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Abstract. The set of automorphisms of a single algebra forms a group under composition.
This paper studies the full set of all automorphisms of all algebra structures in a given
abstract class on a fixed finite set. A lambda-ring, known as the automorphism type
ring, is associated with this full set of automorphisms, and its structure is described. For
certain classes (such as the variety of lattices), the full set of automorphisms is represented
up to conjugation in the symmetric group by the automorphisms of a single, so-called
representative algebra. In this case, the automorphism type ring is a subring of the ring of
class functions on the automorphism group of the representative algebra.

1. Introduction

One of the standard exercises in universal algebra considers the set of auto-
morphisms of a given algebra. This set of automorphisms forms a group under
composition. The intention of the current paper is to study the set Aut(A, C) of all
automorphisms of all those algebras on a fixed set A that lie in a certain abstract
class C of algebras. This global approach to automorphisms (and autotopies) has
recently received increasing attention in the theory of quasigroups (cf. e.g. [2, 4]).

Taking C as an abstract class means that the set Aut(A, C) is a union of conjugacy
classes in the group A! of all permutations (bijective self-maps) of the set A (§2). For
a finite set A, each such conjugacy class is specified by its cycle type, the partition
of the size |A| of A given by the lengths of the orbits on A under the action of a
member of the conjugacy class. Thus one of the goals of the program is to specify,
for a given abstract class C and for each natural number n, a list of the partitions
of n that arise as cycle types of automorphisms of C-algebras of order n. Since this
set of cycle types will be empty if and only if n does not lie in the finite spectrum
of C, the specification of the automorphism cycle types subsumes the specification
of the finite spectrum of the given class C. Tables 1–4 present sample lists of
automorphism cycle types for Boolean algebras, GF(2)-spaces, abelian groups, and
quasigroups, for orders up to 8. It is apparent that decreasing structure (e.g., fewer
identities or fewer derived operations) progressively admits new cycle types.

For certain abstract classes C and cardinalities n, there is a single algebra of
order n whose automorphisms include all the possible automorphism cycle types
of C-algebras of order n. Such an algebra is known as a representative algebra
(Definition 3.1). The varieties of semilattices and lattices have a representative
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algebra in each (finite) cardinality (Theorems 3.2, 3.4). An example of a small
abstract class with no representative algebra is also given. In general, it may be
difficult to determine whether a given abstract class has a representative algebra of
a given finite order (Problem 3.6).

While the set of automorphisms of a single algebra has a group structure under
composition, the question of the algebraic structure of the full sets Aut(A, C) is
not so easily resolved. In Sections 6 and 7, the structure of a λ-ring, the so-called
automorphism type ring, is associated with Aut(A, C) for each abstract class C and
set A of finite order n. As recalled in Section 4, λ-rings are commutative, unital
rings or Z-algebras with additional unary operations, the lambda operations λk

defined for each natural number k. In the ring of integers, λk(l) is the binomial
coefficient

(
l
k

)
. If the underlying ring is actually a Q-algebra, then an alternative

axiomatization is offered by the unary Adams operations ψk for positive integers k
(Section 5). The automorphism type rings are actually C-algebras, whose complex
dimensions agree with the total number of automorphism cycle types. The Adams
operations then give vestiges of the positive powers in automorphism groups. The
two final sections are devoted to the statement and proof of the main Theorem 8.3,
which describes the structure of the automorphism type rings.

Readers may consult [7] for concepts and conventions that are not otherwise
referenced in the paper.

2. Automorphisms

An algebra A with operator domain Ω will often be written as a triple (A,Ω, ρ),
where ρ denotes the action of Ω on A. Thus if ω is a k-ary operator, the operation
of ω on A is written as

Ak → A; (a1, . . . , ak) 7→ a1 . . . akωρ

in algebraic notation. The following lemma is of course extremely well known, but
it will serve as a basis for subsequent considerations.

Lemma 2.1. The set Aut(A,Ω, ρ) of all automorphisms of an algebra (A, Ω, ρ)
forms a group under composition. In particular, if r is a natural number and α is
an automorphism of (A, Ω, ρ), then so is αr.

Let C be a class of algebras. Let A be a set, with group A! of permutations.
Write (A, C) for the set of all algebra structures on the set A that belong to the
class C. Further, write

Aut(A, C) = {α ∈ A! | ∃ (A, Ω, ρ) ∈ (A, C) . α ∈ Aut(A, Ω, ρ)}
=

⋃

(A,Ω,ρ)∈(A,C)
Aut(A, Ω, ρ) .

Recall that a class C of algebras is abstract if it is closed under the isomorphism
closure operator I, so that B ∼= A ∈ C implies B ∈ C. The (combinatorial) finite
spectrum of an abstract class C is the set of natural numbers n for which there is a
C-algebra of order n. One of the main concerns of this paper is the study of the sets
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Aut(A, C) for an abstract class C. Note that for a finite set A, the set Aut(A, C)
is nonempty if and only if |A| lies in the finite spectrum of C. Thus Aut(A, C)
certainly embodies all the information in the finite spectrum.

If π is an element of the permutation group A!, a new algebra (A, Ω, ρπ) is defined
by

a1 . . . akωρπ := (a1π
−1) . . . (akπ−1)ωρπ (2.1)

so that π : (A, Ω, ρ) → (A, Ω, ρπ) is an isomorphism.

Lemma 2.2. Let C be an abstract class of algebras.

(a) (A, C) is a right A!-set under the action π : (A,Ω, ρ) 7→ (A, Ω, ρπ).
(b) ∀ α ∈ Aut(A, C) , ∀ π ∈ A! , π−1απ ∈ Aut(A, C).

Proof. (a) Consider permutations π, π′, and a k-ary operator ω. Then for a1, . . . , ak

in A, (2.1) gives

a1 . . . akω(ρπ)π′ = (a1π
′−1) . . . (akπ′−1)ωρππ′ = (a1π

′−1π−1) . . . (akπ′−1π−1)ωρππ′

= a1(ππ′)−1 . . . ak(ππ′)−1ωρ(ππ′) = a1 . . . akωρ(ππ′)

as required.

(b) Consider the diagram

(A, Ω, ρ) π−−−−→ (A, Ω, ρπ)

α

y
yπ−1απ

(A, Ω, ρ) −−−−→
π

(A, Ω, ρπ)

of isomorphisms of C-algebras. ¤

Lemma 2.2 shows that for an abstract class C, the elements of Aut(A, C) form
complete conjugacy classes in the permutation group A!. If A has finite order
n, then each such conjugacy class is specified as the class Cτ , for a partition τ
of n, consisting of all the permutations of A that have cycle type τ . Tables 1–4
list the cycle types of automorphisms of small algebras for the respective classes
of Boolean algebras, vector spaces over GF(2), abelian groups, and quasigroups
(compare [4, 5]). Two further examples, semilattices and lattices, are analyzed in
the following section.

3. Representative algebras

Definition 3.1. For an abstract class C, an algebra (A,Ω, ρ) in C is said to be
representative if each element of Aut(A, C) is conjugate in A! to an automorphism
of (A, Ω, ρ).

Recall the notation τ ` n to express that τ is a partition of a positive integer n.
In this paper, partitions are written in product form (compare [7, p.50]).
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Theorem 3.2. For 1 < n ∈ Z, let A be a set of order n. Let H be the variety of
semilattices. Then

Aut(A,H) =
⋃

µ`(n−1)

Cµ·1 .

Proof. Each automorphism α of a meet semilattice structure (A, ·) on A has to fix
the lower bound

∏
a∈A a of the poset (A,≤·). Thus α has cycle type µ · 1 with

µ ` (n− 1). For the converse, choose an element ⊥ of A. Consider the ordinal sum
{⊥} ⊕ (A r {⊥}) of {⊥} with the unordered set A r {⊥} as a meet semilattice.
Then each permutation of A that fixes ⊥ is an automorphism of this semilattice
structure on A. ¤

Corollary 3.3. The semilattice {⊥} ⊕ (Ar {⊥}) is representative for H.

Theorem 3.4. For 2 < n ∈ Z, let A be a set of order n. Let L be the variety of
lattices. Then

Aut(A,L) =
⋃

µ`(n−2)

Cµ·12 .

Proof. To establish the containment Aut(A,L) ⊆ ⋃
µ`(n−2) Cµ·12 , note that each

automorphism of a lattice structure (A, +, ·) on A has to fix the lower bound
∏

a∈A a
and upper bound

∑
a∈A a of the poset (A,≤). For the converse, choose distinct

elements ⊥ and > of A. Consider the ordinal sum {⊥} ⊕ (A r {⊥,>}) ⊕ {>} of
{⊥}, the unordered set Ar {⊥,>}, and {>} as a lattice. Then each permutation
of A that fixes ⊥ and > is an automorphism of this lattice structure on A. ¤

Corollary 3.5. The lattice {⊥} ⊕ (Ar {⊥,>})⊕ {>} is representative for L.

The following problem appears to be difficult in general.

Problem 3.6. Given an abstract class C, and a member n of the finite spectrum
of C, determine if there is a representative algebra of order n for C.

To contrast the preceding positive results for the varieties of semilattices and
lattices, we present one negative result.

Proposition 3.7. For the symmetric group S4 and additive group (Z/24,+) of
integers modulo 24, define C = I{S4, (Z/24,+)}. Then there is no representative
algebra for the abstract class C.
Proof. The automorphisms of the additive group Z/24, namely multiplications by
residues coprime to 24, have cycle types 2r124−2r for r = 0, 6, 8, 9, 10, 11. On the
other hand, the automorphism group of S4 acts faithfully on the 4-element set of
Sylow 3-subgroups of S4. Since Z(S4) is trivial, Aut(S4) consists entirely of the 24
inner automorphisms. These have cycle types 124, 21014, 2916, 3713, and 442214.
The two latter types are not represented in Z/24, while 26112, 2818, and 21112 are
not represented in S4. ¤

Recall that an abstract class C is categorical in power |A| if, up to isomorphism,
there is at most one C-algebra structure (A, Ω, ρ) on the set A. If such an algebra
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(A, Ω, ρ) does exist in this case, it is certainly representative. The following example
serves to point out the distinction between Aut(A,Ω, ρ) and Aut(A, C).
Example 3.8. The class A of abelian groups is categorical in power 3. However,
while the automorphism group of the abelian group of integers {1, 2, 3} modulo
3 under addition is the group {(1), (1 2)}, the set Aut({1, 2, 3},A) is the union
{(1), (1 2), (2 3), (3 1)} of S3-conjugacy classes. This set does not form a subgroup
of the symmetric group S3.

4. λ-rings

In order to associate an algebra structure with the sets Aut(A, C) for a finite set
A and an abstract class C, we will consider λ-rings. A λ-ring R [1, §1][3, §3.1]1 is
a commutative, unital ring equipped with unary λ-operations λn for each natural
number n, such that the identities

λ0(x) = 1 , λ1(x) = x ,

and

λn(x + y) =
n∑

k=0

λk(x)λn−k(y) (4.1)

are satisfied. Defining the generating function

λt(x) =
∞∑

n=0

λn(x)tn

for each element x of R, with indeterminate t, the identity (4.1) may be rewritten
in the form λt(x + y) = λt(x)λt(y).

Example 4.1. The ring Z of integers becomes a λ-ring with λt(1) = 1 + t, the
identity (4.1) reducing to the relationship

(
x + y

n

)
=

n∑

k=0

(
x

k

)(
y

n− k

)

between binomial coefficients.

Definition 4.2. An subset I of a λ-ring R is said to be a λ-ideal if
(a) I is an ideal of the ring R;
(b) For each element r of I, one has λk(r) ∈ I for k > 0.

Using (4.1), one may readily verify the following.

Proposition 4.3. If I is a λ-ideal of a λ-ring R, then for each natural number n,

λn(r + I) = λn(r) + I

gives a well-defined λ-operation on R/I, making R/I a λ-ring.

1Some authors say pre-λ-ring, reserving the term λ-ring for the special λ-rings of Definition 4.4
— compare [6, pp.7, 13].
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Now let ξ1, . . . , ξq, η1, . . . , ηr be indeterminates. Use
∞∑

i=0

sit
i =

q∏

k=1

(1 + ξkt) and
∞∑

i=0

σit
i =

q∏

k=1

(1 + ηkt)

to define the elementary symmetric functions

si(ξ1, . . . , ξq) , σi(η1, . . . , ηr) .

Then define Pn(s1, . . . , sn;σ1, . . . , σn) to be the coefficient of tn in
q∏

i=1

r∏

j=1

(1 + ξiηjt) .

Define Pn,d(s1, . . . , snd) to be the coefficient of tn in
∏

1≤i1<...<im≤d

(1 + ξi1 . . . ξimt) .

Definition 4.4. A λ-ring is said to be special if it satisfies the identities

λn(xy) = Pn

(
λ1(x), . . . , λn(x); λ1(y) . . . λn(y)

)

and
λm (λn(x)) = Pm,n

(
λ1(x), . . . , λmn(x)

)
(4.2)

for all natural numbers m and n.

Remark 4.5. Setting n = 0 in (4.2) yields λt(1) = 1+ t. Thus the λ-ring structure
of Example 4.1 is the unique special λ-ring structure on the ring Z of integers.

5. Adams operations and class functions

Let R be a commutative Q-algebra. For the underlying ring structure R, an
alternative specification of λ-rings is given by the unary Adams operations ψk for
positive integers k. Without going into the full detail available in the standard
references [1, 3, 6], it will suffice here to point out that the ψk : R → R are unital
ring homomorphisms with ψk ◦ ψl = ψk+l, and that

λk =
1
k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 1 0 0 . . . 0

ψ2 ψ1 2 0 . . . 0
...

. . . . . . . . . . . .
...

...
...

. . . . . . 0

ψk−1 ψk−2 . . .
. . . ψ1 k − 1

ψk ψk−1 . . . ψ2 ψ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (5.1)

for 0 < k, l ∈ Z [6, pp.49–50].
Let G be a finite group. A complex class function on G is a function

χ : G → C; x 7→ 〈x, χ〉
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such that
∀ g ∈ G , 〈g−1xg, χ〉 = 〈x, χ〉 .

Consider the C-algebra Cl(G) of all complex class functions on G, with pointwise
ring structure, complex scalar multiplication, and pointwise complex conjugation.
Define Adams operations on Cl(G) by

〈x, ψk(χ)〉 = 〈xk, χ〉 (5.2)

for x ∈ G, χ ∈ Cl(G) and 0 < k ∈ Z, noting

〈g−1xg, ψk(χ)〉 = 〈(g−1xg)k, χ〉 = 〈g−1xkg, χ〉 = 〈xk, χ〉 = 〈x, ψk(χ)〉
for g in G. It is also worth recording the periodicity identities

ψk+|G|(χ) = ψk(χ) (5.3)

for 0 < k ∈ Z, following from

〈x, ψk+|G|(χ)〉 = 〈xk+|G|, χ〉 = 〈xk, χ〉 = 〈x, ψk(χ)〉
for x in G. Now λ-operations are given on Cl(G) by (5.1).

Theorem 5.1. [6, p.54] The complex class function ring Cl(G) of a finite group G
forms a special λ-ring.

6. Automorphism annihilators

Let C be an abstract class of algebras.

Definition 6.1. A complex class function κ on the symmetric group Sn is said
to be a C-automorphism annihilator if 〈α, κ〉 = 0 for each automorphism α of a
C-algebra of order n.

For each natural number n, define the automorphism kernel AKn(C) to be the
complex vector space that consists of all the C-automorphism annihilators on Sn.

Example 6.2. Let Q be the variety of quasigroups (Table 4).
(a) The space AK3(Q) is trivial.
(b) The space AK4(Q) is spanned by the characteristic function of the conjugacy
class of permutations of cycle type 41.

Remark 6.3. There are differing conventions for the characteristic function χX :
A → {0, 1} of a subset X of a set A. Generally speaking, X is taken as the preimage
of {1} in mathematics, and as the preimage of {0} in logic. This paper follows the
mathematical convention.

The following proposition shows how automorphism annihilators may be used to
identify C-algebra automorphisms.

Proposition 6.4. For a natural number n, let π be an element of Sn. Then π is
an automorphism of an n-element C-algebra if and only if

∀ κ ∈ AKn(C) , 〈π, κ〉 = 0 . (6.1)
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Proof. The “only if” direction is immediate from Definition 6.1. For the converse,
suppose that a permutation π satisfies (6.1). Let N be the subset of Sn consisting of
permutations which are not C-algebra automorphisms. The characteristic function
χN of N is a class function on Sn by Lemma 2.2(b), and is a C-automorphism
annihilator. By (6.1), χN takes the value zero on π. Thus π is identified as a
C-algebra automorphism. ¤

Remark 6.5. To verify (6.1) for a permutation π, it of course suffices to check the
condition 〈π, κ〉 = 0 for κ from a basis of the automorphism kernel AKn(C).
Theorem 6.6. For each natural number n, the automorphism kernel AKn(C) forms
a λ-ideal in the special λ-ring Cl(Sn).

Proof. Let α be a C-algebra automorphism. Suppose that κ is a C-automorphism
annihilator. Then for each class function χ of Sn,

〈α, κχ〉 = 〈α, κ〉〈α, χ〉 = 0 .

Thus the space AKn(C) is an ideal of the ring Cl(Sn). Further, one has

〈α, ψk(κ)〉 = 〈αk, κ〉 = 0

by (5.2) and Lemma 2.1. Thus the space AKn(C) is closed under the various Adams
operations ψk for positive integers k. The corresponding λ-operations are given by
the determinant (5.1). Since each term of the determinant’s Laplace expansion
down the first column involves at least one Adams operation with positive index,
the set AKn(C) is closed under the λ-operations λk for positive integers k. ¤

Corollary 6.7. Let n be a natural number. Then the quotient Cl(Sn)/AKn(C) is
a special λ-ring whose dimension is equal to the number of conjugacy classes of
C-algebra automorphisms in Sn.

Proof. Apply Proposition 4.3. ¤

Definition 6.8. For a natural number n and abstract class C, the special λ-ring

ATRn(C) = Cl(Sn)/AKn(C)
is known as the automorphism type ring for C of degree n.

Let P (n) be the total number of integer partitions of n. Corollary 6.7 gives
the following Duality Principle, which may assist in piecing together a full list of
C-algebra automorphism types.

Proposition 6.9. Let n be a positive integer. Let T be a set of cycle types of
automorphisms of n-element C-algebras. Let L be a linearly independent subset of
the automorphism kernel AKn(C). Then

|T |+ |L| ≤ P (n) . (6.2)

Equality holds in (6.2) if and only if L spans AKn(C) and T contains all the cycle
types of automorphisms of C-algebras of order n.
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7. Automorphism type rings

Let C be an abstract class of algebras, and let n be a positive integer. The goal
of the final two sections is to describe the structure of the automorphism type ring
ATRn(C).
Proposition 7.1. Let (A,Ω, ρ) be a C-algebra of order n, with automorphism group
of order r. Let

{Dij | 1 ≤ i ≤ l , 1 ≤ j ≤ mi}
be the full set of conjugacy classes of the automorphism group Aut(A,Ω, ρ), indexed
so that for 1 ≤ i ≤ l, there are distinct conjugacy classes Ci of A! such that the
classes Di1, . . . , Dimi of Aut(A, Ω, ρ) fuse into Ci in A!. Let S(A,Ω, ρ) be the subset
of Cl (Aut(A, Ω, ρ)) consisting of those complex class functions χ on Aut(A, Ω, ρ)
that satisfy

∀ 1 ≤ i ≤ l , ∀ 1 ≤ j1, j2 ≤ mi , ∀ α1 ∈ Dij1 , ∀ α2 ∈ Dij2 , 〈α1, χ〉 = 〈α2, χ〉 . (7.1)

Then:
(a) S(A, Ω, ρ) is an l-dimensional C-subalgebra of Cl (Aut(A,Ω, ρ)).
(b) S(A, Ω, ρ) is a λ-subring of Cl (Aut(A, Ω, ρ)).
(c) S(A, Ω, ρ) satisfies the periodicity identities ψk+r = ψk for 0 < k ∈ Z.

Proof. Abbreviate S(A,Ω, ρ) to S.
(a) Suppose that χ and χ′ are elements of S, so the quantified equations

〈α1, χ〉 = 〈α2, χ〉 and 〈α1, χ
′〉 = 〈α2, χ

′〉
of (7.1) are satisfied. Then〈

α1, χχ′
〉

=
〈
α1, χ

〉〈
α1, χ

′〉 =
〈
α2, χ

〉〈
α2, χ

′〉 =
〈
α2, χχ′

〉

and for z1, z2 ∈ C,〈
α1, z1χ + z2χ

′〉 = z1

〈
α1, χ

〉
+ z2

〈
α1, χ

′〉

= z1

〈
α2, χ

〉
+ z2

〈
α2, χ

′〉 =
〈
α2, z1χ + z2χ

′〉 .

Finally, for 1 ≤ i ≤ l, define the subset

Di =
mi⋃

j=1

Dij

of Aut(A,Ω, ρ). Then the characteristic functions χD1 , . . . , χDl
form a basis of S,

so dimC S = l.

(b) Let k be a positive integer, and let χ be an element of S. For 1 ≤ i ≤ l and
1 ≤ j1, j2 ≤ mi, consider elements α1 of Dij1 and α2 of Dij2 , so that α1 and α2

are conjugate in A!. Since αk
1 and αk

2 are also conjugate in A!, there is an index
1 ≤ i′ ≤ l and indices 1 ≤ j′1, j

′
2 ≤ mi′ such that αk

1 ∈ Di′j′1 and αk
2 ∈ Di′j′2 . Then

〈
α1, ψ

k(χ)
〉

=
〈
αk

1 , χ
〉

=
〈
αk

2 , χ
〉

=
〈
α2, ψ

k(χ)
〉
,

by (5.2), the central equality holding since χ ∈ S. It follows that ψk(χ) also lies in
S, as required.
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(c) follows from (b) and (5.3). ¤

Definition 7.2. The C-algebra and special λ-ring S(A,Ω, ρ) specified by condition
(7.1) in Proposition 7.1 is called the A!-fusion subring of Cl (Aut(A, Ω, ρ)).

Theorem 7.3. For a C-algebra (A, Ω, ρ), let

ι(A,Ω,ρ) : Aut(A,Ω, ρ) ↪→ A!

denote the embedding of the automorphism group in the permutation group. Then
the restriction map

res(A,Ω,ρ) : Cl(A!) → S(A, Ω, ρ); χ 7→ ι(A,Ω,ρ)χ (7.2)

is a well-defined surjective C-linear λ-ring homomorphism that factors through a
homomorphism

π(A,Ω,ρ) : ATRn(C) → S(A,Ω, ρ) (7.3)
from the automorphism type ring.

Proof. Continue the notation of Proposition 7.1. Since a class function χ of A!
satisfies the condition (7.1), the restriction map (7.2) is well-defined. It is clearly a
C-linear homomorphism of λ-rings. To show that it surjects, consider an element
χ of S. Then a class function χ̃ of A! is well-defined by

〈β, χ̃〉 =

{
〈γ−1βγ, χ〉 if ∃ 1 ≤ i ≤ l . ∃ γ ∈ A! . γ−1βγ ∈ Di1 ;
0 otherwise

for β in A!. Consider an automorphism α of (A, Ω, ρ), say α ∈ Dhj for 1 ≤ h ≤ l
and 1 ≤ j ≤ mh. Consider a permutation γ such that γ−1αγ ∈ Dh1. Then

αι(A,Ω,ρ)χ̃ = 〈γ−1αγ, χ〉 = 〈α, χ〉
since χ lies in S. Thus res(A,Ω,ρ) : χ̃ 7→ χ, as required for the surjectivity. Now let
κ be an automorphism annihilator. Then for an automorphism α of (A,Ω, ρ), one
has αι(A,Ω,ρ)κ = 〈α, κ〉 = 0 , so that κ lies in the kernel of res(A,Ω,ρ). It follows that
res(A,Ω,ρ) factors through the projection π(A,Ω,ρ) of (7.3) as claimed. ¤

If there is a representative C-algebra of order n, Theorem 7.3 gives an immediate
description of the automorphism type ring.

Corollary 7.4. Let C be an abstract class of algebras. Let n be a positive integer,
and let (A, Ω, ρ) be a representative C-algebra of order n. Let r be the order of
Aut(A,Ω, ρ), and let l be the cardinality of its set of A!-fused conjugacy classes.

(a) The projection π(A,Ω,ρ) : ATRn(C) → S(A, Ω, ρ) is an isomorphism.
(b) The C-algebra ATRn(C) has dimension l.
(c) The λ-ring ATRn(C) satisfies the identities ψk+r = ψk for 0 < k ∈ Z.

Proof. Since (A, Ω, ρ) is representative, the number of C-algebra automorphism
types is equal to l . Thus by Proposition 7.1(a), the respective dimensions of the
domain and codomain of the surjective C-linear map π(A,Ω,ρ) agree. It follows that
π(A,Ω,ρ) is an isomorphism. The periodicity identities in ATRn(C) then hold by
Proposition 7.1(c). ¤
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Example 7.5. As a simple illustration of the working of Corollary 7.4, consider
the class P of nontrivial right Cp-sets, for the cyclic group Cp of prime order p.
The regular right Cp-set (Cp, Cp) is a representative P-algebra of order p. Its
automorphism group is again Cp, acting as the left regular representation on the
set Cp. While the conjugacy classes of the abelian group Cp are singletons, the p−1
nonidentity classes fuse in Sp. Thus Corollary 7.4 identifies the automorphism type
ring ATRp(P) as a 2-dimensional C-algebra, and as a special λ-ring satisfying the
periodicities ψk+p = ψk. Of course, this concurs with the direct observation that
the P-automorphism types of order p are just 1p and p1.

8. Representative sets

The structural description of a general automorphism type ring requires the
concept of a representative algebra to be extended.

Definition 8.1. Let C be an abstract class of algebras, and let A be a finite set.
Then a set R of C-algebras on A is said to be representative if each element of
Aut(A, C) is conjugate in A! to an automorphism of some member (A, Ω, ρ) of R.

The following result is immediate.

Proposition 8.2. Let C be an abstract class of algebras, and let A be a finite set.
Then the set R of all representative sets of C-algebras on A forms a join semilattice
under set-theoretical union.

Note that R is the singleton {∅} if |A| is not in the spectrum of C. If |A| is
in the finite spectrum, and a minimal element of R is a singleton {(A, Ω, ρ)}, then
the algebra (A, Ω, ρ) is representative. In that case, Corollary 7.4 identified the
automorphism type ring as an isomorphic copy of S(A,Ω, ρ). The following theorem
gives the general structural description of automorphism type rings. Corollary 7.4
is recovered as the case d = 1 of this theorem.

Theorem 8.3. Let C be an abstract class of algebras. Let A be a finite set of positive
cardinality n. Let R = {(A, Ω1, ρ1), . . . , (A, Ωd, ρd)} be a minimal representative set
of C-algebras on A. For 1 ≤ i ≤ d, let ri be the order of Aut(A, Ωi, ρi), and let li
be the cardinality of its set of A!-fused conjugacy classes. Let r = lcm{r1, . . . , rd}.

(a) The automorphism type ring ATRn(C) is a subdirect product of the A!-fusion
algebras S(A,Ωi, ρi) for 1 ≤ i ≤ d.

(b) The C-algebra ATRn(C) has dimension satisfying

d− 1 + max{li | 1 ≤ i ≤ d} ≤ dimCATRn(C) ≤ 1− d +
d∑

i=1

li . (8.1)

(c) The λ-ring ATRn(C) satisfies the identities ψk+r = ψk for 0 < k ∈ Z.

Proof. (a) Consider the product

p : Cl(A!) →
d∏

i=1

S(A, Ωi, ρi)
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of the surjective restriction homomorphisms res(A,Ωi,ρi) of (7.2). Suppose that a
class function κ of A! lies in the kernel of p. Then 〈α, κ〉 = 0 for each element α of
each of the representative automorphism groups Aut(A,Ωi, ρi). It follows that κ is
an automorphism annihilator, so Ker p ≤ AKn(C). Conversely, Theorem 7.3 shows
that

Ker p =
d⋂

i=1

Ker res(A,Ωi,ρi) ≥ AKn(C) .

Thus Ker p = AKn(C), and application of the First Isomorphism Theorem to p
yields the required subdirect embedding of ATRn(C).
(b) Since dimC S(A, Ωi, ρi) = li for 1 ≤ i ≤ d by Proposition 7.1(a), the codomain of
p has dimension

∑d
i=1 li. In each factor of the codomain, a 1-dimensional subspace

is spanned by the characteristic function of the subset {idA}. The image of p only
covers the 1-dimensional diagonal subspace of the product of these 1-dimensional
subspaces. Thus the upper bound in (8.1) holds. For the lower bound on the
dimensionality of ATRn(C), or equivalently (by Corollary 6.7) on the number of
automorphism types of C-algebras on A, consider the lj = max{li | 1 ≤ i ≤ d}
types represented by Aut(A,Ωj , ρj). By the minimality of the representative set R,
each of its d−1 remaining members must contribute at least one new automorphism
type that is not represented by any of the other members.

(c) Since ri

∣∣ r for 1 ≤ i ≤ d, Proposition 7.1(c) shows that S(A, Ωi, ρi) satisfies
ψk+r = ψk for 0 < k ∈ Z. The subdirect product ATRn(C) then satisfies each of
these identities as well. ¤
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n Cycle types of n-element Boolean algebra automorphisms

1 11

2 12

4 14, 2112

8 18, 2214, 3212

Table 1. Boolean algebra automorphisms

n Cycle types of n-element GF(2)-space automorphisms

1 11

2 12

4 14, 2112, 3111

8 18, 2214, 2312, 3212, 4114, 7111

Table 2. GF(2)-space automorphisms

n Cycle types of n-element abelian group automorphisms

1 11

2 12

3 13, 2111

4 14, 2112, 3111

5 15, 2211, 4111

6 16, 2212

7 17, 2311, 3211, 6111

8 18, 2214, 2312, 3212, 4114, 7111

Table 3. Abelian group automorphisms
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n Cycle types of n-element quasigroup automorphisms

1 11

2 12

3 13, 2111, 31

4 14, 2112, 22, 3111

5 15, 2211, 3112, 4111, 51

6 16, 2212, 3113, 32, 4112, 5111

7 17, 2213, 2311, 3211, 4113, 412111, 5112, 6111, 71

8 18, 2214, 2312, 24, 3212, 4114, 412112, 4122, 42, 5113, 6112, 7111

Table 4. Quasigroup automorphisms


