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Multilinear algebras and Lie’s Theorem for formal n-loops

By
J.D.H. SmiTH

1. Introduction. In modern language, Lie’s Third Fundamental Theorem [10, p. 396]
states that each local real analytic (in particular Lie) group determines a Lie algebra in
its tangent space at the identity element. Furthermore, to each finite dimensional real Lie
algebra, there exists a corresponding local real analytic group, determining the given Lie
algebra in its tangent space at the identity. Bochner [2] isolated the algebraic content of
this theorem, interpreting it as giving correspondences between real Lie algebras and real
formal groups. These correspondences may be refined to category equivalences.

Starting with Mal’cev’s work in the 1950’s [11], Lie’s Theorem was extended to corre-
spondences between local real analytic or formal Moufang loops and algebras that are
now known as Mal’cev algebras. Moufang loops are diassociative, so the Baker-Camp-
bell-Hausdorff formula still serves to give a category equivalence, just as in the group case
(cf. Kuz’'min [9]). Again from the 1950’s onwards, Chevalley, Dieudonné and others
investigated Lie’s Theorem for Lie algebras over ficlds of prime characteristic (4], [S]. Here
the Baker-Campbell-Hausdorff formula, which entails division by all primes, cannot be
used, and indeed the category equivalence breaks down.

Motivated by the differential-geometric study of 3-webs, Akivis [1] sought an analogue
of Lie algebras and Mal’cev algebras in the tangent space to the identity of an arbitrary
real analytic loop. He referred to the algebras that he found as “W-algebras”. They are
now known as Akivis algebras. An Akivis algebra over an arbitrary ring R is an R-module
A equipped with a bilinear operation [x, y] known as the (binary) commutator and a
trilinear operation (x, y, z) known as the associator, such that the commutator is anticom-
mutative:

(1.1) [x, yI + [y, x] = 0,

and the Akivis identity

(1.2) [x, v, 2] + [y, 2}, x] + [[z, x], y] = (x, y, 2) + (p, 2, ) + (2, x, y)
- x2) =2y x) —(x,2)Y)
is satisfied.
The corresponding analogue of Lie’s Theorem was given by Hofmann and Strambach

([3, Chapter IX], [8], Theorems 2.1 and 2.2 below). The category equivalence of the
characteristic zero group or Moufang loop case again broke down, because of the failure
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of the Baker-Campbell-Hausdorff formula. This time it was the implicit (di-)associativity
on which the formula depends that was not available. A discussion of the breakdown is
given in [8]. (One point to add to this discussion is that a more detailed comparison with
the prime-characteristic group case may prove fruitful here — perhaps incorporating
co-algebra structures.)

V.V. Goldberg [3, Problem X.3.9] [12, p. 16] has raised the problem of finding an
algebraic construction in the tangent bundle of the coordinate n-ary loop of an (n + 1)-
web W(n + 1, n, r) similar to the construction of the Akivis algebra for 3-webs or (binary)
loops. The purpose of this paper is to propose such a construction in general, and in detail
for the case n = 3 of ternary loops. The proposal has two salient features. The first, given
in the third section, is the specification of two ternary analogues of the binary commuta-
tor. These are called the “commutator” (3.2) and the “translator™ (3.3). The commutator
is left-alternative (3.4), the translator satisfies the Jacobi identity (3.5), and together the
commutator and translator satisfy a new identity called the “comtrans™ identity (3.6). A
ternary algebra in which these identities are satisfied is called a “comtrans algebra”. Thus
a comtrans algebra may be viewed as an analogue of Lie, Mal'cev, and Akivis algebras.

The second salient feature, which has no analogue in the binary cases, is that multilin-
ear operations do not arise directly from n-ary loops with n > 2. They are extracted from
ternary loops in the fourth section by a technique known as “masking”. Setting respective
single arguments of a ternary loop equal to the identity gives three binary loops called
the “masks” of the ternary loop. Trilinear operations forming a comtrans algebra then
appear once the effects of the masks are removed.

In the fifth section Lie’s Third Fundamental Theorem for formal ternary loops is given.
The first part, Theorem 5.1, implies that a local analytic ternary loop, finite dimensional
over a complete normed field, determines a comtrans algebra and the three Akivis
algebras of its masks in the tangent space at the identity. The second part, Theorem 5.2,
constructs a local analytic ternary loop, given a comtrans algebra and three Akivis
algebras, such that the constructed loop in turn determines these algebras according to
Theorem 5.1. As in the case of general binary loops, there is no category equivalence. The
language of formal n-ary loops is used. This language, and the results of the binary case
that are needed, are reviewed in the second section. The sixth and final section indicates
briefly how to deal with n-ary loops having n > 3. The masking technique is used to give

n

(;) Akivis algebras of binary loops and < )

3 comtrans algebras of masked ternary loops.

2. Formal loops. This paper is based on the fundamental algebraic concepts of an
r-dimensional formal n-ary loop over a ring R (with 1z). Consider r-tuples
Uy=Xygseots X)) os U= Kipeysasoos Xihooos Uy = (Xp—r4 15 -+ -5 X,,,) of indetermi-
nates Xy,..., X,,. Then an r-dimensional formal n-ary loop F over R is an r-tuple

(2.1) F=(F',...,F)
of formal power series

(2.2) Fi=Fi(U,...,U)
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in R[[X,,..., X,,]] such that
(2.3) Xi-rri=F(0,...,0,U,0,...,0)

and F' — X;— X, ,;—+* — X,,_,+; contains no terms of degree zero or one. For the
purposes of proving the analogue of Lie’s Third Fundamental Theorem, it is helpful to
have an explicit notation for the power series (2.2). A multi-index notation similar to that
of [7, A.1] is used. Let K be the index set {1, 2, ..., nr}. Then a multi-index n is a function
n: K - N or element of the power INX (note that the set N of natural numbers here, as
the set of cardinalities of finite sets, includes 0). Set |n| = Z n(i). The multi-power X"
denotes the monomial of total degree |n|

(2.4) Xm =TT X0

ieK

where X? = 1, by convention. The power series (2.2) may then be written explicitly as
(2.5) Fre=Xi+ 4+ X+ 2{A X" nek, |n| > 1},

where A} = 0if [n(K)| = 1 by (2.3). The m-th degree chunk F,, of the formal loop (2.1) (cf.
[7, 5.7.1)) is the formal loop F,, = (F., ..., Fz) with

(2.6) Fle X, 4+ Xy + DX neK, 1 <[] < m).

Note that Fj, is an element of the polynomial ring R[X,,..., X,,]. Cubic chunks F;,
quadratic chunks F,, and linear chunks F, are referred to below.

Formal n-ary loops over IR arise from Taylor expansions of local real analytic n-ary
loops about their identity elements. Such local loops in turn may appear as coordinate
n-ary loops of (n 4+ 1)-webs W(n + 1, n, r), as discussed by V. V. Goldberg 3, X.2B]. Thus
an (n + 1)-web W(n + 1, n, r) determines an r-dimensional formal n-ary loop F over R.
The Akivis and comtrans algebras associated with F for n > 2 according to Sections 5
and 6 below then give algebra structures in the tangent bundle of the coordinate n-ary
loop, offering solutions to V. V. Goldberg’s problem [3, Problem X.3.9] [12, p. 16].

The relationship between Akivis algebras and r-dimensional formal (binary) loops F
over a commutative ring R may be summarized as follows for the purposes of this paper.
The quadratic chunk F, of F determines a commutator operation

2.7 [ay, a,] = Fy(ay, a;) — Fy(a,, a,)

on R’. The cubic chunk F; of F determines an associator operation
(2.8) (ay, ay, a3) = F3(F3(ay, ay), a3) — Fy(a,, Fs(a,, a3))

on R".

Theorem 2.1 [8, 2.7). If F is an r-dimensional formal loop over a commutative ring R, then
the commutator (2.7) and associator (2.8) form an Akivis algebra

(2.9) (R, [L1 L))

on R",
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Theorem 2.2 [8, 2.8]. Let R be a field of characteristic prime to 6. Let r be a positive
integer. Suppose given an Akivis algebra

(2.10) (R [,1 (55 )
Then there is an r-dimensional formal loop F over R such that its Akivis algebra (2.9) as

determined by Theorem 2.1 is the given Akivis algebra (2.10).

3. Comtrans structures. Let A be an abelian group and E a set. (In many cases, £
coincides with A.) Suppose that there is a ternary operation

(3.1) ExXExE-A;, (x,p2)mxyz

called multiplication or the (genuine) product from E to A. This operation leads to the
definition of two related ternary operations from E to A4, known respectively as the
commutator and translator of the given multiplication. The commutator [x, y, z| is defined
by

(3.2) [x,v,2] = xyz — yxz,

while the translator {x, y, z) is defined by

(3.3) Xy )z2)=Xxyz—yzx.

The commutator is left alternative in the sense that it satisfies the identity
(3.4) [x,y, 2] + [y, x,2] = 0.

The translator satisfies the Jacobi identity

(3.5) ynz)+ <z, x) + <z, x,y)=0.

Finally, the commutator and translator together satisfy the comtrans identity
(3.6) [x, 5, 2] + [z, y, X] = <x, 3, 2) + <2, ), X).

Remarks 3.1. (i) The product (3.1) is symmetric (in the sense of being invariant
under permutations of the direct factors in E x E x E) if the commutator and translator
are identically zero.

(if) The classical Jacobi identity for the binary commutator [x, y] = xy — yx of an
associative bilinear product A x 4 — A;(x, y) xy is a special case of the current Jacobi
identity (3.5). It is obtained by observing that the repeated binary commutator [[x, y], z]
is the translator for the ternary multiplication

(3.7) AXxAX A=A, (x,y,2)>—zXxy—yxz.

Note that the commutator for this multiplication agrees with the translator, so that the
comtrans identity is trivial here.
The properties (3.4)-(3.6) motivate the following definition.

Definition 3.2. Let R be aring with 1. Then a comtrans structure over R is a unital
R-module A4 with two ternary operations from a set E to 4, known as the commutator
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[x, y, z] and the translator {x, y, z) respectively, such that the commutator is left alterna-
tive (3.4), the translator satisfies the Jacobi identity (3.5), and the two together satisfy the
comtrans identity (3.6). The comtrans structure A is called a comtrans algebra if the
commutator and translator are trilinear operations A x 4 x A — A.

In a comtrans structure over a ring R in which 6 is a unit, a new operation known as
the bogus product [x, y, z/ may be defined by
(3.8) 6/x,v,z/ =[x, y,2] + [y, 2, X] + [z, x, y] + 2{x, ¥, 2) — 24z, x, )

using the invertibility of 6 in the underlying ring. The commutator /x, y, z/ — /[y, x, z/ of
the bogus product is called the bogus commutator; its translator /x, y,z/ — [y, z, x/ is
called the bogus translator.

Proposition 3.3. Let R be a ring in which 6 is a unit. Then in a comtrans structure
over R:

(i) the bogus commutator agrees with the commutator;,
(ii) the bogus translator agrees with the translator.

Proof. (i) The bogus commutator is one-sixth of
(x, v, 2] + [y, 2, x] + [z, %, y] + 24x, y, 2) — 242, x, y)
- [,V, X, Z] - [xv z, .V] i [Zv Vs x] - 2(}’, X, Z> + 2(2, Vs x>'
By the comtrans identity, the translator terms may be replaced by corresponding commu-
tator terms. By left alternativity, each commutator is a multiple of [x, y, z], [y, z, x], or
[z, x, y]. One obtains
[x, v, 2] + [y, 2, X] + [z, x, Y] + 2[x, y, 2] — 2]z, x, y]
+ [x, ¥, 2] + [z, x, y] + [y, 2, x] + 2[x, y, 2] — 2[, 2, x],
which cancels to 6]x, y, z].
(ii) The bogus translator is one-sixth of
[x, 21 + [, 2, x] + [z, x, Y] + 24x, 3, 2) — 242, %, )
- [y’ 2z, X] . [Z, X, _V] - [X, Vs Z] - 2<ya Z, X) + 2<x’ Vs Z>.

The commutator terms cancel immediately, while the translator terms reduce to
6{x, y, z) by the Jacobi identity.

4. Masking. Let F be an r-dimensional formal ternary loop over a commutative ring
R. The cubic chunk F; defines an operation

(4.1) R x R x R" >R, (ay,a,,as)— Fy(ay, ay, as).

However, the commutator and translator of this operation are not multilinear. Indeed,
the commutator and translator of the operation Fy are not even guaranteed to vanish if
any one of their arguments vanishes. To overcome this problem, the technique of masking
is used.
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The masks of the formal ternary loop F are the formal (binary) loops
F{1} (Uy, Uy) = F(0, Uy, Us),
4.2) F{2} (Uy, Us) = F(U,, 0, Us),
F{3} (U, Uy) = F(Uy, U, 0),

known respectively as the 1-mask, the 2-mask, and the 3-mask (cf. [6, (17)]). The masked
version M = M(F) of the formal ternary loop F is then defined by

43) M = F{1} + F{2} + F{3} — F.

Proposition 4.1. Let M be the masked version of the formal ternary loop F.

(i) M is a formal ternary loop.
(i) The cubic chunk My of M is the masked version M (F) of the cubic chunk Fy of F.
(iii) The commutator and translator of the ternary operation My on R are trilinear.

Proof. WIf FF=X,+X,,,+ X5, + {2 X" neNX, |n| > 1} as in (2.4), with
K=Tullullland I ={1,...,r}, I ={r+1,...,2r}, Il = {2r + 1,..., 3r}, then
F{Y =X, + X5, 00+ 2{A X" n(]) = {0}, |n| > 1},
(4.4) F{2}' = X+ Xp i + {2 X" | n(1l) = {0}, |n| > 1},
F3Y = Xi+ X,4i + {4 X" | n(lll) = {0}, |n] > 1},
Thus by (4.3)
Mi = X( + X,;i + Xz,.'.‘
— 2 {4 X" |ne N5 n(l) + {0}, n(ll) + {0}, n(ILI) + {0},
where the latter sum includes no terms of degree less than 3. It follows that the linear

chunk of M"is just X; + X, ,; + X,,+;, so that M is a formal ternary loop.
(ii) By (4.4) the cubic chunk M, of M has

(4.5) My = X; + X, 41+ Xgppi = Z{AX" | Z()) = Tn(ll) = Tn(Il) = 1}.
The cubic chunk F; of F has
(4'6) F;=Xi+xr+l+X2r*l

+ Y {ALX™ [ n(1D) # n(I) = {0} % n(III), |n| < 3}
+ S {2 X™ | n(1) % n(II) = {0} % n(III), |n| < 3}
+ {2, X" | n(T) # n(III) = {0} + n(II), |n| < 3}
+ 2 {4 X" Za() = Xa(Il) = Yo(IlI) = 1}.
Since
) B{1Y =X+ Xz
+ 2 {2 X™ | n(ID) # n(I) = {0} # n(III), |n| = 3},
@) F{2Y =X+ X34
+ 3 {AL X" | n(l) # a(1l) = {0} + n(ILI), |n| < 3},

@.7)
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(iii) F3{3}‘ =X;+ X,
+ 2 (X" [ n(II) # n(1) = {0} + n(IIT), |n| < 3},
it follows that

(4.8) M; = F{1} + F3{2} + F3{3} — F3 = M(F3),

as required.
(iti) By (4.5) and the summation convention,

i i 1
(4.9) M(af, a5, d5) = &} + ay + ay — A, @] dy dy,

writing Aj,; = 4, for n(j) =n(r + k) = n(2r + [) = 1, the mapping n: K - N having
> n(l) = X a(II) = ¥ n(III) = 1. Thus the i-th component of the commutator is

(410) [aj] ’ akzv al:)]i = ("';tﬂ - '{;kl) ajl ag a'3’
while the i-th component of the translator is
(411) <a{9 a';, als>i = (lilj - 'z"'likl) ajl ag al3'
Both of these are trilinear. (Note that the commutator and translator of @} + a5 + df
vanish in accordance with Remark 3.1(i).)

Corollary 4.2. The commutator and translator of My = M(F3) determine a comtrans
algebra on R".

Definition 4.3. The comtrans algebra of Corollary 4.2 is called the comtrans

algebra of the ternary loop F.

5. The Fundamental Theorem. Let F be an r-dimensional formal ternary loop over a
commutative ring R. Each mask of F is a formal binary loop, and so determines an Akivis
algebra on R” by Theorem 2.1. Denote the Akivis algebra of the a-mask by (R", [, 1., (,, ),)
for o = 1, 2, 3. The formal analogue of the first part of Lie’s Third Fundamental Theorem
for formal ternary loops may then be stated as follows, summarizing the above results.

Theorem 5.1. An r-dimensional formal ternary loop F over a commutative ring R deter-
mines an algebra structure

(5'1) (Rr’[’]ﬂ’(”)a’[”]’<”>)

on R, 1 < o < 3, comprising its comtrans algebra (R", [,,], {,,>) and the three Akivis
algebras (R', [, 1., (,,),) of its o-masks.

The converse of Theorem 5.1 completes the analogue of Lie’s Third Fundamental
Theorem for ternary loops.

Theorem 5.2. Let R be a field of characteristic prime to 6. Let r be a positive integer.
Suppose given Akivis algebras

(5.2) (R[5 1e (50
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Jor o = 1,2,3 and a comtrans algebra

(5.3) (R [,,),¢00).

Then there is an r-dimensional formal ternary loop F over R such that (5.3) is its comtrans
algebra and such that the Akivis algebras (5.2) are the respective Akivis algebras of its
a-masks for o = 1,2, 3.

Proof. Use notation as in the proof of Proposition 4.1. By Theorem 2.2, the
Akivis algebras (5.2) determine r-dimensional formal loops G (U,.U,) = (3.7)(i),
G4 (U,, Us) = (3.7) (ii), and G4(U,, U,) = (3.7) (iii), whose Akivis algebras are again the
Akivis algebras (5.2). Now consider the commutator and translator (5.3). They determine
a trilinear bogus product

(54) R"x R"x R" = R";  (ay, ay, a3)r [ay, ay, as/
according to (3.8), say
(5.5) [a}, ds, ay/ = — Ay @) dsal

with the summation convention. By Proposition 3.3, the components of the com-
mutator and translator (5.3) are then given by (4.10) and (4.11) respectively. Set
Mygy=4hy for n()=n@+k=n2r+0)=1 the mapping n:K—-N having
> n(l) = X n(Il) = ¥ n(IlI) = 1. Define the r-dimensional formal ternary loop F by

(5.6) Fie X, 4+ X, 4+ Xppeo + S{AX" neNK 1 < [n] < 3).

Since F is equal to its cubic chunk F;, it may also be written in the form (4.6). Thus the
a-masks are G, G5, GY respectively, having (5.2) as their Akivis algebras. The masked
version of F is given by (4.8) and (4.5), having (4.10) and (4.11) as its commutator and
translator. The comtrans algebra of F is thus the given (5.3).

6. The general case. Let F = F(U,, ..., U,) be a formal n-ary loop. For each (n — 2)-¢l-
ement subset a of {1,2,...,n} with complement {i,j}, the a-mask of F is the formal
(binary) loop
(6.1) Fa(U, U) = F(,..., U,..., U,

SRR

- 0)

obtained by setting U, = 0 for k in o. For each (n — 3)-element subset f of {1,2, ..., n}
with complement {i, j, k}, the f-mask of F is the formal ternary loop

(6.2) FBWU, Uy U) = FO,..., Uy..., Uy .., Uy, ..., 0)

obtained by setting U, = 0 for [ in . Note that for a given f, the three a-masks of F with
f < o are the masks of the formal ternary loop F § in the sense of (4.2). Then the formal
n n
2 3
algebras come from the a-masks, and the comtrans algebras come from the masked
n n
2 3

n-ary loop F determines Akivis algebras and comtrans algebras. The Akivis

versions of the f-masks. Conversely, given Akivis algebras and comtrans alge-
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bras, indexed appropriately by (n — 2)-element subsets « and (n — 3)-element subsets £ of
{1,..., n}, one may build (the cubic chunk of) a formal n-ary loop yielding these given
Akivis and comtrans algebras according to the above construction.
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