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1. INTRODUCTION A long-standing problem in domain theory has been the search for 

algebra structures that ride naturally on the ordered sets involved. Indeed, the 

constructions in the theory of complete partial orders and continuous lattices, as 

applied to the recursive definition of a data structure, are usually independent of 

any algebra carried by the data structure, and do not mesh nicely with the 

algebra. The aim of the current paper is to provide an introduction to the kind of 

algebra that does guarantee a good mesh with partial orderings, and to present 

topological ideas and category-theoretical relationships showing how the algebra is 

automatically reproduced under order-theoretical constructions such as power 

domains. As a potential application of the algebra, a new direct approach to the 

programming of geometry and scientific models is proposed. 

Giving a brief survey of an extensive theory, this paper is necessarily 

somewhat condensed. Fuller details of many of the topics treated here, as well as 

an introduction to the universal algebraic notations used, may be found in [6]. 

Note, too, that the whole theory as described here has so far only been worked out 

on the basis of finitary universal algebraic methods. There is great potential for 

future development of the theory using the monadic approach to algebra. Another 

aspect of the theory that has hardly been investigated at all is that of duality. 

Here, too, a great deal remains to be done. 

2. MODKS The basic algebraic concept is that of a mode. A mode is an algebra 

(A,~) satisfying the following conditions: 

(2.1) The algebra is idempotent, i.e. each singleton subset {a} of A is a 

subalgebra ({a} ,~) of (A,~) ; and 
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(2.2) the algebra is entropic, i.e. each operation ~ in ~ (of arity mT), 

A ~T (x I ,x~T) already a set mapping ~ : ÷ A; ,... ~+ x I ... x T~ , is also a 

(A ~ homomorphlsm ~ : ,~) ÷ (A,~) . 

Some examples will serve to demonstrate the scope of this apparently restrictive 

definition, showing how various familiar mathematical concepts are brought into the 

purview of modal theory. 

EXAMPLE 2.3. If ~ is empty, the conditions (2.1) and (2.2) are vacuously 

satisfied. Thus unstructured sets A are modes. 

EXAMPLE 2.4. A semilattice (L,.) is a mode. Idempotence reduces to x-x = x 

for x in L, while the entropic law (x.y) • (z-t) = (x.z) • (y.t) for the single 

infix binary operation • follows from the commutative and associative laws. The 

semilattice (L,.) has a partial order specified by 

(2.5) x 4 y if and only if x.y = x • 

With this order, (L,-) is called a meet semilattlce. If a partial order ~ is 

given on a set L, and this partial order is known to come from a meet semilattlce 

structure on L (i.e. each pair of elements of L has a greatest lower bound), 

then (2.5) may be read backwards to specify the semilattlce operation . on L. 

Sometimes the dual notion of join semilattlce (L,+) is used: x ~ y if and only 

if x + y = y. Meet and join semilattices are the means by which order is dealt 

with in modal theory. 

EXAMPLE 2.6. Let E be a vector space over a field R, or more generally a unital 

module over a commutative ring R with I. For each r in R, define a binary 

operation r by 

(2.7) r : E x E + E; (x,y)~ x(l-r) + yr. 

Interpreting R as the set of these binary operations ~, the algebra 

(E,R) becomes a mode. Idempotence follows since xxr = x(l-r) + xr = xl = x , and a 
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straightforward calculation establishes the entropic laws xyrztrs = xzsyts[. These 

algebras (E,R) serve to relate linear algebra to modal theory. 

EXAMPLE 2.8. Let I ° denote the open unit interval in the set R of real 

numbers. Given a real vector space E thought of as a mode (E,R) according to 

o 
Example 2.6, the reduct (E,I), admitting just those operations E for which 

o 
0 < r < l, is also a mode. Subalgebras (S,I) of this mode are then just convex 

subsets of E. In this way convexity becomes part of modal theory. An important 

application of these examples is to non-determinism. A convex subset S of E may 

represent (possibly) non-determinlstic states of a machine. An extreme point x 

of E represents a deterministic state. Given two states x, y in S, and 

0 < p < i, the state xyp represents a non-deterministlc state obtained by choosing 

x with probability I - p and y with probability p. 

EXAMPLE 2.9. Let T be the vertex set of a tree. Given three vertices x, y, z 

of T, let xyzM denote the unique vertex that lles on each of the paths from x 

to y, from y to z, and from z to x. Note that if any two of x, y, z 

coincide to equal t, then xyzM = t. In particular xxxM = x, so the algebra 

(T,M) with the ternary operation M is idempotent. The entroplc law 

(2.10) logMabeMpltMM = lapMobiMgetMM 

for (T,M) may also be verified (by a tedious case analysis). 

the tree of Figure 1. 

It is illustrated on 
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Given a tree, one thus obtains a mode (T,M), known as a tree algebra [3]. 

Conversely, conditions on a ternary algebra (T,M) ensuring that it comes from a 

tree T in this way have been given [3, 1.2-3]. Thus trees may be regarded as 

modes. 

3. POWER D OF~IBS Given a mode (A,~) , let AS denote the set of non-empty 

subalgebras of (A,~). For each ~ in ~ (of arlty ~T), an operation known as 

complex produgt or complex u-product may be defined on AS by 
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(3.1) x 1 ... x~ = {xl...xT~Ix i ~ xi}. 

That X 1 ... XmT~ is a subalgebra of (A,~) is a typical consequence of the 

entropic law. One then obtains the fundamental self-reproducing property of modes 

under this power domain construction that shows how well these concepts fit 

together. 

PROPOSITION 3.2 [6, 146]. If (A,~) is a mode, then under the complex product 

operations of (3.1), (AS,~) is again a mode. 

Let AP denote the set of polytopes or finitely generated non-empty subalgebras of 

o 
(A,~). (If (A,~) is (E,I) as in Example 2.8, then EP is precisely the set of 

polytopes of E in the geometric sense.) If non-empty subalgebras 

SI, ..., S of (A,~) are generated by sets X I, ..., X respectively, then an 

inductive proof [6, 147] shows that the complex product S l ... S Tm is generated 

by X 1 ... X ~. As a consequence of this, the set AP under the complex product 

operations forms a submode (AP,~) of (AS,~). Further, there is a homomorphic 

canonical embeddln~ 

(3.3) I : (A,n) + (AP,~); a~- {a} 

of (A,~) into (AP,~), or indeed of (A,n) into (AS,a). 

The sets AP and AS also carry additional structure, namely ordering by set 

inclusion. This order determines join semilattlce structures (AP,+) and (AS,+), 

as discussed in Example 2.4. There is a special relationship between 

the a-algebra structures and the join semilattice structures on AP and AS, 

expressed by the following definition and proposition. 

DEFINITION 3.4. An a-algebra structure (D,~) on a set D is said to distribute 

over a semilattlce structure (D,+) on D if, for each ~ (of arity ~T), and for 

. • X~ in D, each I ~ j ~ ml and x I, .., xj, .., x, 

. = .. . + x I ... x ~. ..o x ~. x 1 .. (xj+x~) ... x ~ x 1 . x j  .. x T~ J ~ 
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PROPOSITION 3.5. [6, 313]. For a mode (A,~), the complex product structure 

(AS,~) distributes over the semilattice (AS,+). 

This distributivity is surprising, as a priori there is no reason to expect any nice 

interaction between the two structures on AS and AP. It is further evidence of 

the good behaviour of mode algebra with respect to order. Some consequences of the 

distrlbutivity are worked out in the next section. This section concludes with a 

simple example illustrating the power domain construction AP. 

EXAMPLE 3.6. Let (A,.) denote the meet semilattice structure on A = {i} ~N 

(natural numbers with bottom element) in which H forms an antichain and I is 

below each element of N. The Hasse diagram of (A,~), i.e. the directed graph of 

the relation "is covered by", is as follows: 

0 1 2 3 ... 

"-...\/J 
The power domain AP consists of all finite non-empty subsemilattlces of (A,.). 

Aside from the singletons {n} for n in H, this comprises the unions of {±} and 

finite subsets of N. Now it follows from the stronger version of Proposition 3.2 

given in [6, 146] (and requiring universal algebraic concepts for its formulation) 

that (AP,.) forms a (meet) semilattice under the complex product. Thus the power 

domain AP carries two semilattice structures, the meet semilattlce (AP,.) and 

the join semilattlce (AP,+). In each of these, there is a copy of the lattice of 

finite subsets of N, a finite subset F of N being represented by F~{I}. In 

(AP,'), the singletons {n} for n in N appear as maximal elements covering the 

corresponding {n,z}. In (AP,+), these singletons {n} appear as minimal 

elements covered by the corresponding {n,l}. Such algebras are investigated in 

detail in [5] and [6]. 
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4. MODALS Let (A,~) be a mode, and let (D,+,~) 

(AP,+,g) or (AS,+,~). Then the algebra (D,+,~) 

conditions: 

denote either 

satisfies the following three 

(4.1) (D,~) is a mode; 

(4.2) (D,+) is a join semilattice; and 

(4.3) (D,~) distributes over (D,+). 

An algebra (D,+,~) satisfying these conditions (4.1) - (4.3) is said to be a 

modal. The name emphasizes the connection with modes, as well as being reminiscent 

of "modules", which are also algebras having a +-structure and operations 

distributing over it. Modal theory may be described as the study of modes, modals, 

and the relationships between them. Examples of ~odsls beyond the (AP,+,~) and 

(AS,+,g) coming from a mode (A,~) are given below. 

EXAMPLE 4.4. If ~ is empty, then a modal (D,+,~) is just a join semilattice. 

particular, if A is a set considered as a mode (A,~), then AP and AS are 

power sets of A considered as join semilattices (and without the empty set as 

bottom element). 

In 

EXAMPLE 4.5. Distributive lattices (L,+,-), for example the lattice reducts of 

Boolean algebras, are modais. 

EXAMPLE 4.6. Let (L,.) be a semilattlce. Then the stammered semilattlce (L,.,.), 

with the operation • taken twice, is a modal. Note that this method of 

considering semilattices as modals differs from the method of Example 4.4. 

EXAMPLE 4.7 There is a common generalization of the distributive lattices of 

Example 4.5 and the stammered semilattlces of Example 4.6. This is the concept of 

dissemilattlce -- an algebra (D,+,.) in which (D,+) and (D,.) are semilattices, 

and in which (D,.) distributes over (D,+), i.e. the law x-(y+z) = x.y + x-z is 

satisfied. The power domain (AP,+,-) of Example 3.6 has such a structure. If 
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lattices are regarded as generalizations of distributive lattices obtained by 

dropping the requirement of dlstributivity, then dissemilattlces may be considered 

as parallel generalizations in which distributivity is retained but the absorption 

law is relaxed. 

EXAMPLE 4.8. Let V denote the binary operation of maximum on the set R of real 

o I o 
numbers. Then (R,V,I), under this operation and the set of convex 

combinations as in Example 2.8, forms a modal. 

EXAMPLE 4.9. Any space of functions mapping into the reals inherits the modal 

structure on the reals given in Example 4.8. For instance, if X is a topological 

space, the set C(X) of continuous functions f : X + R forms a modal 

(c(xl,v,I°). 
The distributivity of (D,~) over (D,+) in a modal (D,+,~) has a number of 

direct consequences for the way the mode structure (D,~) interacts with the Join 

semilattice ordering 4 on D. These are listed in the following lemmas. Note that 

a function f : (A,~) + (D,+,~) is said to be convex if 

a I ... a T~f 4 all ... amrf~ for each operation ~ in fl and 

~T-tuple (a I .... ,A T) in A ~T. A function f = (R,I °) ÷ (R,V,I °) is convex in 

this sense if and only if it is convex in the classical sense as a function 

f : R ÷ R. 

MONOTONICITY LEMMA 4.10 [6, 315]. Each operation ~ on a modal (D,+,~) 

monotone as a mapping ~ : (D~,~) + (D,~), i.e. 

. , 4 b imply a I ... a Tm < b I ... b ~. a I < bl, .. a ~ ~T 

CONVEXITY LEMMA 4.11 [6, 317]. For each positive integer r, the mapping 

Xr : (Dr,a) ÷ (D,+,~) ; (al,...,a r) + a I + o.. + a r 

is 

into a modal (D,+,~) is convex. 
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SUM-SUPERIORITY LEMMA 4.12 [6, 318]. For each operation ~ on a modal (D,+,~), 

and for each ~-tuple (al,...,a T) , 

• ~ a I + + . a I -, a~T~ ... a~T 

In Section 3, the construction of the modal (AP,+,~) from a mode (A,~) was 

given. From the category theory standpoint, such constructions are indicative of a 

left adjolnt functor. The adjolntness present here, expressed by the theorem below, 

lles at the very heart of modal theory. The theorem may be interpreted as showing 

how functions are extended from the domain A to the power domain AP (of. 

[2],[4],[5,Th. 3.1]). 

THEOREM 4.12 [6, 351]. The construction of the modal (AP,+,~) from a mode (A,fi) 

is left adjoint to the forgetful functor assigning the mode (D,~) to a modal 

(D,+,~). In other words, each mode homomorphism f : (A,fi) + (D,~) may be 

extended to a unique modal homomorphlsm ~ : (AP,+,~) + (D,+,~) whose composite i~ 

with the canonical embedding I of (3.3) is f. 

For a subalgebra S of (A,~) finitely generated by a set X, the element 

ST of D is defined to be ~ xf. That this is a good definition may be shown 
x F X 

using the Sum-Superiority Lemma 4.12. Other details of the proof are given in 

[6]. 

5. APPROXIMATION Theorem 4.12 gives the abstract significance of the modal 

(AP,+,~) as the free modal over the mode (A,~). Questions then arise as to the 

abstract significance of the modal (AS,+,~), the abstract relationship between 

(AP,+,fi) and (AS,+,fi), and the possibility of extending functions from A 

through the power domain AP to the power domain AS. These questions are 

addressed by the concepts and results Of this section, which build up to the 

equivalance of categories given in Theorem 5.8 below. 

A join semilattice (D,+) is said to be complete if arbitrary (non-empty) 

subsets of D have suprema. An ~-algebra structure (D,fl) on a set D is said 
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to be completely distributive over a complete joint semilattlce structure (D,+) 

on D if for each ~ in ~, I 4 j ~ mT, and subset 

{x I ..... Xj_l, xj+ 1 .... , xmT} U X of D (X~@), 

sup {Xl...x. IXX.+l...x ~Ix• ~ X} 
3- 3 

= x I ... Xj_l(SUpX) xj+ 1 ... x~Tm. 

A non-empty subset X of the complete join semilattice (D,+) is said to cover an 

element d if d < supX. An element d of (D,+) is called compact if each 

subset X of D covering d has a finite subset also covering d. The set of 

compact elements of the complete join semilattice (D,+) will be denoted by DQ. 

In analogy with [I, Defn. I. 4.6], the following definition is made. 

DEFINITION 5.1. A modal (D,+,~) is said to be arithmetical if it satisfies the 

following conditions: 

(1) (D,+) is a complete join semilattice; 

(il) (D,~) is completely distributive over (D,+); 

(lii) each element of D is the supremum of the compact elements less than or 

equal to it; 

(iv) DQ is a submode of (D,~). 

A modal homomorphlsm f : (D,+,~) ÷ (E,+,~) between arithmetical modals is said to 

be an arlthmorphlsm if DQf C EQ. 

For a mode (A,~), the modal (AS,+,~) of all non-empty submodes is 

arithmetical [6, 335]. The compact elements of AS are precisely the finitely 

generated non-empty submodes of (A,~), and each submode is the supremum (i.e. set- 

theoretical union) of the finitely generated submodes it contains. Indeed, each 

submode S of (A,~) can be expressed as S = sup {{x} Ix E S}. 
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For a subset B of a partial order (D,~), 

(d ~ DIXb EB. b ~ d}. For a modal (D,+,~), 

subsemilattices B of (D,+) that are their own subordinate sets. By the Sum- 

superiority Lemma 4.12, such subsemilattices of (D,+) are automatically submodes 

the subordinate set $B is 

let DR denote the set of non-empty 

of (D,~). Given B, B' in DR, define B + B' to be + {b+b'Ib ~ B,b' ~ B'}. 

Under this operation, (DR,+) becomes a complete join semilattice. Given m in 

and elements BI, ..., B of DR, define a new element (B1,...,B T)~ of DR as 

the subordinate set of the complex m-product B 1 ... B m of the submodes 

B1, ..., BuT of (D,~). This gives a mode structure (DR,~) which is completely 

distributive over (DR,+), so that in particular (DR,+,~) is a modal [6, 332]. 

In fact, (DR,+,~) is an arithmetical modal [6, 341], having as its compact 

elements the elements +{d} for d in D. Given a modal homomorphism 

f = (D,+,~) ÷ (E,+,~) between two modals, the mapping 

(5.2) fR : DR ÷ ER; B ~ sup+(Bf) 

becomes an arithmorphism fR : (DR,+,~) + (ER,+,~) [6, 343]. 

The relevance of the construction R for the power domains AP and AS of a 

mode (A,~) is described by the following result. 

PROPOSITION 5.3. [6, 333]. For a mode (A,~), the arithmetical modals 

(AS,+,fi) and (APR,+,fi) are isomorphic via the arithmorphisms 

(5.4) 6 : AS + APR; S~÷ {F~SIF ~ AP} 

and 

(5.5) ~ : APR + AS; B~+ sup {{a}IXF ~ B. a E F}. 

o 
If (A,~) is a convex subset (A,I) of a real vector space E, as in Example 2.8, 

then Proposition 5.3 may be interpreted as showing how arbitrary convex subsets S 

of A are approximated by polytopes F contained within S. 
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Let ~ be a variety of modals (D,+,~) in the sense of universal algebra -- 

the class of all modals satisfying some (possibly empty) set of identities in ~. 

Consider ~ as a category having modal homomorphisms as its morphisms. Let ~ be 

the subcategory of ~ whose objects are the arithmetical modals in ~ and whose 

morphisms are the arithmorphisms between them. Then the construction R gives a 

functor R : ~ + g. In the other direction, there is a functor Q : ~ + 

assigning the modal (DQ,+,~) of compact elements to each arithmetical modal 

(D,+,~) in g. For an arithmorphism f : (D,+,~) ÷ (E,+,fl), the modal 

homomorphism fQ : (DQ,+,fl) + (EQ,+,fl) is just the restriction of f to the subset 

DQ of D. For each object D of ~ there is a natural isomorphism 

(5.6) qD : D + DRQ; d)+ + {d}. 

For each object E of ~, there is a natural isomorphism 

(5.7) ~E : EQR + E; B~ sup B [6, 344]. 

THEOREM 5.8 [6, 345]. The categories ~ and g are equivalent via the adjoint 

equivalence (R,Q;~,e). 

Theorem 5.8 may be used to extend functions from the mode A through the power 

domain AP to the power domain AS. 

THEOREM 5.9 [6, 356]. Let (A,~) be a mode, and (D,+,~) an arithmetical modal. 

Then each mode homomorphism f : (A,~) + (DQ,~) may be extended to a unique 

arithmorphism f' : (AS,+,~) ÷ (E,+,~) such that the following diagram commutes: 

l 
(A,~) ~- - (AP,+,a) (" , (AS,+,~) 

(DQ,a) . . . . .  ~ (DQ,+,a) t'- " (E,+,n). 
1DQ 
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Then f' : AS + E is the composite 
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l is the canonical embedding (3.3). 

~R s D 
AS ~ APR • DQR ~ D 

of the mappings ~ of (5.4), TR of (5.2), and E D of (5.7). 

6. DIGITAL GENTRY Present-day scientific computing is a long and roundabout 

exercise. To begin with, theoretical scientists create mathematical models reducing 

natural laws to differential equations relating real or complex-valued functions. 

These differential equations are then solved using programs developed by numerical 

analysts. The real and complex numbers involved are represented in the programs by 

floating-point numbers. When the programs are implemented and run on a machine, 

these floating-point numbers are converted into binary digits processed by the 

machine's circuitry. Each stage of this lengthy process introduces new potential 

errors that have to be kept under control. These errors may be conceptual in the 

theoretical stages or arithmetical in the computational stages. In the theoretical 

models, the real and complex numbers represent idealizations of the results of 

physical measurements. In the numerical analysis, the floating-point numbers used 

represent approximations to these real and complex numbers. In the machine 

implementation, the natural binary logic is contorted to deal with the decimal 

representations that are more appropriate to finger counting and other calculation 

methods used by human beings. A typical breakdown of this process occurs when one 

"proves" the convergence of an algorithm using real analysis, only to have the 

algorithm diverge in an implementaion because of an accumulation of rounding 

errors. 

One of the main uses of modal theory is as a guide in the search for simpler 

and safer ways of performing scientific computation. The idea is to formulate new 

mathematical models that are directly computable, avoiding the roundabout route via 
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real numbers and decimal or floating-point representations. From the computational 

side, the starting point is at those numbers directly representable in a binary 

machine, namely dyadic rational numbers m.2 -n (m, n integral) or "finite binary 

decimals". The question raised is: 

(6.1) What mathematical structures are carried naturally by finite binary strings? 

The answers given to this question should suggest to theoretical scientists the 

mathematical language in which their theories ought to be formulated if they are to 

facilitate the practical computations that are the ultimate applications of the 

theories. Here, two typical answers to question (6.1) are given. A brief 

discussion then shows how modal theory might be used to apply these mathematical 

structures to the formulation of readily computable models. 

To begin with, consider an infinite sequence of points equally spaced out along 

a line: 

y x xyp 

Given two points x, y, on the line, let xyo denote the reflexion of y in x - 

the point that is as far behind x as y is in front. Starting with two adjacent 

points labelled 0 and I, all the other points, labelled by the set Z of 

integers in the usual order, may be obtained by repeated reflexions of the points 

obtained from 0 and 1 by reflexion. Using binary notation for the integers, two 

or I0 is obtained by reflexion of 0 in i, i.e. as 100 . Three or ii is obtained 

as 10plp, and four or I00 is obtained as 1000P. On the negative side, -i is 

obtained as Olp, -i0 as 01p0p, -11 as 01olD, -I00 as 01pOp0p, etc. A 

striking pattern begins to emerge, confirmed in Theorem 6.2 below. Define a kei 

mode to be a mode (A,p) with a single binary operation P satisfying the 
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identity xxypp = y. For a binary digit a, let a' denote the complementary 

digit, i. e. 0' = I and I' = 0. 

THEOREM 6.2 [6, 416]. The algebra (Z,p) of reflexions on the integers is the free 

kei mode on the set {0,I}. A negative integer with binary representation 

r 
- ~ a i 2 r-i (a 0 = l) represents the word Olpal9 ... arP , while an integer 

i=0 

r 
n > I for which n -i has the binary representation ~ a i 2 r - i  ( a o = l )  

i=O 

represents the word 10pa~p ... asp. 

The answer Theorem 6.2 gives to question (6.1) is that, if the binary strings 

represent integers, then the natural mathematical structure may be expressed 

geometrically as reflexion or algebraically as the free kei mode on 0 and i. 

Next, consider points x, y on a line. Let xyp denote the midpoint of 

x and y. 

x xy~ 

I 
Y 

Starting with two points labelled 0 and I, taking all the possible midpoints 

successively gives the intersection D I of the real unit interval [0,i] with the 

set D = {m-2-nlm,n ~ Z} of dyadic rationals. The set D 1 is called the dyadic 

unit interval. Its elements are labelled by finite binary fractions. One-half or 

• i is obtained as 10p, three-quarters or .11 is obtained as IIOBp, three-eights 

or .011 is obtained as 0110pp~, etc. Define a commutative binary mode to be a 

mode (A,~) with a single binary operation ~ satisfying the commutative law 

xyp = yx~. Then in analogy with Theorem 6.2, one has the following. 
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THEOREM 6.3 [6, 424]. The algebra (DI,~) of midpoints on the dyadic unit interval 

is the free commutative binary mode on the set {0,i}. A proper binary fraction 

r 
a i 2 i-r-I ... a I 10~B ... ~. i=0 (a0=1) represents the word a r 

The answer Theorem 6.3 gives to question (6.1) is that, if the binary strings 

represent fractions, then the natural mathematical structure may be expressed 

geometrically as bisection or algebraically as the free commutative binary mode on 

0 and I. 

Putting the structures of Theorems 6.2 and 6.3 together, one obtains the mode 

(D,~,p), a commutative quasigroup on the set of dyadic rationals [6, 4.3], free on 

{0,i}. This structure often serves to replace the real numbers in the new 

formulations of scientific theories. For example, there are formulations of quantum 

mechanics based on convexity (mentioned and referenced in [6]). The reformulation 

designed for computing would then replace the convexity structure 

o 
(R,I) on the reals by the algebra (D,~). Note that the modal (R,V,0.5) 

(notations of (2.7) and Example 4.8) reappears as a submodal of the modal (DR,V,B) 

constructed as in Section 6. An interesting exercise in the application of the 

ideas discussed here would be to design a computer graphics package based on the 

modal structures on powers D n of the dyadic rationals D. 
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