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Abstract. The paper examines Bol loops that are constructed
from matched pairs of groups, including a new simple, non-Moufang
Bol loop of order 120. Certain permutation representations of the
loops under consideration provide nontrivial examples of doubly
stochastic action matrices. A generalization of the matched-pair
loop construction yields proper Bol actions of groups.

1. Introduction

In recent work, G. Nagy gave a construction for simple Bol loops
based on faithful group factorizations [5]. His analysis used group-
theoretical methods, exhibiting loop transversals. In connection with
certain Hopf algebra constructions, Takeuchi discussed the equivalence
of group factorizations and so-called matched pairs of subgroups (with
mutual actions) [12]. The intention of the present paper is to provide a
conceptual understanding of Nagy’s Bol loop construction, employing
direct quasigroup-theoretical methods and the matched-pair approach
to group factorizations. Since the context goes beyond the construction
of simple Bol loops (encompassing, for example, Bol loops like those of
[3], [4]), the factorizations are not required to be faithful.

Section 2 sets up the notation for (exact) group factorizations, and
summarizes the equivalence with matched pairs of groups. The left Bol
loop construction (3.1) is then presented in Theorem 3.1 as a slightly
twisted version of the reconstruction (2.11) of a factorized group from
the equivalent matched-pair data. Left and right multiplications in
the Bol loop are obtained explicitly from the matched pair. Among
the examples offered in Section 4, we present a simple, non-Moufang
left Bol loop of order 120 (Example 4.4). Section 5 exhibits certain
Lagrangean subgroups of the matched-pair loops. The final sections
are devoted to permutation actions. Motivated by the homogeneous
spaces of the subgroups from Section 5, Theorem 6.1 shows that action
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matrices of the homogeneous space of a Lagrangean subquasigroup are
doubly stochastic. Two examples discuss the homogeneous spaces of
the subgroup C4 in the simple left Bol loop of order 24. In the right
homogeneous space, nontrivial doubly stochastic action matrices are
shown to arise. On the other hand, left actions of the left Bol loop on
the left homogenous space are shown not to be left Bol actions such
as those considered by Sbitneva [7]. Nevertheless, Proposition 7.4 uses
the main idea of Theorem 3.1 to obtain left Bol actions of groups.

Readers are referred to [10] and [11] for conventions, concepts and
notations that are not otherwise explained explicitly in the paper. In
order to minimize the number of brackets, we use algebraic notation
with maps placed to the right of their arguments, either in line or as a
superscript.

2. Matched pairs

Consider a group G with two subgroups C and C∗, such that

(2.1) G = C · C∗ and C ∩ C∗ = {1} .

The group G is said to be (exactly) factorized by the subgroups C and
C∗ (or to form a Zappa-Szép product [2, §VI.4]). The subgroup C is
called the primal subgroup, while the subgroup C∗ is called the dual
subgroup. Given a factorization (2.1) of G, the factorization G = C∗ ·C
is called the dual factorization, while (2.1) itself is then called the
primal factorization. The factorization (2.1) yields a set isomorphism

(2.2) (δ, δ∗) : G → C × C∗; g 7→ (gδ, gδ∗)

which is inverse to the multiplication

(2.3) C × C∗ → G; (c, c∗) 7→ cc∗ .

Example 2.1 (Dual codes). Let G be an abelian group considered
as a channel — for instance the set G = (Z/2Z)l of binary words of
length l, under componentwise addition. Then (2.1) corresponds to the
direct sum decomposition G = C ⊕C∗. Here the primal subgroup C is
a linear code, and the dual subgroup C∗ is a dual code (with respect
to suitable statistics in the channel). The map δ : G → C of (2.2)
decodes a received word g to the codeword gδ, while δ∗ provides the
dual decoding.

It is convenient to use the coding theory terminology of Example 2.1
in the general nonabelian case (2.1).

Example 2.2 (Symmetric groups). For each natural number n,
consider the symmetric group Sn+1 as the group {0, 1, . . . , n}! of all
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permutations of the set of integers modulo n+1. Identify each residue
r modulo n + 1 with the addition

Z/(n + 1)Z→ Z/(n + 1)Z; x 7→ x + r

modulo n + 1. These additions form the cyclic subgroup Cn+1 of Sn+1.
The stabilizer of 0 in Sn+1 forms a symmetric subgroup Sn of Sn+1. The
factorization Sn+1 = Sn ·Cn+1 gives an example of (2.1), with gδ∗ = 0g
for g in Sn+1.

The following fundamental proposition is well known, but worth
recording in detail to establish the notational techniques that we use.

Proposition 2.3. Consider a factorization (2.1) of a group G.

(a) A left action of G on the primal subgroup C is defined by

(2.4) xL′(g) = (gx)δ

for x in C and g in G.
(b) A right action of G on the dual subgroup C∗ is defined by

(2.5) x∗R∗(g) = (x∗g)δ∗

for x∗ in C∗ and g in G.

Proof. For g1, g2 in G and x in C, one has

xL′(g2g1) = (g2 · g1x)δ =
(
g2(g1x)δ(g1x)δ∗)δ

=
(
g2x

L′(g1) · (g1x)δ∗)δ
=

((
g2x

L′(g1)
)δ(

g2x
L′(g1)

)δ∗
(g1x)δ∗

)
δ

=
(
g2x

L′(g1)
)
δ = xL′(g1)L

′(g2) ,

proving (a). The proof of (b) is dual. ¤
Corollary 2.4. Let L : G → G! and R : G → G! denote the respective
left and right multiplications in the group G. Then

yL(x) = yL′(x) and x∗R(y∗) = x∗R∗(y∗)

for x, y in C and x∗, y∗ in C∗.

The left and right actions of Proposition 2.3(a), (b) are respectively
isomorphic to the group homogeneous spaces G/C∗ and C\G. The
respective isomorphisms of left and right G-sets are

C → G/C∗; x 7→ xC∗

and

C∗ → C\G; x∗ 7→ Cx∗ .
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Thus the respective actions (2.4) and (2.5) of a group element g may
be written as LG/C∗(g) and RC\G(g).

Definition 2.5. A group factorization (2.1) is said to be faithful if the
actions LG/C∗ and RC\G of G are faithful, thus if the subgroups C and
C∗ of G have trivial cores.

The actions of G in Proposition 2.3 restrict respectively to a left
action of the subgroup C∗ on C and a right action of C on C∗.

Proposition 2.6. Consider a factorization (2.1) of a group G.

(a) The multiplication in G is recovered from the mutual actions
(2.4) and (2.5) of C and C∗, together with the multiplications
on the individual subgroups C and C∗, by

(2.6) xx∗ · yy∗ = xyL′(x∗) · x∗R∗(y)y∗

for x, y in C and x∗, y∗ in C∗.
(b) The mutual actions (2.4) and (2.5) of C and C∗ satisfy

(2.7) (xy)L′(x∗) = xL′(x∗) · yL′(x∗R∗(x))

and

(2.8) (x∗y∗)R∗(x) = x∗R∗(xL′(y∗)) · y∗R∗(x)

for x, y in C and x∗, y∗ in C∗.

Proof. (a): Note xx∗ ·yy∗ = x(x∗y)y∗ = x(x∗y)δ · (x∗y)δ∗y∗. Then (2.6)
follows by the definitions (2.4) and (2.5).
(b): The associative law in the group G gives

(xy)L′(x∗) =
(
x∗(xy)

)
δ =

(
(x∗x)y

)
δ =

(
(x∗x)δ · (x∗x)δ∗y

)
δ

= (x∗x)δ · ((x∗x)δ∗y
)
δ = xL′(x∗) · yL′(xR∗(x∗)) ,

namely (2.7). The proof of (2.8) is dual. ¤
Definition 2.7. An ordered pair (C,C∗) of groups is said to form a
matched pair

(C, C∗; L′, R∗)
if there is a left action L′ : C∗ → C! of C∗ on C and a right action
R∗ : C → C∗! of C on C∗, such that the conditions (2.7) and (2.8) are
satisfied.

Remark 2.8. The concept of a matched pair of groups appears in [12,
Defn. 2.1]. Takeuchi explicitly imposed the additional conditions

(2.9) 1CL′(x∗) = 1C and 1C∗R
∗(x) = 1C∗

for x in C and x∗ in C∗. However, these conditions result from setting
x = 1C in (2.7) and y∗ = 1C∗ in (2.8) respectively. In connection
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with a group factorization such as (2.1), Huppert [2, §VI.4] speaks of
“complicated functional equations” — presumably with (2.7) and (2.8)
in mind. Note that the conditions (2.9) do not hold for general elements
x or x∗ of G.

Proposition 2.6 has the following converse [12, Prop. 2.2]:

Proposition 2.9. Suppose that (C,C∗; L′, R∗) is a matched pair of
groups. Define a product

(2.10) (x, x∗) · (y, y∗) =
(
x · yL′(x∗), x∗R∗(y) · y∗)

on C×C∗. Then (C×C∗, ·) is a group which is factorized by subgroups
C × {1C∗} and {1C} × C∗, respectively isomorphic to C and C∗.

Together, Propositions 2.6 and 2.9 provide an equivalence between
(exact) group factorizations and matched pairs of groups.

Remark 2.10. Given a group factorization (2.1), it is often convenient
to identify the sets G and C×C∗ by means of the mutually inverse set
isomorphisms (2.2) and (2.3). By Corollary 2.4, the product gh of two
group elements g = (x, x∗) and h = (y, y∗) may then be written in the
form

(2.11) gh =
(
(gh)δ, (gh)δ∗

)
= (yL′(g), x∗R∗(h))

using the formula (2.10), since L′(x∗)L(x) = L′(x∗)L′(x) = L′(xx∗)
and R∗(y)R(y∗) = R∗(y)R∗(y∗) = R∗(yy∗).

3. Bol loops

Recently, G. Nagy used a group-theoretical method to show how
faithful (exact) group factorizations may be used to construct simple
Bol loops [5] — compare Remark 3.2 below. We now give a more
general, direct and conceptual description of this construction, not just
with simple Bol loops in mind. For a group (G, ·), the opposite will
be denoted by (G, ◦̌), so that g◦̌h = h · g with g, h in G. (This is the
notation of [11, (1.4)], not that of [10, (1.5)].) To comprehend the Bol
loop construction, compare (2.11) with (3.1) below.

Theorem 3.1. Consider a group factorization (2.1). Identify the set
G with C×C∗ by means of the mutually inverse set isomorphisms (2.2)
and (2.3). Then a left Bol loop structure G◦ or (G, ◦, 1G) is defined by

(3.1) g ◦ h =
(
(gh)δ, (g◦̌h)δ∗

)
= (yL′(g), y∗R∗(g))

for g = (x, x∗) and h = (y, y∗) in G = C × C∗.
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Proof. Proposition 2.3 shows that the left multiplication

(3.2) L◦(g) = (L′(g), R∗(g))

in (G, ◦, 1G) or (C×C∗, ◦, 1G) has L◦(g−1) as its inverse, and L◦(1G) =
1G!. Also g ◦ 1G = (gδ, gδ∗) = g, so (G, ◦, 1G) is a left loop. Now (3.1),
(2.11) and (3.2) yield

ghg =
(
(ghg)δ, (ghg)δ∗

)
=

([
g · (hg)δ

]
δ,

[
(gh)δ∗ · g]

δ∗
)

=
(
xL′(h)L′(g), x∗R∗(h)R∗(g)

)
= g ◦ (h ◦ g) .

Thus (3.2) gives

L◦(g)L◦(h)L◦(g) =
(
L′(g)L′(h)L′(g), R∗(g)R∗(h)R∗(g)

)

=
(
L′(ghg), R∗(ghg)

)
= L◦(ghg)

= L◦
(
g ◦ (h ◦ g)

)
,

(3.3)

the left Bol property in the left loop (G, ◦, 1G).
Finally, given h and k = (z, z∗) in G, consider the problem of finding

g in G with g ◦ h = k. By (3.1), this amounts to finding elements t in
C and t∗ in C∗ such that

g = zt∗h−1 = h−1tz∗ ,

since one then has (gh)δ = (zt∗)δ = z and (hg)δ∗ = (tz∗)δ∗ = z∗. Now

g ∈ zC∗h−1 ∩ h−1Cz∗ ⇔ hgh ∈ hzC∗ ∩ Cz∗h .

There is a unique element

(hz)δ · (z∗h)δ∗ =
(
zL′(h), z∗R∗(h)

)
= h ◦ k

of hzC∗ ∩ Cz∗h, so there is a unique solution

g = h−1(h ◦ k)h−1 = h−1 ◦ [
(h ◦ k) ◦ h−1

]

to the equation g ◦h = k. In other words, G◦ is a (two-sided) loop. ¤
Remark 3.2. The method used by G. Nagy was to show that the
twisted diagonal {(g, g−1) | g ∈ G} is a Bol loop transversal to C×C∗ in
G×G. The inversion in the second component of the twisted diagonal
corresponds to our use of the opposite multiplication in the second
component of the middle term of (3.1). Consider the action of G×G
on the cosets of C×C∗. Projection onto the first factor gives the action
L′ of G on C, corresponding to the first component of the right hand
side of (3.2). Projection onto the second factor gives the action R∗ of
G on C∗, corresponding to the second component of the right hand
side of (3.2).
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Corollary 3.3. In the loop G◦, the map

R◦(h) = L(h)R(h)L◦(h)−1 = L(h)R(h)
(
L′(h)−1, R∗(h)−1

)

is the right multiplication by an element h.

Definition 3.4. The left Bol loop G◦ constructed by (3.1) from the
group factorization G = C·C∗ or equivalent matched pair (C, C∗; L′, R∗)
is described as the corresponding matched-pair loop.

In certain cases, it is possible to relate the inner multiplication groups
of a matched-pair group and the corresponding matched-pair loop.

Proposition 3.5. Let (2.1) be a factorization of a group G generated
by involutions.

(a) The inner automorphism group of the group G is a subgroup of
the inner multiplication group of the loop G◦..

(b) The conjugacy classes of the group G fuse to the conjugacy
classes of the loop G◦.

Proof. By (3.2) and Corollary 3.3,

(3.4) R◦(t)L◦(t) = L(t)R(t)

for elements t of G. If t is an involution, then the right-hand side of
(3.4) is the inner automorphism T (t) by t in the group G. Thus the
inner automorphism group Inn G of the group G is a subgroup of the
inner multiplication group Inn G◦ of the loop G◦. In particular, the
orbits of Inn G◦, the loop conjugacy classes, are fusions of the orbits of
Inn G. ¤

4. Examples

Example 4.1 (Group products). Let A and B be groups. Take G to
be the direct product A×B. Then a factorization (2.1) is provided by
C = A×{1} and C∗ = {1}×B. The matched-pair loop (G, ◦) becomes
the group (A, ·)×(B, ◦̌), the product of A with the opposite of B. Note
that C and C∗ are normal subgroups of G, so the factorization is not
faithful in the sense of Definition 2.5.

Example 4.2 (Split extensions). If the factorized group G of (2.1) is
obtained as the split extension of a normal subgroup C∗ by a subgroup
C, then the construction of Theorem 3.1 specializes to a version of the
constructions of [3], [4]. Indeed, in this case, the respective actions (2.4)
and (2.5) take the form xL′(yy∗) = xL(y) and xR∗(yy∗) = xT (y)R(y∗)
with xT (y) = y−1xy, for x, y in C and x∗, y∗ in C∗. Thus (3.1) reduces
to

(4.1) (x, x∗) ◦ (y, y∗) =
(
xy, y∗R∗(x) · x∗) ,
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while [3, (3)] may be rewritten as

(4.2) (x, x∗) ◦ (y, y∗) =
(
xy, x∗ · y∗R∗(x)

)
.

In particular, the loop products (4.1) and (4.2) coincide if the normal
subgroup C∗ is abelian.

Example 4.3 (The simple Bol loop of order 24). The factorization
of G = S4 from Example 2.2 gives a simple Bol loop of order 24 [5,
Ex. II]. Nagy’s argument for the simplicity of this loop used the known
classification of all Bol loops of order at most 12 (which are solvable).
However, direct computations aided by Proposition 3.5(b) show that
the loop is a rank 2 quasigroup, and therefore simple (compare [10,
§6.8]).

Example 4.4 (A simple, non-Moufang Bol loop of order 120).
Consider the factorization of G = S5 = {1, 2, 3, 4, 5}! with subgroups
C = 〈(1 2)(3 4 5)〉 and C∗ = 〈(1 2 3 4 5), (1 2 4 3)〉 [2, VI.4.2]. The
loop G◦ is simple (e.g. by [5, Th. 3.6]). Because G◦ has elements of
order 6 from C, it is not isomorphic to the simple Moufang loop of
order 120. Indeed, the nonidentity elements of that loop have orders 2
or 3. Note that an application of Theorem 3.1 to the factorization of
S5 from Example 2.2 gives a Bol loop which is not simple.

Example 4.5 (Simple groups generated by involutions). One
obtains simple Bol loops from the (exact) group factorizations

M11 = C11 ·M10 = (C11 × C5) · (M9 · 2)

and

M23 = C23 ·M22 = (C23 × C11) · PΣL(3, 4) = (C23 × C11) · (24 × A7)

— compare [1, Table 4], [5, Th. 3.6]. Other examples include PSL(2, 11)
factorized by a Sylow 11-subgroup and a subgroup isomorphic to A5.

5. Lagrangean subloops

Consider the matched-pair loop G◦ given by a group factorization
G = C ·C∗ or equivalent matched pair (C,C∗; L′, R∗). In Example 4.1,
the direct product matched-pair loop had subgroups C × {1C∗} and
{1C} × C∗, respectively isomorphic to the groups (C, ·) and (C∗, ◦̌).
The following proposition records the fact that this behavior is quite
typical for general matched-pair loops.

Proposition 5.1. Consider the matched-pair loop G◦ or (C × C∗, ◦)
given by a general matched pair (C,C∗; L′, R∗). The subsets C×{1C∗}
and {1C}×C∗ form associative subloops, respectively isomorphic to the
groups (C, ·) and (C∗, ◦̌).
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Proof. Using the notation of Theorem 3.1, one has

x ◦ y =
(
(xy)δ, (yx)δ∗

)
= (xy, 1C∗) = xy

and

x∗ ◦ y∗ =
(
(x∗y∗)δ, (y∗x∗)δ∗

)
= (1C , y∗x∗) = y∗x∗

for x, y in C and x∗, y∗ in C∗. ¤

Definition 5.2. In the context of Proposition 5.1, the associative
subloops C × {1C∗} and {1C} × C∗ of G◦ are respectively known as
the primal and dual subloops of G◦.

Both the primal and dual subloops of a finite matched-pair Bol loop
are certainly “Lagrange-like” in the sense of [6, Defn. I.2.13]. (Indeed,
[3] records that the Bol loops of Example 4.2 satisfy the strong Lagrange
property of [6, Defn. I.2.15].) Now recall that a subquasigroup P of
a quasigroup Q is said to be (right) Lagrangean in Q if the relative
left multiplication group LMltQP acts semitransitively on Q (so all the
orbits have the same size) [8], [10, §4.5].

Proposition 5.3. Consider a group factorization (2.1) in which the
primal subgroup C is commutative. Then for each element h = (y, y∗)
of G, the right coset hLMltG◦P of h by the primal subloop P takes the
form

P ◦ h = {p ◦ h | p ∈ P} .

In particular, the primal subloop P is (right) Lagrangean in the left Bol
loop G◦.

Proof. Equation (3.1) gives p ◦ h =
(
yL′(p), y∗R∗(p)

)
for p in P . Then

q ◦ (p ◦ h) =
(
yL′(p), y∗R∗(p)

)
L◦(q) =

(
yL′(p)L′(q), y∗R∗(p)R∗(q)

)

=
(
yL′(qp), y∗R∗(pq)

)
=

(
yL′(qp), y∗R∗(qp)

)
= (qp) ◦ h

for a second element q of P . The group product qp lies in P . ¤

Dually, one obtains the following.

Corollary 5.4. Consider a group factorization (2.1) in which the dual
subgroup C∗ is commutative.

(a) For each element h of G, the right coset hLMltG◦P
∗ of h by the

dual subloop P ∗ takes the form

P ∗ ◦ h = {p∗ ◦ h | p∗ ∈ P ∗} .

(b) The subloop C∗ is (right) Lagrangean in the left Bol loop G◦.
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6. Doubly stochastic actions

By Proposition 5.3 and Corollary 5.4, many group factorizations
yield a right Lagrangean subloop P of the matched-pair loop G◦. A
general, but hitherto unremarked property of right Lagrangean sub-
quasigroups, is that the action matrices of their homogeneous spaces
are always doubly stochastic. (As permutation matrices, the action
matrices of groups are doubly stochastic, but general action matrices
of (left) quasigroup homogeneous spaces are only row-stochastic [9, Th.
4.2], [10, Th. 4.1].)

Theorem 6.1. Let P be a right Lagrangean subquasigroup of a finite
quasigroup Q. Then for each element q of Q, the action matrix RP\Q(q)
of q on the homogeneous space P\Q is doubly stochastic.

Proof. If P is empty, then the homogeneous space P\Q is regular, and
the action matrices are permutation matrices. Now suppose that P is
nonempty. Let AP be the |Q|×|P\Q| incidence matrix for the elements
of Q in the points of the homogeneous space P\Q (the orbits of LMltQP
on Q.) Thus a matrix entry [AP ]xX is 1 if the quasigroup element x lies
in the LMltQP -orbit X, and otherwise the entry is 0. Since P is right
Lagrangean, each orbit of LMltQP on Q has cardinality |P |. Thus the
generalized inverse A+

P of AP has an entry [A+
P ]Xx of |P |−1 if x lies in

X, and 0 otherwise.
The action matrix of a quasigroup element q on the homogeneous

space P\Q is given as

RP\Q(q) = A+
P RQ(q)AP

in terms of the (permutation matrix of the) right multiplication RQ(q)
by q on Q. Thus the sum of the elements in the column of RP\Q(q)
labeled by the point Y of P\Q is

∑

X∈P\Q
[RP\Q(q)]XY =

∑

X∈P\Q

∑
x∈Q

∑
y∈Q

A+
XxR(q)xyAyY

=
∑
y∈Y

|P |−1 = 1 ,

as required for the column stochasticity. ¤

Example 6.2. Consider the dual subloop P ∗ ∼= C4 of the matched-pair
loop G◦ of Example 4.3. The action matrix of the 3-cycle (1 2 3) on
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the homogeneous space P ∗\G◦ is

1

4




0 4 0 0 0 0
2 0 0 1 1 0
1 0 1 1 0 1
0 0 1 0 1 2
1 0 0 2 0 1
0 0 2 0 2 0




,

a nonpermutational, doubly stochastic matrix.

7. Bol actions

The following definition adapts a concept from [7].

Definition 7.1. Let (Q, ◦) be a left Bol loop. Consider a function

(7.1) LX : Q → X!

from Q to the group X! of permutations of X, an action of Q on a set
X. Then the action (7.1) is said to be a left Bol action if

(7.2) LX(q)LX(p)LX(q) = LX

(
q ◦ (p ◦ q)

)

for all elements p and q of Q.

Remark 7.2. Sbitneva [7, Defn. 1] required the injectivity of (7.1).
She spoke of a “left Bol loop action,” attributing the concept to Sabinin.

The left regular action of a left Bol loop is a left Bol action. Trivially,
left group actions are left Bol actions. The following “opposite” version
of Example 6.2 indicates that left homogeneous spaces of matched-pair
loops are unlikely to yield nontrivial left Bol actions.

Example 7.3. Consider the dual subloop P ∗ ∼= C4 of the matched-pair
loop G◦ of Example 4.3. The left homogeneous space G◦/P ∗ consists
of points which are the orbits of the relative right multiplication group
RMltG◦P

∗ of P ∗ in G◦. Let x be an element of G◦ that does not lie in
P ∗. Then the action matrix of x on G◦/P ∗ is

1

5

[
0 5
1 4

]
.

In particular, the action is not a left Bol action. Moreover, in contrast
with Proposition 5.4(b), the dual subloop is not left Lagrangean in the
left Bol loop G◦.

On the positive side, the following generalizations of the main idea
of Theorem 3.1 give a rich source of left Bol actions of groups.
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Proposition 7.4. Let G be a group. Let X be a left G-set by a left
action (group antihomomorphism) L′ : G → X!, and let Y be a right
G-set by a right action (group homomorphism) R∗ : G → Y !.

(a) Define an action LX×Y of G on the direct product X × Y of X
and Y by

LX×Y (g) =
(
L′(g), R∗(g)

)

for g in G. Then LX×Y is a left Bol action.
(b) Define an action LX+Y of G on the disjoint union X + Y of X

and Y by the restrictions

LX+Y (g)|X = L′(g) and LX+Y (g)|Y = R∗(g)

for g in G. Then LX+Y is a left Bol action.

Proof. (a): Use the argument of the first two lines of (3.3).
(b): One has(

LX+Y (g)LX+Y (h)LX+Y (g)
)|X

= L′(g)L′(h)L′(g) = L′(ghg) = LX+Y (ghg)|X
and (

LX+Y (g)LX+Y (h)LX+Y (g)
)|Y

= R∗(g)R∗(h)R∗(g) = R∗(ghg) = LX+Y (ghg)|Y
for g and h in G, so that LX+Y (g)LX+Y (h)LX+Y (g) = LX+Y (ghg) as
required by (7.2). ¤
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