower-dimensional
part.

Definition 3.1 A simplicial object B∗ is said to be seeded if:
1. It is truncated at dimension 2;
2. (ε0

2, ε
1
2) : B2 → ker(ε0

1) surjects;
3. ε0

1 : B1 → B0 surjects;
4. ker(ε0

2 : B2 → B1) = η(ker(ε1
2 : B2 → B1)).

Lemma 3.2 In a seeded simplicial object B, let C be the equalizer of the pair
(ε0

2, ε
1
2). Define V on C by

c V c′ ⇔ ((cε0
2δ

0
1 , c), (c′ε0

2δ
0
1 , c′)) ∈ (ker ε0

2 ◦ ker ε1
2|ker ε0

2 ∩ ker ε1
2).

Then
CV → B0; cV 7→ cε0

2ε
0
1 (3.1)

is a module over B0, isomorphic to (ker ε0
2 ∩ ker ε1

2)
(ker ε0

2◦ker ε1
2|ker ε0

2∩ker ε1
2).

The module (3.1) of Lemma 3.2 is called the module grown by the seeded
simplicial object B∗. If α is a congruence on a V-algebra T , then

α(η(α)|α) ⇒ T η(α) → Tα◦η(α) (3.2)

is a seeded simplicial object with εi
2 : (t0, t1)(η(α)|α) 7→ t

η(α)
i , growing the module

(α ∩ η(α))(α◦η(α)|α∩η(α)) → Tα◦η(α); (t0, t1)(α◦η(α)|α∩η(α)) 7→ t
α◦η(α)
0 .

The seeded simplicial object (3.2) is said to be planted by the congruence α on the
algebra T .

Definition 3.3 A simplicial map p∗ : A∗ → B∗ is said to be seeded if the
codomain object B∗ is seeded in the sense of Definition 3.1, and if p0 : A0 → B0

surjects.

4 Obstructions

Along with the simplicial theory outlined in Section 3, the second tool used
for studying extensions of Mal’tsev algebras is monadic cohomology. Once again,
full details may be found in [2] and [9]; the summary given here follows the direct
approach of the latter reference.

For each V-algebra A, let AG denote the free V-algebra over the generating set
{{a} | a ∈ A}. Given a V-algebra R, let εj

n : RGn → RGn−1 denote the uniquely
defined V-morphism deleting the j-th layer of braces, where j = 0 corresponds to
the inside layer and j = n−1 to the outside. Let δj

n : RGn → RGn+1 insert the j-th
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layer of braces. One obtains a simplicial object RG∗, known as the free resolution
of A. Each RGn projects to R by a composition

ε0
n . . . ε0

1 : RGn → R. (4.1)

An R-module E → R becomes an RGn-module by pullback along (4.1). Write
Der(RGn, E) for the abelian group V/R(RGn → R,E → R) of derivations. Define
coboundary homomorphisms

dn : Der(RGn, E) → Der(RGn+1, E); f 7→
n∑

i=0

(−)iεi
n+1f

for each natural number n. For each positive integer n, define

Hn(R,E) = Ker(dn)/Im(dn−1), (4.2)

the so-called n-th monadic cohomology group of R with coefficients in E. [Note
that [2] and [9] use Hn−1(R,E) for (4.2).] The cosets forming (4.2) are known as
cohomology classes. Elements of Ker(dn) are known as cocycles, and elements of
Im(dn−1) are coboundaries.

Lemma 4.1 Let p∗ : RG∗ → B∗ be a seeded simplicial map whose codomain
grows module M . Pull M from B0 back to R along p0. Then

p3(ε0
3, ε

1
3, ε

2
3)P

V : RG3 → M (4.3)

is a cocycle in Der(B3,M).

Definition 4.2 The cohomology class of (4.3) is called the obstruction of the
seeded simplicial map p∗. The simplicial map is said to be unobstructed if this class
is zero.

Lemma 4.3 The obstruction of a seeded simplicial map p∗ : RG∗ → B∗ is
uniquely determined by its bottom component p0 : R → B0.

The diagram-chasing proofs of Lemmas 4.1 and 4.3 are given in [9, pp.124–7].

5 Constructing extensions

Definition 5.1 A seeded simplicial map p∗ : RG∗ → B∗ is said to be realised
by an algebra T if there is a congruence α on T planting B∗ such that p0 is the
natural projection Tα → Tα◦η(α).

Theorem 5.2 A seeded simplicial map p∗ : RG∗ → B∗ is unobstructed iff it
is realised by an algebra T .

Proof (Sketch.) “If:” Consider the diagram

V RG2 ⇒ RG → R

↓ σ2 ↓ σ1 ↓ σ0

V α ⇒ T → R

↓ ↓ ↓ p0

V α(η(α)|α) ⇒ T η(α) → Tα◦η(α)

(5.1)
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in which σ0 is the identity on R = Tα, σ1 is given by the freeness of RG, and
σ2 exists since α = ker(T → R). Take p2, p1, p0 to be the composites down the
respective columns of (5.1), the second factors of these composites all being natural
projections. Writing πi : α → T ; (t0, t1) 7→ ti, one has

(ε0
3σ

2, ε1
3σ

2, ε2
3σ

2)Pπ0 = (ε0
3ε

0
2, ε

1
3ε

0
2, ε

2
3ε

0
2)Pσ1 = ε2

3ε
0
2σ

1

= ε0
3ε

1
2σ

1 = (ε0
3ε

1
2, ε

1
3ε

1
2, ε

2
3ε

1
2)Pσ1 = (ε0

2σ
2, ε1

2σ
2, ε2

2σ
2)Pπ1,

so the obstruction of p∗ is the zero element (ε0
3p

2, ε1
3p

2, ε2
3p

2)PV of the group
Der(RG3, (α ∩ η(α))(α◦η(α)|α∩η(α))), as required.

“Only if:” If p∗ is unobstructed, then as shown in [9, p.129], one may assume
without loss of generality that (4.3) itself is zero, and not just in the zero cohomology
class. Let Q be a pullback in

Q → RG
↓ ↓ p1

B2 →
ε1
2

B1

realised, say, by Q = {(b, w) ∈ B2 × RG | wp1 = bε1
2}. Define a congruence W on

Q by (b, w) W (b′, w′) iff wε0
1 = w′ε0

1 and

(b, b′) (ker ε1
2|ker ε0

2) ({w}p2, {w′}p2).

Set T = QW , and take α on T to be the kernel of T → R; (b, w)W 7→ wε0
1. For the

details of the verification that T realises p∗, with α planting B∗, see [9, pp.129–132].
In particular, note that η(α) is the kernel of T → B1; (b, w)W 7→ bε0

2.

6 Classifying extensions and obstructions

Let p∗ : RG∗ → B∗ be a seeded simplicial map whose codomain grows a
module M → B0. Pull M back along p0 : R → B0 to an R-module. An extension
α ⇒ T → R is said to be singular for p∗ if its kernel α is self-centralising, with
an R-module isomorphism α(α|α) → M . (Note that the central extensions of [4]
form a special case of the singular extensions, in which α centralises all of T × T .)
Let p∗S be the set of V/R-isomorphism classes of extensions that are singular
for p∗. This set becomes an abelian group, with the class of the split extension
M → R as zero. The addition operation on p∗S is known as the Baer sum. To
obtain a representative of the Baer sum of the isomorphism classes of two extensions
αi ⇒ Ti → R, with module isomorphism θ : α

(α1|α1)
1 → α

(α2|α2)
2 , take the quotient

of the pullback T1 ×R T2 by the congruence

{((t1, t2), (t′1, t′2)) | (ti, t′i) ∈ αi, (t1, t′1)
(α1|α1)θ = (t2, t′2)

(α2|α2)}.
Singular extensions are then classified as follows [9, Theorem 632].

Theorem 6.1 The groups p∗S and H2(R,M) are isomorphic.

Now assume additionally that the seeded simplicial map p∗ : RG∗ → B∗ is
unobstructed. An extension α ⇒ T → R is said to be non-singular for p∗ if
T realises p∗. Let p∗N denote the set of V/R-isomorphism classes of extensions
that are non-singular for p∗. By Theorem 5.2, p∗N is non-empty. Non-singular
extensions are then classified as follows [9, Theorem 634].
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Theorem 6.2 The abelian group p∗S acts regularly on p∗N , so the sets p∗N
and H2(R,M) are isomorphic.

Let β ⇒ S → R be singular for p∗, and let α ⇒ T → R be non-singular for p∗.
To obtain a representative for the image of the class of α under the action of the
class of β, assuming an R-module isomorphism θ : (α∩η(α))(α◦η(α)|α∩η(α)) → β(β|β),
take the quotient of the pullback T ×R S by the congruence

{((t, s), (t′, s′)) | (t, t′) ∈ α ∩ η(α), (s′, s) ∈ β, (t, t′)(α|α∩η(α))θ = (s′, s)(β|β)}.
The final result [9, Theorem 641] shows how obstructions may be classified by

elements of the third monadic cohomology groups. Note that for non-trivial R, the
hypothesis on R is always satisfied in varieties V, such as the variety of all groups,
where free algebras have little centrality. On the other hand, it is not satisfied, for
example, by the three-element group in the variety of commutative Moufang loops.

Theorem 6.3 Let R be a V-algebra for which η(ker(ε0
1 : RG → R)) = R̂G.

Let M → R be an R-module, and let ξ ∈ H3(R,M). Then ξ is the obstruction to
a seeded simplicial map p∗ : RG∗ → B∗ whose codomain grows a module that pulls
back to M → R along p0.
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