
MODES AND MODALS

Jonathan D.H. Smith*

Department of Mathematics
Iowa State University

Ames, Iowa 50011, USA

Abstract. The paper gives a self-contained introduction to modes (idempotent entropic

algebras) and modals (modes distributive over semilattices). Constructions of modals from
modes are discussed, including a new contravariant submode functor to a category of concave

functions. Some characteristic applications of modal theory are presented, including a new

identification of the modal structure of multiplication tables of central quasigroups.
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This paper is intended as an introduction to modal theory, offering a representative

cross-section of its internal techniques and external applications. Modal theory traces its

origins back to the paper [RS1], recognizing the import of the conjunction of idempotence

with entropicity. An initial exploration of the theory appeared in [RS2]. The subsequent

fifteen years have seen considerable development. Romanowska gave an encyclopedic sur-

vey at the end of the 1980s [Ro]. The current paper may be read as a self-contained

approach to the subject as it now stands. The paper includes some new theory (the con-

travariant subalgebra construction of §7) and a new application (to multiplication tables

of central quasigroups in §12).

Since modal theory is above all an algebraic theory, the first two sections offer a

thousand-word course in universal algebra. This is not meant in the spirit of a fifteen-

second recital of Hamlet’s “To be, or not to be” soliloquy, but rather as a guide for

otherwise sophisticated readers who might not have had the benefit of a more conventional

hundred-hour introduction to the subject. Experts should note the conventions adopted,

such as admittance of empty algebras but exclusion of fictitious variables.

Modes, or idempotent entropic algebras, are introduced in §3. Section 4 presents the key

examples: sets, left-zero semigroups, semilattices, affine spaces, convex sets and barycentric

algebras. Modals, or modes distributing over semilattices, are introduced in §5, along with

the three fundamental lemmas. Section 6 shows how a mode yields two modals, the modal

of “polytopes” or finitely-generated non-empty submodes and the modal of all non-empty

submodes. The mode reducts of these modals exhibit the self-replicating property that is

characteristic for the conjunction of idempotence and entropicity.

Section 7 introduces a new modal construction: the contravariant subalgebra functor

assigning the modal of all (possibly empty) submodes to a mode. The codomain category

of this functor has one curious feature. Most of the concrete categories encountered in

mathematics have morphism properties that are naturally preserved under composition,

typically homomorphism between algebras or continuity between topological spaces. Be-

sides having both these properties, the morphisms of the codomain category are concave
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functions, even though in general the composite of concave functions is not necessarily

concave.

Section 8 gives a brief sampling of some structure theory for modes, connecting P lonka

sums with embedding into powers of cogenerators. The final four sections offer a range

of applications of modal theory to other parts of mathematics: to geometry in §9, to

differential geometry in §10, to analysis in §11, and to combinatorial algebra in §12.

In entering its topics to some depth, this paper has had to sacrifice any attempt at

completeness. Probably the major omission has been the extension of the affine space

examples to idempotent reducts of semimodules over commutative semirings. The reader

is referred to Kearnes’ paper [Ke] for specific details, and to Golan’s book [Go], particularly

Chapter 13, for general background.

1. Combinatorial universal algebra.

A type τ : Ω→ N is function whose codomain is the set of natural numbers. Elements of

the domain of τ are called the basic operators of the type. An algebra of type τ or τ -algebra

A or (A,Ω) is a set A equipped with basic operations

(1.1) ω : Aωτ → A; (a1, . . . , aωτ ) 7→ a1 . . . aωτω

for each basic operator. The class of all such algebras is denoted by τ . A subset B of A is

a subalgebra of (A,Ω) if

(1.2) ∀ ω ∈ Ω, (∀ 1 ≤ i ≤ ωτ, xi ∈ B)⇒ x1 . . . xωτω ∈ B.

The subset B is a wall of (A,Ω) if

(1.3) ∀ ω ∈ Ω, (∀ 1 ≤ i ≤ ωτ, xi ∈ B)⇔ x1 . . . xωτω ∈ B.

The subset B is sink of (A,Ω) if

(1.4) ∀ ω ∈ Ω, (∃1 ≤ i ≤ ωτ. xi ∈ B)⇒ x1 . . . xωτ ∈ B.

Since intersections of subalgebras are subalgebras, each subsetX of A determines a smallest

subalgebra 〈X〉 of A containing X, known as the subalgebra generated by X. Given a
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family of algebras (Ai,Ω), their product ΠAi becomes an algebra Π(Ai,Ω) or (ΠAi,Ω),

the product algebra, under componentwise operations. A function f : (A,Ω) → (B,Ω)

between algebras is a homomorphism if its graph

(1.5) {(a, b) ∈ A×B|af = b}

is a subalgebra of (A×B,Ω). (Note that it is often convenient to identify a function with

its graph.) An equivalence relation α on an algebra A is a congruence if it is a subalgebra

of A×A. This implies that the natural projection

(1.6) nat α : A→ Aα; a 7→ aα,

mapping an element a of A to its equivalence class aα = {b ∈ A|aαb} in the quotient

Aα = {aα|a ∈ A}, is a homomorphism. Conversely, the kernel of a homomorphism is a

congruence on the domain of the homomorphism.

Given a set L, the free monoid L∗ over L is the set of all words l1l2 . . . ln with li in L

and n in N. Words are multiplied by concatenation; the unit element is the empty word

(n = 0). Given a set X, the free monoid (X
⋃
· Ω)∗ becomes a τ -algebra under

(1.7) ω : (w1, . . . , wωτ ) 7→ w1 . . . wωτω

for each basic operator ω. Define XΩ, the algebra of τ -words in X, to be the subalgebra

of ((X
⋃
· Ω)∗,Ω) generated by X.

Proposition 1.1. Each function f : X → A to the underlying set of a τ -algebra (A,Ω)

extends to a unique homomorphism f̄ : (XΩ,Ω)→ (A,Ω).

Proof. The graph of f̄ is the subalgebra of (XΩ×A,Ω) generated by the graph of f . �

Now fix a set P of variables or arguments by a bijection

(1.8) β : Z+ → P ;n 7→ xn.

Make the power set 2P a τ -algebra by

(1.9) ω : (A1, . . . , Aωτ ) 7→ A1 ∪ · · · ∪Aωτ
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for ω in Ω. By Proposition 1.1, there is a homomorphism

(1.10) arg : PΩ→ 2P ;xn 7→ {xn},

called the argument map. Note arg(x1 . . . xωτω) = {x1, . . . , xωτ}. Since the argument map

sends each element of PΩ to a finite subset of P , there is a well-defined function

(1.11) τ ′ : PΩ→ N;w 7→ max(β−1(arg w))

called the derived type of τ . Elements of PΩ are called derived operators of τ . Given a

τ -algebra (A,Ω), one obtains a τ ′-algebra (A,PΩ) with derived operations

(1.12) u : Auτ
′
→ A; (a1, . . . , auτ ′) 7→ u(xi 7→ ai).

In other words, u acts on A by sending (a1, . . . , auτ ′) to the image of u under the homo-

morphic extension f̄ : PΩ → A of the function f : P → A; xi 7→ ai. It is convenient to

write a derived operator u in the form x1 . . . xuτ ′u, so the (1.8) becomes

(1.13) u : Auτ
′
→ A; (a1, . . . , auτ ′) 7→ a1 . . . auτ ′u.

One may identify a basic operator ω with the derived operator x1 . . . xωτω.

Finally, fix a τ -algebra (A,Ω). For a subset Ψ of PΩ, and restriction σ : Ψ → N of

τ ′ : PΩ → N, the σ-algebra (A,Ψ) is called a reduct of the τ -algebra (A,Ω). Subalgebras

of such reducts (A,Ψ) are called subreducts of the original algebra (A,Ω). In the other

direction, one may extend the type τ : Ω → N to the disjoint union τA = (A → {0})⋃·
(τ : Ω → N). For an element a of A, the nullary operator a yields a constant nullary

operation

(1.14) a : A0 → A

with image {a}. Derived operators of the τA-algebra (A,A
⋃
· Ω) are called polynomials of

the original τ -algebra (A,Ω). The corresponding derived operations on A are called the

polynomial functions of the τ -algebra (A,Ω).
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2. Categorical universal algebra.

Given a class V of algebras of type τ , the category V (same symbol) will denote the

category whose object class is the class V and such that, for V -algebras A and B, the set

V (A,B) of morphisms from A to B is the set of all homomorphisms from A to B. The

category V is the domain of two forgetful functors, the inclusion

(2.1) G : V ↪→ τ

and the underlying set functor

(2.2) U : V → Set; (f : (A,Ω)→ (B,Ω)) 7→ (f : A→ B)

to the category Set of sets and functions. Proposition 1.1 shows that U : τ → Set has a

left adjoint Ω : Set→ τ . For a set X, the unit ηX : X → XΩU just construes an element

x of X as a one-letter word. For a τ -algebra (A,Ω), the counit εA : AUΩ → A is the

homomorphic extension of the identity function AU → A; a 7→ a given by Proposition 1.1.

In particular, for each basic operation ω, the counit εA maps a word a1 . . . aωτω in AUΩ

to the corresponding element a1 . . . aωτω of A given by the image of (1.1).

A class V of algebras of type τ is a prevariety if isomorphic copies, subalgebras and

products of V -algebras are again V -algebras. If V is a prevariety, then the forgetful functors

(2.1) and (2.2) each have left adjoints. The left adjoint of the inclusion G : V ↪→ τ is the

replication functor RV or R : τ → V . The unit of the adjunction, for a τ -algebra A, is

the surjective corestriction ηA : A→ ARG of the product of the set of natural projections

nat α : A→ Aα of congruences α on A whose quotient lies in V . In other words, ηA is the

natural projection of the smallest congruence ρV or ρ on A whose quotient Aρ lies in V .

The congruence ρ is called the V -replica congruence of A, and the corresponding quotient

Aρ in V is called the V -replica of A. The left adjoint of U : V → Set is the free V -algebra

functor V : Set → V . The unit ηX : X → XV U of the adjunction, for a set X, is the

composite of the unit ηX : X → XΩU of the adjunction (Ω : Set→ τ , U : τ → Set , η, ε)

and (the image under U : V → Set of ) the unit ηXΩ : XΩ → XΩRG of the adjunction
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(R : τ → V ,G : V → τ , η, ε). In other words, the adjunction (V : Set→ V ,

U : V → Set, η, ε) is the composite of these two given adjunctions. Two τ -words in X are

said to be V -synonymous if they are related by the replica congruence ρV on XΩ. Thus

the free V -algebra on a set X is the algebra of V -synonymy classes.

Fix a type τ : Ω → N. An identity in the type τ is a pair (u, v) of derived operators

of τ . (Cross-Channel cultural note: Anglophones may refer to an identity as a “law”,

whereas Francophones may refer to a basic operation as a “loi de composition”.) It is

often convenient to write the identity (u, v) in the form x1 . . . xuτ ′u = x1 . . . xvτ ′v. For

example, in the type {(µ, 2)} of a binary “multiplication” µ, the reductive law is

(2.3) x3x2µ = x3x2x1µµ,

or x3 · x2 = x3 · (x2 · x1) using infix notation for the multiplication. A τ -algebra (A,Ω) is

said to satisfy the identity (u, v) if the derived operations u and v coincide on A.

Birkhoff’s Theorem 2.1 [Bi]. A class V of τ -algebras is closed under homomorphic

images, subalgebras and products iff it is the class of all τ -algebras satisfying a given set

of identities. �

A variety is a class V of τ -algebras satisfying the two equivalent conditions of Birkhoff’s

Theorem. Note that a variety is a prevariety. The full set of identities satisfied by each

algebra from a variety V is the V -replica congruence ρV on the algebra PΩ of derived

operators.

Now let σ : Ψ → N and τ : Ω → N be two types. Let V be a variety of σ-algebras,

and let W be a variety of τ -algebras. Then V ⊗ W denotes the variety of algebras A

of type σ
⋃
· τ whose σ-reducts lie in V , whose τ -reducts lie in W , and which satisfy the

identities saying that each basic operation (1.1) from τ is a homomorphism of σ-algebras.

These identities may equivalently be viewed as saying that each basic operation from σ on

a V ⊗W -algebra is a homomorphism of τ -algebras. Note that there are forgetful functors

V ⊗W → V and V ⊗W →W .

3. Modes.
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Fix a type τ : Ω→ N. A τ -algebra (A,Ω) is said to be entropic if each basic operation

ω is a homomorphism ω : (Aωτ ,Ω) → (A,Ω). In other words, for each set {ω, ϕ} of basic

operations, say with ωτ = n and ϕτ = m, the identity

(3.1) (x11 . . . x1nω) . . . (xm1 . . . xmnω)ϕ = (x11 . . . xm1ϕ) . . . (x1n . . . xmnϕ)ω

is satisfied. If ω and ϕ are equal binary operations denoted by an infix ∗, then (3.1)

becomes

(3.2) (x11 ∗ x12) ∗ (x21 ∗ x22) = (x11 ∗ x21) ∗ (x12 ∗ x22).

(The identities (3.1) and (3.2) have been given various names in the literature: for a partial

list, see [S1, §6]. The word “entropic”, in use in this context for over half a century, refers

to the “inner turning” of x12 and x21 in (3.2). For a connection with the information-

theoretic concept of entropy, see [S3].) Note that modules over a commutative ring are

entropic. Entropic algebras are characterized by the following “folk theorems” (cf. [RS2,

159]).

Proposition 3.1. A τ -algebra A is entropic iff, for each τ -algebra X, the morphism set

τ(X,A) is a subalgebra of the product algebra Set(X,A) = AX . �

Corollary 3.2. If V is a variety of entropic algebras, then for each pair A,B of objects

of V , the morphism set V (A,B) is again an object of V . �

Now let V be a variety of entropic algebras. Fix a V -algebra B. Then by Corollary 3.2,

there is a functor

(3.3) V (B, ?) : V → V ; (f : X → Y ) 7→ (V (B,X)→ V (B, Y );h 7→ hf).

Exactly as in the familiar case where V is the variety of modules over a commutative ring,

the functor (3.4) has a left adjoint

(3.4) ?⊗B : V → V ; (f : X → Y ) 7→ (f ⊗B : X ⊗B → Y ⊗B),
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yielding an adjunction

(3.5) V (A⊗B,C) ∼= V (A, V (B,C)).

Writing the unit in the form

(3.6) ηA : A→ V (B,A⊗B); a 7→ (b 7→ a⊗ b)

for a V -algebra A, the counit is just the evaluation

(3.7) εA : V (B,A)⊗B → A; f ⊗ b 7→ bf

of homomorphisms. The image of a V -algebra A under (3.4) is called the tensor product

A ⊗ B of A and B. Using the notation (3.6), the algebra A ⊗ B is generated by its

set {a ⊗ b|a ∈ A, b ∈ B} of primitive elements. Since (3.6) is a V -morphism, the maps

A→ A⊗B;x 7→ x⊗ b and B → A⊗B; y 7→ a⊗ y are homomorphisms for fixed elements

a of A and b of B. (A discussion of tensor products in entropic varieties is given in [DD].

Their good behaviour may be contrasted with the case of semigroups [Gr]. For applications

to the study of communicating processes, see [RS5].)

A τ -algebra (A,Ω) is said to be idempotent if each singleton subset of A is actually a

subalgebra. In other words, for each basic operation ω, the identity

(3.8) xx . . . xω = x

is satisfied.

Definition 3.3. A mode is an idempotent, entropic algebra. �

As an immediate consequence of the definition, one obtains

Proposition 3.4. Products, quotients, and subreducts of modes are modes. �

Kearnes has given the following characterization of modes.
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Proposition 3.5. A τ -algebra (A,Ω) is a mode iff each polynomial function of (A,Ω) is

a homomorphism.

Proof. First, suppose that A is a mode. Let a be an element of A. Since {a} is a subalgebra

of (A,Ω), it follows that the constant nullary operation (1.13) is a homomorphism. Since

A is entropic, the basic operations are homomorphisms. Thus each operation derived

from A
⋃
· Ω, i.e. each polynomial function, is a homomorphism. Conversely, suppose that

each polynomial function of (A,Ω) is a homomorphism. Since the basic operations are

polynomial functions, A is entropic. Since (1.13) is a homomorphism for each element a

of A, its image {a} is a subalgebra of A. Thus A is also idempotent. �

4. Examples of modes.

The aim of this section is to present some of the basic examples of modes.

(A) SETS. Construed as algebras of empty type, sets are modes.

(B) LEFT-ZERO SEMIGROUPS. A left-zero semigroup is a semigroup (S, .) satisfying the

left-zero identity

(4.1) x · y = x,

i.e. the identity saying that each element x of the semigroup acts as a left zero element.

The variety of left-zero semigroups is denoted by Lz.

(C) SEMILATTICES. A semilattice H is an idempotent, commutative semigroup. Semi-

lattices are closely associated with partial orders having either greatest lower bounds, or

least upper bounds, of all pairs of elements. Recall that a partial order (H,≤) may be con-

strued as a (small) category (H) with object set H by taking the morphism set (H)(x, y)

to be the singleton {x→ y} if x ≤ y, and empty otherwise. If (H,≤) has a greatest lower

bound glb{x, y} for {x, y} ⊆ H, then glb{x, y} = x · y is a product in (H). In this case

(H, .) becomes a semilattice, a meet semilattice. On the other hand, defining

(4.2) x ≤. y ⇔ x.y = x
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on a semilattice (H, .) yields an ordered set (H,≤.) with greatest lower bounds given by

products in the semilattice. Dually, one obtains a join semilattice (H,+) with

(4.3) x ≤+ y ⇔ x+ y = y;

the “sum” operation + on the semilattice corresponds to least upper bounds in (H,≤+) or

coproducts in (H). Now semilattices are modes. The variety of all semilattices is denoted

by Sl.

(D) AFFINE SPACES. Let R be a commutative (unital) ring. Let R-Mod be the variety of

(unital, right) R-modules, construed as algebras (E,+, 0, R) with a binary addition, nullary

zero, and unary scalar multiplications. Given a module E, the corresponding affine space

may be described algebraically as the set E equipped with all the idempotent linear or

affine operations

(4.4) En → E; (a1, . . . , an) 7→
n∑
i=1

airi

for each positive n and each element (r1, . . . , rn) of Rn with r1 + · · · + rn = 1. In this

sense, affine spaces are modes. It is convenient to write

(4.5) r′ = 1− r

and

(4.6) r ◦ s = r + s− rs = (r′s′)′

for r, s in R. Then define a set R of binary operations

(4.7) r : E2 → E; (x, y) 7→ x(1− r) + yr

for r in R. In particular, note

(4.8) xxyr s = xyrs, xyr′ = yxr
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for r and s in R. Define the ternary Mal’cev operation

(4.9) P : E3 → E; (x, y, z) 7→ x− y + z.

As noted by Ostermann and Schmidt [OS], cf. [Cs], the affine operations (4.4) are pre-

cisely the derived operations of the algebra (E,R, P ). Moreover, the algebra (E,R, P )

has the affine group as its group of automorphisms, and may thus be identified with the

affine geometry ( cf. [Ne], [OS]). Let R denote the class of affine spaces over the commu-

tative ring R. Then R may be characterized [RS2, 255] as the variety of modes of type

(R× {2}) ∪ {(P, 3)} satisfying the parallelogram laws

(4.10) xxyP = y = yxxP

together with

(4.11)


(A1) xyxP = yx2

(A2) xyp xyqr = xypqr

(A3) xyp xyq xyrP = xypqrP

(A4) xy0 = x = yx1

for p, q, r in R. If 2 is invertible in R, then one may derive the Mal’cev operation (4.9) as

(4.12) xyzP = yxz2−12.

In this case, R may be characterized as the variety of modes of type R × {2} satisfying

(A2) and (A4) of (4.11) [OS] [RS, 256]. (More generally, such a characterization obtains

iff R has no 2-element quotient [Sz].) Finally, note that tensor products of commutative

rings correlate with tensor products of varieties via

(4.13) R⊗ S = R⊗ S

for commutative rings R and S.

(E) CONVEX SETS. Let I◦ denote the open unit interval ]0, 1[= {x|0 < x < 1} in R.

Consider reducts (E, I◦) of real affine spaces (E,R). The subalgebras of such reducts are
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precisely the convex sets. One may thus characterize the class C of convex sets as the class

of algebras (A, I◦) of type I◦ × {2} satisfying idempotence

(4.14) xxp = x,

skew-commutativity

(4.15) xyp = yxp′,

skew-associativity

(4.16) xypzq = xyzq/(p ◦ q) p ◦ q,

and cancellativity

(4.17) xyp = xzp⇒ y = z

for p, q in I◦ [Ne] [RS2, 269]. Note that C forms a prevariety of modes. Many aspects of

convexity theory have direct algebraic interpretations. Here are two elementary samples:

(i) The free C-algebra XC on a set X is the simplex with vertex set X, i.e. the

(|X| − 1)-dimensional simplex.

(ii) Walls in the algebraic sense (1.3) correspond to walls of convex sets in the geometric

sense [Mi].

(F) BARYCENTRIC ALGEBRAS. Because of the implication in (4.17), the class C of

convex sets does not form a variety. However, Birkhoff’s Theorem 2.1 shows that the class

B of homomorphic images of convex sets is characterized by a set of identities. In fact, one

obtains B as the variety of barycentric algebras, namely I◦-algebras satisfying (4.14)–(4.16)

[Ne] [RS2, 214]. Note that a semilattice (H, .) is also a barycentric algebra, with

(4.18) xyp = x · y

for all x, y in H and p in I◦. Indeed, the uniqueness of left adjoints in §2 shows that the

free semilattice on a set X is the semilattice replica of the free C-algebra or set of finite

probability distributions on X.



15

5. Modals.

Fix a type τ : Ω→ N, and a class V of algebras of type τ .

Definition 5.1. A V -modal is an algebra (D,+,Ω) of type {(+, 2)}⋃· τ such that:

(a) (D,+) is a (join) semilattice;

(b) (D,Ω) is a V -mode;

(c) (D,Ω) distributes over (D,+), i.e.

(5.1)

{ ∀ω ∈ Ω, ∀1 ≤ j ≤ ωτ, ∀x1, . . . , xj , x
′
j , . . . , xωτ ∈ D,

x1 . . . (xj + x′j) . . . xωτω = x1 . . . xj . . . xωτω + x1 . . . x
′
j . . . xωτω.

�

Note that Definition 5.1(c) may be cast in the form that

(5.2) ω : (D⊗ωτ ,+)→ (D,+);x1 ⊗ · · · ⊗ xωτ 7→ x1 . . . xωτω

is a semilattice homomorphism for each ω in Ω, the tensor power D⊗ωτ or tensor product

D⊗ · · · ⊗D of ωτ copies of (D,+) being taken in the (entropic) variety Sl of semilattices.

Further, note that each modal (D,+,Ω) carries the order (D,≤+) or (D,≤) given by the

join semilattice structure (4.3) on D.

For a function f : A→ (B,≤) with ordered codomain, the epigraph is the set

(5.3) {(a, b) ∈ A×B|af ≤ b}.

A function f : (A,Ω)→ (D,+,Ω) from a τ -mode A to a τ -modal D is said to be τ -convex

(or just convex) if its epigraph is a subalgebra of (A × B,Ω). Comparing with (1.5), it is

apparent that mode homomorphisms f : (A,Ω)→ (D,Ω) are convex.

Example 5.2. For the type τ : I◦ → {2} of barycentric algebras, the algebra (R,max, I◦),

with mode reduct the convex set (R, I◦)and with join semilattice ordering (R,≤) the usual

ordering on R, is a modal. Given a convex set (C, I◦), a real valued function f : C → R

is a τ -convex function f : (C, I◦) → (R,max, I◦) in the modal-theoretic sense iff it is

convex (upwards) in the sense of real analysis. As a more combinatorial example, consider
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the power set (2X ,∩) of a finite set X as a semilattice under intersection, and then as a

barycentric algebra (2X , I◦) via (4.18). The cardinality function

(5.4) (2X , I◦)→ (R,max, I◦);Y 7→ |Y |

is convex. �

The fundamental elementary properties of a modal (D,+,Ω) are summarized by the

following lemmas.

Monotonicity Lemma 5.3. Each basic operation

(5.5) ω : (Dωτ ,≤+)→ (D,≤+)

is monotone. �

Convexity Lemma 5.4. For each positive integer r, the join

(5.6) Σr : (Dr,Ω)→ (D,+,Ω); (x1, . . . , xr) 7→ x1 + · · ·+ xr

is convex. �

Sum-Superiority Lemma 5.5. For each basic operation ω, one has ω ≤ Σωτ . �

6. Modals of subalgebras.

Fix a type τ : Ω → N. Given an algebra (A,Ω) of type τ , let AS denote the set of

all non-empty subalgebras of (A,Ω). Extending language used when (A,Ω) is the convex

set (Rn, I◦) for some n, define a polytype of (A,Ω) to be a finitely generated subalgebra of

(A,Ω). Let AP denote the set of all non-empty polytopes of (A,Ω). The power set 2A, the

set of subsets or “complexes” of A, is a τ -algebra under the so-called complex operations

(6.1) ω : (X1, . . . , Xωτ ) 7→ {x1 . . . xωτω|∀ 1 ≤ i ≤ ωτ, xi ∈ Xi}

for ω ∈ Ω. A derived operator u of τ is said to be linear if each of its arguments appears

only once as a letter in the word u. An identity (u, v) is said to be linear if both u and v are

linear. Using these concepts, one may formulate the fundamental self-replicating property

of modes [RS2, §1.4].
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Theorem 6.1. Let (A,Ω) be a mode. Then under the complex operations, (AP,Ω) and

(AS,Ω) are modes satisfying all the linear identities satisfied by (A,Ω). �

Example 6.2. For the convex set R, the mode RP is isomorphic to the northwest halfplane

of R2 via the map sending a non-empty polytope or closed interval [a, b] to the point (a, b)

with a ≤ b. �

For a mode (A,Ω), the sets AP and AS not only carry the mode structure given by

Theorem 6.1, but also the join semilattice order given by containment. In fact, one obtains

modals (AP,+,Ω) and (AS,+,Ω). Let V be the variety of τ -modes satisfying a given set

of linear identities. Let D be the variety of V -modals. The polytope construction yields

the covariant polytope functor

(6.2) P : V → D; (f : A→ B) 7→ (AP → BP ;X 7→ Xf).

There is also a forgetful functor

(6.3) U : D → V ; (D,+,Ω) 7→ (D,Ω)

forgetting the semilattice structure of modals.

Theorem 6.3. The polytope functor P of (6.2) is left adjoint to the forgetful functor U

of (6.3). For a V -mode A, the unit

(6.4) ηA : A→ APU ; a 7→ {a}

embeds A as the algebra of singletons. For a V -modal (D,+,Ω), the counit

(6.5) εD : DUP → D; 〈d1, . . . , dn〉 7→ d1 + · · ·+ dn

sums the generators of a polytope. �

The proof of Theorem 6.3, using Lemmas 5.3–5, is given in [RS2, §3.5].
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A join semilattice (H,+) is said to be complete if each non-empty subset X of H has

a least upper bound or supremum supX in (H,≤+). A τ -algebra (D,Ω) is said to be

completely distributive over a complete semilattice (D,+) if

(6.6)

{ ∀ω ∈ Ω, ∀1 ≤ j ≤ ωτ, ∀∅ ⊂ X ⊆ D, ∀x1, . . . , xj−1, xj+1, . . . , xωτ ∈ D,
sup{x1 . . . xj−1xxj+1 . . . xωτω|x ∈ X} = x1 . . . xj−1(supX)xj+1 . . . xωτω.

A modal (D,+,Ω) is said to be complete if (D,+) is a complete join semilattice and (D,Ω)

is completely distributive over (D,+).

Let E be the category of complete V -modals and homomorphisms. The non-empty

submode construction yields the covariant submode functor

(6.7) S : V → E; (f : A→ B) 7→ (AS → BS;X 7→ Xf)

(cf. [RS2, 335]). There is also a forgetful functor

(6.8) U : E → V ; (f : (D,+,Ω)→ (E,+,Ω)) 7→ (f : (D,Ω)→ (E,Ω))

analogous to (6.3). The corresponding analogue of Theorem 6.3 is then as follows.

Theorem 6.5. The covariant submode functor S of (6.7) is left adjoint to the forgetful

functor U of (6.8). For a V -mode A, the unit

(6.12) ηA;A→ ASU ; a 7→ {a}

embeds A as the algebra of singletons. For a complete V -modal (E,+,Ω), the counit is

(6.13) εE : EUS → E;X 7→ supX.

Proof. For a non-empty subalgebra X of a V -mode A, one has XηSAεAS =

{{x}|x ∈ X}εAS = sup{{x}|x ∈ X} = X, verifying ηSA · εAS = 1AS . For an element e of

a complete modal E, one has eηEUε
U
E = {e}εUE = sup{e} = e, verifying ηEU · εUE = 1EU .

(Cf. [Me, Theorem IV.1.2(v)].) �
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7. The contravariant subalgebra functor.

Given an algebra (A,Ω) of a type τ : Ω → N, let AT denote the totality or set of all

subalgebras of (A,Ω), including the empty subalgebra if 0 /∈ Ωτ . An identity u = v is

said to be regular if arg u = arg v. Analogous to Theorem 6.1, one has the following

self-replicating property.

Proposition 7.1. Let (A,Ω) be a mode. Then under the complex operations, (AT,Ω) is

a mode satisfying all the regular linear identities satisfied by (A,Ω). �

A poset (G,≤) is a complete lattice iff each (possibly empty) subset X of G has a

supremum supX and infimum (or greatest lower bound) inf X in (G,≤). In other words,

the small category (G) is complete and cocomplete. The least or zero element of G is the

supremum of the empty subset of G. A non-zero element c of G is compact or “finite” if

(7.1) (∃X ⊆ G. c ≤ supX)⇒ (∃ finite F ⊆ G. c ≤ supF ).

For example, the compact elements of the complete lattice of open subsets of a topological

space are precisely the non-empty open subsets that are compact as subspaces. The set

GQ of compact elements of a complete lattice (G,+, .) forms a join subsemilattice (GQ,+)

of (B,+). Recall the definitions of the down-set

(7.2) ↓ x = {y ∈ G|y ≤ x}

and up-set

(7.3) ↑ x = {y ∈ G|y ≥ x}

of an element x of a poset (G,≤). A complete lattice G is algebraic if each element x of G

is the supremum

(7.4) x = sup(GQ ∩ ↓x)

of the compact elements beneath it. A poset is bounded if it has a least element 0 and a

greatest element 1. A topological space is zero-dimensional if it has a basis of clopen sets.

A bounded poset is a B-space if it is a compact, Hausdorff, zero-dimensional topological

meet semilattice.
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Proposition 7.2. The following conditions on a bounded poset G are equivalent:

(a) G is an algebraic lattice;

(b) G is a B-space;

(c) There is a type τ : Ω → N such that G is isomorphic to the poset (AT,⊆) of

subalgebras of a τ -algebra (A,Ω).

Proof. See [Bk, Th. VIII.5.8′] and [Jo, Cor. VI.3.6]. �

In Proposition 7.2(c), the compact elements of AT are precisely the polytopes of (A,Ω),

i.e.

(7.5) ATQ = AP

[Bk, Th. VIII.5.7].

Mimicking the definition of an “arithmetic” lattice [Gi, Defn. I.4.6], consider the fol-

lowing

Definition 7.3. Let V be a class of algebras of type τ : Ω → N. A complete V -modal

(D,+,Ω) is arithmetic if (D,≤+) is an algebraic lattice and (DQ,Ω) is a submode of

(D,Ω). �

By Proposition 7.2, (7.5), (6.7) and Theorem 6.1, the totality AT of a τ -mode (A,Ω) forms

an arithmetic τ -modal (AT,+,Ω). The aim now is to make the assignment A 7→ AT the

object part of a functor like (6.2) and (6.7), so that an analogue of Theorems 6.3 and 6.5

holds. For the rest of this section, fix a type τ : Ω→ N.

For a function f : D → (E,≤) with ordered codomain, the hypograph is the set

(7.6) {(d, e) ∈ D × E|df ≥ e}

– compare (5.3). A function f : (D,+,Ω)→ (E,+,Ω) between τ -modals is concave if the

hypograph of f is a subalgebra of (D×E,Ω). Although a composite of concave functions

need not be concave, note that the composite of two monotone concave functions is again

monotone concave.
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The class of B-spaces becomes the object class of a category B on taking a B-morphism

f : (G1, ., 0, 1)→ (G2, ., 0, 1) between two B-spaces with meet semilattice operation ., lower

bound 0 and upper bound 1 to be a continuous semilattice homomorphism with 0f = 0

and 1f = 1. There is then a contravariant functor Q : B→ Sl with

(7.7) fQ : (G2Q,+)→ (G1Q,+); c 7→ inf f−1 ↑ c

for a B-morphism f : G1 → G2 [HMS, Th. II.3.7 and Prop. II.3.20] [RS10, (2.6)].

Definition 7.4. Let V be a variety of modes of type τ : Ω → N satisfying a set of

regular linear identities. A concave function f : (D,+,Ω)→ (E,+,Ω) between arithmetic

V -modals is a BV -morphism if

(a) f : (D,≤+)→ (E,≤+) is a B-morphism and

(b) fQ : (EQ,Ω)→ (DQ,Ω) is a V -morphism. �

Proposition 7.5. Let V be a regular linear variety of τ -modes. Then there is a category

BV whose morphisms are the BV -morphisms between arithmetic V -modals.

Proof. Let f : (D,+,Ω) → (E,+,Ω) and g : (E,+,Ω) → (F,+,Ω) be BV -morphisms.

By Definition 7.4(a), the concave functions f and g are monotone, so their composite is

also concave. By (7.7), one also has (fg)Q = gQfQ as the composite of the V -morphisms

gQ : (FQ,Ω)→ (EQ,Ω) and fQ : (EQ,Ω)→ (DQ,Ω). �

Theorem 7.6. Let V be a regular linear variety of modes. Then there is a contravariant

functor

(7.8) T : V → BV ; (f : A→ B) 7→ (BT → AT ;X 7→ f−1X)

left adjoint to the forgetful functor

(7.9) Q : BV → V ; (f : (D,+,Ω)→ (E,+,Ω)) 7→ (fQ : (EQ,Ω)→ (DQ,Ω)).

For a V -mode A, the unit

(7.10) ηA : A→ ATQ; a 7→ {a}
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embeds A as the algebra of singletons. For an arithmetic V -modal (D,+,Ω), the counit is

(7.11) εD : D → DQT ; d 7→ {c ∈ DQ|c ≤ d}.

Proof. In (7.8), consider a basic operation ω and subalgebras X1, . . . , Xωτ of (B,Ω). Then

(f−1X1) . . . (f−1Xωτ )ω = {a1 . . . aωτω|aif ∈ Xi} ⊆ f−1(X1 . . . Xωτω), verifying the con-

cavity of f−1. The image under (f−1)Q of a finitely generated subalgebra X of A is

inf(f−1)−1 ↑ X = inf{S ∈ BT |X ⊆ f−1S} = inf{S ∈ BT |Xf ⊆ S} = Xf . By (7.5)

and (6.2), it then follows that (f−1)Q is a V -morphism. The remaining verifications are

straightforward. �

The functor of (7.8) is known as the contravariant subalgebra functor.

Example 7.7. To see that fT : (BT,Ω) → (AT,Ω) in (7.8) need not be a V -morphism,

take V to be Sl and take f : A → B to be the constant homomorphism f : {x, y}Sl →

{x, y}Sl with image {x.y}. Then f−1{x}.f−1{y} = ∅.∅ = ∅ ⊂ {x, y}Sl = f−1{x.y}. �

8. A structure theorem.

The structure theory of modes and modals is very rich. Theorem 8.3 below is intended

to give one sample, showing how a general mode may be constructed from semilattices

and affine spaces. Throughout this section, τ : Ω → N will be a plural type, i.e. with Ωτ

a non-empty subset of {n ∈ N|n > 1}. A join semilattice (H,+) becomes a τ -algebra on

setting

(8.1) h1 . . . hωτω = h1 + · · ·+ hωτ .

The algebra (H,Ω) is called an Ω-semilattice. Plurality of τ ensures that (H,+) may be

recovered from (H,Ω). Given a (covariant) functor G : (H)→ τ , the P lonka sum HG over

the semilattice (H,+) by the functor G is the τ -algebra structure on the disjoint union

HF =
⋃
·

h∈H
hG given by disjoint summands of basic operations

(8.2) ω : h1G× · · · × hnG→ kG; (x1, . . . , xn) 7→ x1(h1 → k)G . . . xn(hn → k)G
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for n = ωτ and k = h1 + · · · + hn. For a variety V of τ -algebras, the regularization Ṽ is

the variety of τ -algebras satisfying all the regular identities satisfied by V -algebras. The

P lonka sum of a functor G : (H)→ V lies in Ṽ .

A variety V is a Mal’cev variety if it has a ternary derived operator P , the Mal’cev

operator [cf. (4.9)], such that the parallelogram laws (4.10) are satisfied in V . Mal’cev

varieties of modes are just affine spaces [RS2, Theorem 254]:

Theorem 8.1. Let V be a Mal’cev variety of modes. Then the free V -algebra {0, 1}V

carries a commutative ring structure such that V is the variety {0, 1}V of affine spaces

over {0, 1}V .

Proof. The ring product in {0, 1}V is defined by the first equation of (4.8). Subtraction

in {0, 1}V is defined by x− y = xy0P . For further details, see [RS2, §2.5]. �

Now let V be a variety of modes of type τ . The tensor product variety Z⊗V is a Mal’cev

variety, and thus by Theorem 8.1 is the variety of affine spaces over a commutative ring

RV . Let F be a minimal cogenerator for the category RV -Mod of modules over RV [AF,

§18]. The corresponding affine space F lies in Z⊗ V , and thus has a V -reduct F . Let F∞

be the P lonka sum over the 2-element semilattice 0 → 1 by the functor to V that sends

the unique non-identity arrow to the V -morphism F → {∞}. Note that F∞ lies in the

regularization Ṽ .

Definition 8.2. A V -algebra A is separable if

(8.3) ∀ a 6= b ∈ A, ∃ f ∈ Ṽ (A,F∞). af 6= bf. �

Theorem 8.3 [RS9]. A V -algebra A is separable iff it is a subreduct of a P lonka sum of

affine spaces over RV . �

Example 8.4. For the variety B of barycentric algebras, the ring RB is the field R.

Moreover, the vector space R is a minimal cogenerator for the variety of real vector spaces.

Flood [Fl] showed that barycentric algebras are separable. Theorem 8.3 then exhibits each

barycentric algebra as a subalgebra of the I◦-reduct of a P lonka sum of affine spaces. In
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fact, one may characterize barycentric algebras as subalgebras of P lonka sums of convex

sets [RS6, Th. 4.5] �

Example 8.5. A commutative binary mode (G, .) is a mode with a single commutative

binary operation (multiplication). Recall that a quasigroup (Q, ./, \) is a set equipped with

a binary multiplication . , right division/ and left division \ satisfying

(8.4)

{
(x.y)/y = x = y \ (y.x)

(x/y).y = x = y.(y \ x).

By [RS7, Th. 6.4], each commutative binary mode is a subalgebra of a P lonka sum

of multiplicative reducts of commutative quasigroup modes. Now quasigroups have the

Mal’cev operation xyzP = [x/(y \ y)].(y \ z). As an application of Theorem 8.1, one

obtains [RS2, 433] the variety of commutative quasigroup modes as the variety of affine

spaces over Z[2−1]. Thus each commutative binary mode is a subalgebra of the {2−1}-

reduct of a P lonka sum of affine spaces over Z[2−1]. But if V is the variety of commutative

binary modes, one may readily verify RV = Z[2−1]. Theorem 8.3 then shows that each

commutative binary mode is separable. Commutative binary modes are ideal candidates

for representing barycentric algebras (such as convex sets) in digital computers. For a

further discussion of this issue, see [RS2, §4.6]. �

9. Affine to projective geometry.

The classical passage from affine to projective geometry [Br, §81], consisting of the

addition of a “hyperplane at infinity”, is not an intrinsic construction. Part of the problem

lies with the schizophrenia that is inherent in classical geometry, namely the split between a

geometry and an algebra coordinatizing it. (“Pursuing analytic geometry based on abstract

spaces whose points are systems of numbers, we should pay attention to a clear distinction

between the geometric properties under investigation and the arithmetic properties of

these systems” [Br, p. 6].) The importance of modal theory in geometry resides in its

ability to provide algebraic structures (“systems of numbers” with “arithmetic properties”

in Borsuk’s terms) that may be directly identified with geometric structures, removing

the dualism between a geometric space and its coordinatizing algebra. For example, affine
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spaces may be identified with the modes of §4(D), or convex sets with the modes of §4(E).

As an illustration of the application of modal theory to geometry, this section demonstrates

how it may be used to give an intrinsic, invariant passage from real affine space to real

projective space.

Given a real vector space E, the corresponding projective space is the join semilattice

(L(E),+) of non-empty vector subspaces of E. On the other hand, the corresponding

affine space E may be identified as a mode (E,R) in the variety R of algebras of type

R×{2} satisfying (A2) and (A4) of (4.11). The affine space (E,R) has a convex set reduct

(E, I◦). In particular, (E, I◦) is a barycentric algebra. Using (4.18) or (8.1), a semilattice

such as (L(E),+) may be viewed as a barycentric algebra satisfying the identities

(9.1) xyp = xyq

for p, q in I◦. Indeed, the class Sl of I◦-semilattices is precisely the variety of barycentric

algebras satisfying the identities (9.1). According to [RS3], the invariant passage from real

affine to projective geometry may then be described by

Theorem 9.1. The projective geometry (L(E), I◦) is the semilattice replica of the image

(ES, I◦) under the covariant submode functor (6.7) of the convex set reduct (E, I◦) of the

affine geometry (E,R). �

Extensions of Theorem 9.1 to more general underlying fields and rings are discussed in

[RS3], [PRS].

10. Differential groupoids.

A differential groupoid (G, .) is a mode with a single binary operation of multiplication,

satisfying the reductive law (2.3). Differential groupoids offer a modal-theoretic approach

to certain topics in calculus and homological algebra. There are two basic congruence

relations on a differential groupoid G: the Lz-replica congruence [cf. §4(B)] relation β of

cobordism, and the cocyclism relation γ, namely the kernel of

(10.1) G→ Set(G,G); y 7→ (x 7→ xy).
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Note that β ≤ γ, i.e. cobordic elements are cocylic. Each element x of G determines a

homology set

(10.2) xγ nat β = {yβ |(x, y) ∈ γ}.

Let d denote the variety of differential groupoids. The tensor product variety Z ⊗ d is

the variety Z[d] of affine spaces over the ring Z[X]/〈X2〉 = Z[d] of integral dual numbers,

i.e. the ring of integers extended by the indeterminate d with d2 = 0. In Mac Lane’s

terminology [Ma, II.1], a (left) Z[d]-module K is a differential group, i.e. an abelian group

(K,+) equipped with an endomorphism d satisfying d2 = 0.

Elements of Ker d are called cycles, and elements of Im d are called boundaries. The homol-

ogy group H(K) of K is defined as the quotient Ker d/Im d. (In topological applications,

K is graded by dimension. The homology group inherits the grading, becoming a direct

sum H(K) =
⊕
n∈Z

Hn(K) of “(co)homology groups” . . . , H−1(K), H0(K), H1(K), . . . , etc.)

Now the differential groupoid multiplication in Z[d] is given by

(10.2) x.y = x− dx+ dy.

With this definition, a differential group K in Mac Lane’s sense becomes a differential

groupoid (K, .). Elements of (K, .) are cobordic iff they differ by a boundary in (K,+),

and cocyclic iff they differ by a cycle in (K,+). The homology set of each element of (K, .)

may be identified with the homology group H(K).

The ring R[d] = R⊗Z[d] of real dual numbers, equipped with the multiplication (10.2),

becomes a differential groupoid providing a convenient framework for certain aspects of real

differential calculus. At each point a of R, an everywhere-differentiable function f : R→ R

has the tangent line approximation fa : R→ R with

(10.3) fa(a+ x) = f(a) + xf ′(a).

These tangent line approximations may be used to extend the function f : R → R to a

function f : R[d]→ R[d] by means of the formula

(10.4) f(a+ dx) = f(a) + f ′(a)dx
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for real x. Now the endomorphism d of the differential group R[d] yields an exact sequence

(10.5) 0→ dR→ R[d]
d−→ R[d]

π−→ R→ 0.

The cokernel π : R[d] → R; a + dx 7→ a is described as taking the finite part of a dual

number a+dx. Cobordic elements are described as being infinitesimally close. In general,

the extended functions (10.4) are not homomorphisms of the differential groupoid struc-

ture on R[d], although affine functions such as the extension of (10.3) to R[d] are. The

following theorem expresses the relationship of a differentiable function to its tangent line

approximations by saying that these approximations “repair the failure of the function to

be a differential groupoid homomorphism”.

Theorem 10.1. With notation as above, one has

(10.6) f(x.y) = f(x).fxπ(y)

for dual numbers x and y. Moreover, each solution g : R[d] → R[d] to the functional

equation

(10.7) ∀ y ∈ R[d], f(a.y) = f(a).g(y)

is infinitesimally close to the tangent line approximation fa. �

Inspired by the example of the real dual numbers, one may introduce concepts of dif-

ferentiability and continuity for an arbitrary differential groupoid (G, .).

Definition 10.2. Consider a function f : G→ G, and an element x of G.

(a) The function f is differentiable at x if there is an endomorphism fx of (G, .), called a

derivative of f at x, such that

(10.8) ∀ y ∈ G, (x.y)f = xf.yfx.

(b) The function f is continuous at x if

(10.9) x β y ⇒ xf β yf.
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(c) The function f is differentiable or continuous (everywhere) if it is differentiable or

continuous at each element x of G. �

With Definition 10.2(a), one obtains a Chain Rule: if f is differentiable at x and g is

differentiable at xf , then fg is differentiable at x and

(10.10) (fg)x = fxgxf .

Moreover, differentiability implies continuity in the following sense.

Theorem 10.3. If f : G → G is differentiable at each member of the cobordism class of

an element x of G, then f is continuous at x. �

For further details of the topics of this section, see [RS8].

11. Support functions of bounded convex sets.

In this section, the space Rd is considered as Euclidean space with the Euclidean inner

product (x|y). For a non-empty convex subset A of Rd, the set AK of non-empty compact

convex subsets of A forms a submodal (AK,+, I◦) of the image (AS,+, I◦) of the barycen-

tric algebra (A, I◦) under the covariant submode functor S : B → E of (6.7). Let C(Rd)

denote the subset of Set (Rd,R) consisting of continuous functions. Then C(Rd) is a sub-

modal of the modal (Set(Rd,R),+, I◦) induced pointwise from the modal (R,max, I◦) or

(R,+, I◦) of Example 5.2. For a non-empty convex subset A of Rd, the modal (AK,+, I◦)

embeds homomorphically into (C(Rd),+, I◦) via the support function

(11.1) H : AK × Rd → R; (x, y) 7→ sup{(x|y)|x ∈ X}.

Indeed, an element X of AK is specified as

(11.2) X = {x ∈ A|∀ y ∈ Rd, x ≤ H(X, y)}

[Bo, p.24]. Furthermore, for fixed X in AK, the support function of X

(11.3) HX : (Rd, I◦)→ (R,+, I◦); y 7→ H(X, y)
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is convex [Bo, p.24], and so continuous [Bo, p. 19]. Note that a convex function

f : (Rd, I◦)→ (R,+, I◦) such as (11.3) need not be differentiable, although for any x, y in

Rd, the limit

(11.4) f ′(x; y) = lim
h→0+

f(x+ yh)− f(x)

h

does exist [Bo, p.19]. Moreover, the function (Rd, I◦) → (R,+, I◦); y 7→ f ′(x; y) is again

convex for each x in Rd. The embedding of RdK into C(Rd) is then given by

(11.5) (RdK,+, I◦)→ (C(Rd),+, I◦);X 7→ HX .

An element f of C(Rd) is positively homogeneous if

(11.6) ∀ p ∈ (0,∞),∀ x ∈ Rd, f(px) = pf(x).

Note that if f : Rd → R is convex, then y 7→ f ′(x; y) is positively homogeneous [Bo,

§13(3)]. The support functions of compact convex subsets of Rd are then characterized as

the functions that are positively homogeneous and convex [Bo, §17].

One of the research programmes in applied modal theory is to extend the support

function concept from compact to arbitrary convex subsets of Euclidean spaces. The topic

of this section is the extension to bounded (i.e. not necessarily closed) convex sets [RS4].

Let (RdB,+, I◦) denote the submodal of (RdS,+, I◦) consisting of bounded convex sets.

The codomain of support functions (11.3) of compact convex sets is the modal

(11.7) D = (R,+, I◦).

By induction on the dimension d, a codomain modal Dd is constructed such that the

support function of a bounded convex set is a function Rd → Dd. The construction uses

the ordinal product D ◦ E of two τ -modals (D,+,Ω) and (E,+,Ω). The mode reduct of

D ◦ E is just the product (D,Ω) × (E,Ω). A partial order ≤ is defined lexicographically

on D × E by

(11.8) (d, e) ≤ (d′, e′) iff d <+ d′ or (d = d′ and e ≤+ e′).
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Now (D × E,≤+) is a join semilattice order iff (D,+) is a chain or (E,+) has a least

element [Sl]. A zero element of a modal (E,+,Ω) is defined to be a least element 0 of

(E,+) such that {0} is a sink of (E,Ω). A τ -algebra (D,Ω) is said to be cancellative if

(11.9)

{ ∀ ω ∈ Ω, ∀ 1 ≤ i ≤ ωτ, ∀ x1, . . . , xωτ , y, z ∈ D,
x1 . . . xi−1yxi+1 . . . xωτω = x1 . . . xi−1axi+1 . . . xωτω ⇒ y = z.

Theorem 11.1 [RS4, 2.5]. For a plural type τ : Ω→ N, suppose that

(a) the mode (D,Ω) is cancellative, and

(b) either (D,+) is a chain, or (E,+,Ω) has a zero element.

Then the ordinal product D ◦ E is a τ -modal (D ◦ E,+,Ω). �

Along with the series of codomain modals Dd for d ≥ 1, there are three other series

of inductively defined modals Ed(d ≥ 0), Fd(d ≥ 1), and Gd(d ≥ 0). The induction basis

is the singleton G0. The induction step begins with a modal Gd−1 of support functions

identified with (Rd−1B,+, I◦). Note that R◦B is the singleton {{0}}. The modal Ed−1 is

obtained from Gd−1 by adding a zero element, identified with the empty subset of Rd−1.

The pair of modes (D,Ed−1) then satisfies the conditions of Theorem 11.1. The next

codomain modal Dd is defined to be the ordinal product Dd = D ◦ Ed−1. The modal Fd

is the set of functions Rd → Dd with the pointwise modal structure. The induction step

is completed by giving five conditions on functions in Fd, the “G-conditions” of Definition

11.2 below, that define its submodal Gd of support functions identified with (RdB,, I◦).

The five G-conditions are the analogue of the two conditions, namely positive homogeneity

and convexity, that characterize the support functions of compact convex sets.

Since the underlying set of Dd is R× Ed−1, an element f of Fd may be written as

(11.10) f : Rd → Dd;x 7→ (Hf (x), Cf (x)).

Here Cf (x), by the identification of Ed−1 with Rd−1B∪{∅}, is a (possibly empty) bounded

convex subset of Rd−1 called the crust shadow (in the x direction). Also Hf : x 7→ Hf (x) is

a real-valued function on Rd, called the real function part of f . The first two G-conditions

on f are just the positive homogeneity and convexity of Hf . If f is taken as the support
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function of a non-empty bounded convex subset X of Rd, then Hf is just the traditional

support function of the non-empty compact convex closure X of X in Rd. To complete

the description of X, its intersection with the supporting hyperplane of X in the direction

of each non-zero vector x of Rd must be given. This intersection is called the crust of

X (in the x direction). The crust is a (possibly empty) bounded convex subset of the

supporting hyperplane. It is described by f as the preimage of the crust shadow Cf (x)

in Rd−1 under a certain affine isomorphism πx from the supporting hyperplane to Rd−1.

Thus, before the remaining conditions on f can be given, the maps πx must be specified.

Their specification depends on the satisfaction of the first two G-conditions by f , so that

Hf really is the support function of a non-empty compact convex subset of Rd.

For each 1-dimensional vector subspace V of Rd, pick a linear isomorphism θV : Rd/V →

Rd−1. For each non-zero point x of Rd, define

(11.11) πx : {z ∈ Rd|(z|x) = Hf (x)} → Rd−1

to be the composite of the restriction of the projection Rd → Rd/xR; z 7→ z+ xR with the

isomorphism θxR. Note that such πx is an affine isomorphism. By convention, π0 is defined

to be the zero map Rd → Rd−1. For a function f in Fd with positively homogeneous convex

real function part Hf , and for x in Rd, define the supercrust (at x)

(11.12) Kf (x) = {z ∈ Rd|∀ y ∈ Rd, (z|y) ≤ H ′f (x; y)}.

Note that (Kf (x), I◦) is a subalgebra of (Rd, I◦). Let Kf (x)◦ be its smallest non-empty

sink, i.e. the interior of the compact convex set Kf (x).

Definition 11.2. The subset Gd of Fd, for d > 0, is defined to be the set of functions

(11.10) satisfying the G-conditions:

(GC1) Hf is positively homogeneous;

(GC2) Hf is convex;

(GC3) ∀ x ∈ Rd, Cf (x) ⊆ πx(Kf (x));

(GC4) ∀ x ∈ Rd, Hf (−x) = −Hf (x) ⇒ Cf (x) ⊆ πx(Kf (x)◦);
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(GC5) ∀ 0 6= x, y ∈ Rd, π−1
x (Cf (x)) ∩ {z ∈ Rd|(z|y) = Hf (y)}

= π−1
y (Cf (y)) ∩ {z ∈ Rd|(z|x) = Hf (x)}. �

Definition 11.3. Let X be a non-empty, bounded convex subset of Rd, with closure X.

Let HX be the support function of X. For x in Rd, let CX(x) be the image under πx of the

crust X ∩ {z ∈ Rd|(z|x) = HX(x)} of X in the x direction. Then the (extended) support

function of X is the function

(11.13) fX : Rd → Dd;x 7→ (HX(x), CX(x)). �

Theorem 11.4 [RS4]. The map

(11.14) ϕ : (RdB,+, I◦)→ Fd;X 7→ fX

is a modal embedding with image Gd. �

12. Multiplication tables of central quasigroups.

The definition (8.4) of a quasigroup implies that the multiplication table of a finite

quasigroup is a bordered Latin square. The left hand border identifies the left hand factor

in a product, while the top border identifies the right hand factor. Since these borders are

not intrinsic to the Latin square, the same Latin square may arise from non-isomorphic

quasigroups. A homotopy

(12.1) (f1, f2, f3) : (A, .)→ (B, ∗)

from a quasigroup A to a quasigroup B is a triple of functions fi : A→ B satisfying

(12.2) ∀ a1, a2 ∈ A, a1f1 ∗ a2f2 = (a1 · a2)f3.

Homotopies compose componentwise. The category of homotopies between quasigroups is

denoted by Qtp. An invertible morphism in the category Qtp is called an isotopy. Then

isomorphic Latin squares correspond to isotopic quasigroups.
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Since algebra deals predominantly with homomorphisms, it has been hard to give an

algebraic treatment of quasigroup homotopies. In fact, quasigroup homotopies have rather

been considered as part of the geometric theory of nets [Bu]. However, recent work [S4] has

proposed one purely algebraic approach to homotopies. A quasigroup is semisymmetric if

it satisfies the identity

(12.3) (xy)x = y.

Let P be the category of (homomorphisms between) semisymmetric quasigroups. There is a

forgetful functor Σ : P → Qtp sending a P -morphism f : A→ B to the homotopy (f, f, f) :

A → B with equal components. In the other direction, there is a semisymmetrization

functor ∆ : Qtp→ P . The object part of ∆ sends a quasigroup Q to the set Q3 equipped

with the product

(12.4) (x1, x2, x3)(y1, y2, y3) = (y3/x2, y1 \ x3, x1y2).

The morphism part of ∆ sends a quasigroup homotopy (12.1) to the homomorphism

(12.5) (a1, a2, a3) 7→ (a1f1, a2f2, a3f3).

Then ∆ is right adjoint to Σ [S4, Th. 5.2].

An important class of quasigroups is the class of central quasigroups. A quasigroup Q is

central if the diagonal Q̂ = {(x, x)|x ∈ Q} is a normal subquasigroup of Q2, i.e. if there is

a congruence on Q2 with Q̂ as a congruence class. Entropic quasigroups are central. Each

central quasigroup is isotopic (in fact “centrally isotopic” [S2, Defn. III.4.1]) to a module

A over the free group on {R,L} equipped with the multiplication

(12.6) x.y = xR+ yL.

If the actions of R and L on A do not commute, then the quasigroup (A, .) will not be

entropic. However, semisymmetrizations of central quasigroups are entropic [S4, Th. 6.3].

The multiplication table of a quasigroup Q may be considered as the subset

(12.7) {(x, y, z) ∈ Q|x.y = z}

of the semisymmetrization Q∆. The elements of (12.7) are always idempotent in Q∆, but

do not necessarily form a subquasigroup of Q∆. However, they do if Q is central.



34

Theorem 12.1. The multiplication table (12.7) of a central quasigroup Q forms a semisym-

metric quasigroup mode under the multiplication (12.4).

Proof. The product of elements (x, y, xy) and (z, t, zt) of (12.7) is (zt/y, z \ xy, xt). (Mul-

tiplication binds more strongly than the divisions.) By [S4, Prop. 6.2(c)], one then has

(zt/y)(z \ xy) = (xy/y)(z \ zt) = xt. Thus the product again lies in (12.7). �

Corollary 12.2. The multiplication table of a central quasigroup is an affine space over

the ring Z[ω], where ω = exp(2πi/3).

Proof. Letting V be the variety of P -modes, one may apply Theorem 8.1. ThenRV = Z[ω].

The quasigroup multiplication becomes −ω, while the divisions become 1 + ω. �

For Corollary 12.2, compare [RS2, 436].
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