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Abstract. When coalgebras are used to model mathematical structures,
such as graphs or topological spaces, standard coalgebra homomorphisms
may be too strict. Relaxations of the coalgebra homomorphism concept, in
either the upper or lower direction, then yield appropriate maps between
the mathematical structures. There are both gains and losses of coalgebraic
properties. The main examples of the paper consider coalgebras for the
powerset functor, as used in the modeling of graphs. The lower morphisms
yield a bicomplete category, while it is shown that the category of upper
morphisms is not cocomplete.

1. Introduction

In universal algebra, it can be advantageous to relax the homomorphism
concept. Examples are given by order-preserving maps between semilattices,
or by convex functions between barycentric algebras [1, 2]. Similarly weakened
homomorphism concepts may prove equally advantageous for coalgebras, es-
pecially when the coalgebras are used to model mathematical structures. For
example, in an undirected graph G, the neighborhood of a vertex x is defined as
the set of vertices adjacent to x. By using the powerset functor, an undirected
graph may be turned into a graphic coalgebra, in which the structure map
selects the neighborhood of a given vertex. In Section 3, it is observed that
a homomorphism between two graphic coalgebras corresponds to a full graph
homomorphism, preserving edges, such that each edge in the image is induced
by some edge in the preimage. On the other hand, graph homomorphisms
are just edge-preserving maps. A second example of the excessive strictness
of homomorphisms arises when topological spaces are modeled as topological
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coalgebras, using the filter functor [3]. Homomorphisms between two topo-
logical coalgebras correspond to maps that are both open and closed. These
are more restrictive than the standard homomorphisms between topological
spaces, which are just continuous maps.

The purpose of the current paper is to present suitable relaxations of the
homomorphism concept for coalgebras that yield correct homomorphisms for
mathematical structures like graphs and topological spaces. The standard
background for coalgebras is reviewed in Section 2. Section 4 then describes
the two kinds of relaxation of the homomorphism concept, lower and upper
morphisms. The classes of all lower and upper morphisms form categories
in which each coproduct exists. The key properties of these categories are
formalized by the concept of a weakly closed class of maps (Definition 4.4).

Section 5 introduces weak coquasivarieties. These are subclasses of weakly
closed classes that inherit categorical completeness in the presence of surjective-
injective factorizations. The topic of Section 6 is the category Set−−→P of lower

morphisms between coalgebras for the powerset functor P. It is well known
that the category SetP of standard homomorphisms between coalgebras for
the powerset functor does not have a terminal coalgebra [4]. On the other
hand, the category Set−−→P is shown to be bicomplete, each limit and colimit

being constructed exactly as in the underlying category of sets. Moreover, the
category Set−−→P has the surjective-injective factorization property ensuring that

its weak coquasivarieties inherit the completeness.
Section 7 shows that lower morphisms between graphic coalgebras coincide

with the edge-preserving maps. It is also shown that the category G of all
graphic P-coalgebras is complete, since it forms a weak coquasivariety. Now
although the category of standard homomorphisms between coalgebras for a
given endofunctor is cocomplete [5], Section 8 shows that the category Set←−−P
of upper morphisms for the powerset functor is not cocomplete.

The paper uses algebraic notation placing maps to the right of their argu-
ments, either in line xf or as a superfix xf . This minimizes the number of
brackets, and makes it easier to follow chains of arrows in diagrams.

2. Preliminaries

Let Set be the category of sets, and let F : Set→ Set be an endofunctor.

Definition 2.1. An F -coalgebra is a pair (X,α) consisting of a set X and a
map α : X → XF . The set X is called the base set (or state set), and α is
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the structure map on X.

X

XF

α
�

Definition 2.2. Let (X,α) and (Y, β) be F -coalgebras. An F -homomorphism
from (X,α) to (Y, β) is a map f : X → Y for which the following diagram
commutes:

X
f� Y

XF

α
�

fF
� Y F

β
�

The identity map is always an F -homomorphism, and the composition of
two F -homomorphisms is again an F -homomorphism. Thus the class of all
F -homomorphisms forms a category which we shall denote by SetF .

Definition 2.3. For the endofunctop F , an F -coalgebra (S, αS) is called a
subcoalgebra (or substructure) of (X,αX) if S ⊆ X and the canonical inclusion
map ι : S ↪→ X is an F -homomorphism. We write

(S, αS) ≤ (X,αX)

if (S, αS) is a subcoalgebra of (X,αX).

Theorem 2.4. [5] The category SetF is cocomplete. Each colimit in SetF is
preserved by the underlying set functor.

Theorem 2.5 (“Lambek’s Lemma”). [4] If (P, π) is a terminal coalgebra, then
the structure map π is an isomorphism in SetF .

A coalgebra (Y, αY ) is called an F -homomorphic image of a coalgebra (X,αX)
if there exists a surjective F -homomorphism f : X � Y .

Definition 2.6. Let K be a class of F -coalgebras. We define the following
classes:

(a) H(K) : the class of all F -homomorphic images of objects from K;
(b) S(K) : the class of all those F -coalgebras which are isomorphic to

subcoalgebras of objects from K;
(c) Σ(K) : the class of all F -coalgebras which are isomorphic to coproducts

of objects from K.

A class K is said to be closed under H, S, or Σ when the respective inclusions
H(K) ⊆ K, S(K) ⊆ K, or Σ(K) ⊆ K hold.
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Definition 2.7. A covariety is a class K of coalgebras which is closed under
H, S, and Σ. A coquasivariety is a class closed under H and Σ.

Proposition 2.8. [6] If SetF is complete, then so is every coquasivariety of
SetF .

3. Graphic coalgebras

Let P : Set → Set; (f : X → Y ) �→ (2X → 2Y ;S �→ Sf) denote the
(covariant) powerset functor.

Definition 3.1. A P-coalgebra (X,α) is said to be graphic if

∀x, y ∈ X, x ∈ yα ⇔ y ∈ xα.
The class of all graphic P-coalgebras is denoted by G. Note that a graphic

P-coalgebra (X,α) specifies an undirected graph G(X,α) (including loops) such
that V (G(X,α)) = X, and for given x ∈ X, the set of neighbors of x is xα.
Also, an undirected graph can be turned into a graphic P-coalgebra, where
the structure map is defined by the set of neighborhoods for each vertex. In
this sense, we may identify graphic P-coalgebras and graphs.

For a map ϕ : X → Y , define ϕ̃ : X → Xϕ as the corestriction of ϕ
to its image defined by xϕ̃ = xϕ for x ∈ X. Then the map ϕ factors as
ϕ = ϕ̃ι, where ι : Xϕ ↪→ Y is the natural inclusion. Each P-homomorphism
ϕ : (X,α)→ (Y, β) in SetP induces a unique coalgebra structure γ on Xϕ so
that both ϕ̃ and ι are P-homomorphisms [4]. Indeed, for given xϕ ∈ Xϕ, the
effect xϕγ of the structure map γ is defined by xϕβ. The coalgebra (Xϕ, γ)
is called the image of ϕ.

Proposition 3.2. Let f be a P-homomorphism from (X,α) to (Y, β) in G.
Then f is a full graph homomorphism for induced graphs, i.e. f preserves
edges, and each edge in the image is induced by some edge in the preimage.

Proof. If x′ ∈ xα, then x′f ∈ xfβ. So f preserves edges. Let y′ ∈ xfβ for
x ∈ X. Since xαfP = xfβ, there is a vertex x′ ∈ xα such that x′fP = y′.
Hence f is a full graph homomorphism. �

Although P-coalgebras give a natural way to express graphs, the concept of
P-homomorphism is too strict, since graph homomorphisms are usually defned
simply as edge-preserving maps.

4. Weak homomorphisms of coalgebras

4.1. Lower and upper morphisms. Let T : Set→ Set be an endofunctor
on the category of sets, such that for a given set X, the image XT is a set
of sets. Suppose further that for a given map f : X → Y , and for given
members A,B of XT , the containment A ⊆ B implies AfT ⊆ BfT . Then



WEAK HOMOMORPHISMS AND GRAPH COALGEBRAS 5

the endofunctor T is described as monotonic. For example, T could be the
covariant powerset functor, or the filter functor. Monotonic endofunctors are
examples of “functors with order” as described in [7].

Definition 4.1. Let T be a monotonic endofunctor. Let (X,α) and (Y, β)
be T -coalgebras. Then a lower T -morphism from (X,α) to (Y, β) is a map
f : X → Y such that for each x ∈ X, we have the inclusion xαfT ⊆ xfβ.
Similarly, an upper T -morphism from (X,α) to (Y, β) is a map f : X → Y
such that for each x ∈ X, the inclusion xαfT ⊇ xfβ holds.

With a suitable enrichment of the category of sets, upper/lower morphisms
are instances of lax/oplax morphisms, as used in the study of forward and
backward simulations (compare [8] or [9], for example). Bearing in mind that
the structure map of a coalgebra assigns a packet of information to each state
of the system under consideration, we may regard a lower T -morphism as a
map preserving this information. Similarly, an upper T -morphism may be
considered as a map reflecting the information. This interpretation leads one
to expect that edge-preserving maps between graphs might be described as
lower morphisms, and continuous maps between topological spaces might be
described as upper morphisms. Indeed, it is shown that lower morphisms
between graphic coalgebras agree with the edge-preserving maps of graphs in
Section 7. Likewise, upper morphisms between topological coalgebras agree
with the correct maps of topological spaces, namely continuous maps [10].

Proposition 4.2. Let T be a monotonic endofunctor on the category of sets.

(a) Each identity map is always a lower and upper T -morphism.
(b) The composition of two lower (resp. upper) T -morphisms is again a

lower (resp. upper) T -morphism.

Proof. The first observation is immediate. Now let (X,αX), (Y, αY ), and
(Z, αZ) be T -coalgebras. Suppose that f : X → Y and g : Y → Z are lower
T -morphisms. Consider an element x of X. Since f is a lower T -morphism,
xαXf

T ⊆ xfαY . Since g is a lower T -morphism, xfαY g
T ⊆ xfgαZ . Thus

xαX(fg)T = xαXf
TgT ⊆ xfαY g

T ⊆ xfgαZ ,

and fg is a lower T -morphism.

X
f � Y

g � Z

XT

αX

�

fT
� Y T

αY

�

gT
� ZT

αZ

�
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For the case of upper morphisms, we may just reverse the direction of the
inclusions in the above proof. �

By Proposition 4.2, the class of all lower (resp. upper) morphisms between
T -coalgebras forms a category denoted by Set−−→T (resp. Set←−−T ).

Proposition 4.3. Let T : Set → Set be a monotonic endofunctor. For each
family (Xi, αi)i∈I of T -coalgebras, there exists a sum

∑
i∈I(Xi, αi) in Set−−→T

(resp. Set←−−T ). The sum is preserved by the underlying set functor, and its

structure map αΣ is given by xiαΣ = xiαiι
T
i for xi ∈ Xi, where ιi : Xi →

∑
Xi

is the insertion map. In particular, each insertion map is a T -homomorphism.

Proof. Let (Y, αY ) be a T -coalgebra. For i ∈ I, let ϕi : Xi → Y be a lower
T -morphism. Then there is a unique map ψ :

∑
Xi → Y in Set with ιiψ = ϕi.

Xi

ιi �
∑
i∈I

Xi

Y
� ψ

ϕ
i �

XiT

αi

� ιTi � (
∑
i∈I

Xi)T

αΣ

�

Y T

αY

�� ψ
T

ϕ T
i �

Since ϕT
i = ιTi ψ

T ,

αiϕ
T
i = αiι

T
i ψ

T = ιiαΣψ
T .

Since ϕi is a lower morphism, for given x ∈ Xi,

xαiϕ
T
i ⊆ xϕiαY = xιiψαY .

Thus for given i ∈ I and x ∈ Xi, the inclusion xιiαΣψ
T ⊆ xιiψαY holds, and

ψ becomes a lower T -morphism. For the case of upper morphisms, we may
just reverse the direction of the inclusions in the above proof. �

4.2. Weak categories. To formalize the key properties of categories such as
Set−−→T and Set←−−T , we introduce the following concept.

Definition 4.4. Let F be an endofunctor on the category of sets. A class
W of maps between the underlying sets of F -coalgebras is said to be weakly
closed if the following conditions are satisfied:

(a) W contains the class of all F -homomorphisms;
(b) W forms a category in which each coproduct exists;
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(c) Each coproduct in W is preserved by the underlying set functor.

IfW is weakly closed, then a member ofW is called a weak F -homomorphism.
The corresponding category is called a weak category of F -coalgebras, and
denoted by W.

Assume that we have a weak category W. Then subcoalgebras, covarieties
and coquasivarieties under weak F -homomorphisms are defined as in Section 2,
simply replacing F -homomorphisms with weak F -homomorphisms. We write

(S, αS) ≤w (X,αX)

if (S, αS) is a subcoalgebra of (X,αX) over W. Propositions 4.2 and 4.3 may
be summarized as follows.

Theorem 4.5. For a given monotonic endofunctor T on the category of sets,
the class of all lower (resp. upper) T -morphisms is weakly closed.

For the remainder of this paragraph, we consider another example of a weak
category. For given sets A and B, denote the symmetric difference between A
and B by A�B, i.e.

A�B = (A ∪B) � (A ∩ B) .

Definition 4.6. Let T : Set → Set be a monotonic endofunctor. Let (X,α)
and (Y, β) be T -coalgebras. Then an almost T -homomorphism from (X,α) to
(Y, β) is a map f : X → Y such that for each x ∈ X, we have

|xαfT�xfβ| <∞ .

For given sets A and B, if A ⊆ B and |B�A| <∞, denote the containment
by A ⊆cofin B. Let T : Set→ Set be a monotonic endofunctor. Then T is said
to be a strictly monotonic endofunctor if for a given map f : X → Y and for
given sets A, B ∈ XT , the containment A ⊆cofin B implies AfT ⊆cofin Bf

T .

Lemma 4.7. Let f : (X,α) → (Y, β) be an almost T -homomorphism for a
strictly monotonic endofunctor T : Set → Set. Then for any A ,B ∈ XT
with |A�B| <∞, we have |AfT�BfT | <∞.

Proof. Let A ,B ∈ XT with |A�B| <∞. Since T is monotonic, we have

AfT ∪ BfT ⊆ (A ∪B)fT

and
(A ∩ B)fT ⊆ AfT ∩BfT .

Since (A ∩B) ⊆cofin (A ∪ B) by assumption,

(A ∩B)fT ⊆cofin (A ∪ B)fT .

Then

|AfT�bfT | = |(AfT ∪BfT ) \ (AfT ∩BfT )| ≤ |(A∪B)fT \ (A∩B)fT | <∞ .
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�

The following lemma is immediate.

Lemma 4.8. Let A,B, and C be sets. Then |A�B| < ∞ and |B�C| < ∞
imply |A�C| <∞.

Proposition 4.9. Let T be a strictly monotonic endofunctor T on the category
of sets. Then the composition of two almost T -homomorphisms is again an
almost T -homomorphism.

Proof. Let (X,αX), (Y, αY ), and (Z, αZ) be T -coalgebras. Let f : X → Y and
g : Y → Z be almost T -homomorphisms.

X
f � Y

g � Z

XT

αX

�

fT
� Y T

αY

�

gT
� ZT

αZ

�

For a given x ∈ X, since f is an almost T -homomorphism,

|xαXf
T�xfαY | <∞ .

By Lemma 4.7,

|xαXf
TgT�xfαY g

T | = |xαX(fg)T�xfαY g
T | <∞ .

Since g is an almost T -homomorphism, |xfαY g
T�xfgαZ| <∞. So

|xαX(fg)T�xfgαZ| <∞
by Lemma 4.8. Thus fg is an almost T -homomorphism. �

Let T be a strictly monotonic endofunctor T on the category of sets. By
Proposition 4.9, the class of all almost T -homomorphisms between T -coalgebras
forms a category, denoted by Set←→T .

Proposition 4.10. Let T : Set → Set be a strictly monotonic endofunctor.
For each family (Xi, αi)i∈I of T -coalgebras, the sum

∑
i∈I(Xi, αi) exists in

Set←→T . The sum is preserved by the underlying set functor, and its structure

map αΣ is given by xiαΣ = xiαiι
T
i for xi ∈ Xi, where ιi : Xi →

∑
Xi is the

insertion map.

Theorem 4.11. For a given strictly monotonic endofunctor T on the category
of sets, the class of all almost T -homomorphisms is weakly closed.
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5. Weak coquasivarieties

Suppose that W is a weak category of F -coalgebras. Let K be a subclass of
F -coalgebras. We denote the full subcategory of W with the object class K
by K. In particualr, we denote the full subcategory of Set−−→T (resp. Set←−−T ) with

the object class K by K−→ (resp. K←−). The concepts of this section produce key

subclasses of weakly closed classes that guarantee the inheritance of categorical
completeness.

Definition 5.1. Let W be a weak category of F -coalgebras, and let K be
a subclass of F -coalgebras. A weak coquasivariety of K is a subclass L of
K, closed under Σ over K, and such that for a given surjective morphism
f : (X,αX) � (Y, αY ) over K with (X,αX) ∈ L, there is a structure map α
on Y with the following properties:

(a) (Y, α) ∈ L ;
(b) (Y, α) ≤w (Y, αY ) ;
(c) f : (X,αX)→ (Y, α) is a morphism over K.

Note that each coquasivariety is a weak coquasivariety. In Section 7, it is
shown that although the class G of graphic coalgebras is not closed under lower
P-morphic images, it does forms a weak coquasivariety in the category Set−−→P .

Let ϕ : X → Y be a map. We say that ϕ SI-factors through Z if there is a
surjective map f : X � Z and an injective map g : Z � Y such that ϕ = fg.
If ϕ SI-factors through Z, then ϕ is also said to be SI-factorizable by Z. One
natural way to SI-factorize ϕ is to take ϕ = ϕ̃ι, where ϕ̃ is the corestriction
of ϕ to its image, and ι is the natural inclusion.

Definition 5.2. Suppose that W is a weak category of F -coalgebras. Let K
be a subclass of F -coalgebras. Suppose that ϕ : (X,αX) → (Y, αY ) is a weak
F -homomorphism over K. Then ϕ is said to be weakly SI-factorizable over K
if for any set Z, and for a given SI-factorization f : X � Z and g : Z � Y
with fg = ϕ, there is a structure map α on Z such that (Z, α) ∈ K and both
f : (X,αX) � (Z, α) and g : (Z, α) � (Y, αY ) are weak F -homomorphisms
over K. The full subcategory K is called weakly SI-factorizable if every weak
F -homomorphism over K is weakly SI-factorizable over K.

Suppose that W is a weakly SI-factorizable weak category. Then W is a
weak coquasivariety of itself.

Lemma 5.3. Let W be a weak category of F -coalgebras, and let K be a sub-
class of F -coalgebras such that K is weakly SI-factorizable. Let L be a weak
coquasivariety of K. Let f : (X,αX) → (Y, αY ) be a weak homomorphism
over K with (X,αX) ∈ L. Then there is a structure map α on Xf such that
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f̃ : (X,αX) → (Xf, α) is a weak homomorphism over K, the image (Xf, α)
lies in L, and (Xf, α) ≤w (Y, αY ).

Proof. Since K is weakly SI-factorizable, there is a structure map α′ on Xf

such that (Xf, α′) ∈ K, f̃ : (X,αX) � (Xf, α′) is a weak homomorphism
over K, and (Xf, α′) ≤w (Y, αY ). Since L is a weak coquasivariety of K,

there is a structure map α on Xf such that f̃ : (X,αX) → (Xf, α) is a
weak homomorphism over K, (Xf, α) ∈ L, and (Xf, α) ≤w (Xf, α′) ≤w

(Y, αY ). �
Proposition 5.4. Let W be a weak category of F -coalgebras, and let K be
a subclass of F -coalgebras such that K is weakly SI-factorizable. Let L be a
weak coquasivariety of K. Then the union of a family of L-subcoalgebras of
(X,αX) ∈ K is an L-subcoalgebra of (X,αX).

Proof. Consider a given family (Si, αi)i∈I of L-subcoalgebras of (X,αX) ∈ K.
Since L is a weak coquasivariety, the sum

∑
i∈I(Si, αi) exists in L, and is

preserved by the underlying set functor, with insertion maps ei : Si →
∑

i∈I Si.
Since for each i ∈ I, the inclusion map ιi : Si → X is a weak F -homomorphism,
there exists a unique weak F -homomorphism ψ :

∑
i∈I Si → X such that eiψ =

ιi. Since K is weakly SI-factorizable, there is a structure map α on (
∑

i∈I Si)ψ
such that ((

∑
i∈I Si)ψ, α) ∈ L and ((

∑
i∈I Si)ψ, α) ≤w (X,αX) by Lemma 5.3.

Since (
∑

i∈I Si)ψ =
⋃
Si, we have (

⋃
Si, α) ∈ L and (

⋃
Si, α) ≤w (X,αX). �

From the proof of Proposition 5.4, we obtain the following.

Corollary 5.5. Let W be a weak category of F -coalgebras, and let K be a
subclass of F -coalgebras such that K is weakly SI-factorizable. Let (Si, αi)i∈I

be a family of L-subcoalgebras of (X,αX) ∈ K. Then (Si, αi) ≤w (
⋃
Si, α),

where α is the structure map defined on
⋃
Si in the proof of Proposition 5.4.

Theorem 5.6. Let W be a weak category of F -coalgebras, and let K be a sub-
class of F -coalgebras such that K is weakly SI-factorizable. If K is complete,
then so is every weak coquasivariety of K. Similarly, if K is finitely complete,
then so is every weak coquasivariety of K.

Proof. Let L be a weak coquasivariety of K. Let I be a small category, and
let D : I → L be a functor. Then since K is complete, we have the limit
((L, α), (ηi)i∈I) in K. Let ((L′, α′), (η′i)i∈I) be a cone of D in L. Then there is a
unique weak homomorphism τ : (L′, α′)→ (L, α) such that there is a structure
map β ′ on L′τ such that τ̃ : (L′, α′) → (L′τ, β ′) is a weak homomorphism,
(L′τ, β ′) ∈ L, and (L′τ, β ′) ≤w (L, α) by Lemma 5.3. By Proposition 5.4,
we have (S, β) ∈ L, the union of all subcoalgebras in L of (L, α). Thus the
inclusion map ι : (L′τ, β ′) ↪→ (S, β) is a weak homomorphism. Therefore
τ̃ ι : (L′, α′)→ (S, β) is the unique weak homomorphism such that (S, β) is the
limit in L. �
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6. Lower P-morphisms

In this section, it will be shown that the category of lower P-morphisms is
bicomplete.

Lemma 6.1. Consider the underlying set functor U : Set−−→P → Set.

(a) If a colimit exists in Set−−→P , then it is preserved by U.

(b) If a limit exists in Set−−→P , then it is preserved by U.

Proof. (a): The underlying set functor has a right adjoint G defined on objects
by G : X �→ (

X : X �→ 2X ; x �→ X
)
. Then as a left adjoint, U is cocontinuous.

(b): The underlying set functor has a left adjoint F defined on objects by
F : X �→ (

X : X �→ 2X ; x �→ ∅

)
. Then as a right adjoint, U is continuous. �

6.1. Completeness. By Theorem 2.5, no terminal coalgebra exists in SetP .
However, a terminal coalgebra exists in Set−−→P . In this paragraph, we show that

Set−−→P is complete, and that limits are preserved by the underlying set functor.

For a given family (Xi)i∈I of sets, let
∏

i∈I Xi denote the set

{f : I → ⋃
i∈I Xi | ∀ i ∈ I, if ∈ Xi}.

A choice function f ∈∏
i∈I Xi is written by

∏
i∈I xi if for each i ∈ I, we have

if = xi. It is well known that
(∏

i∈I Xi, (πi)i∈I

)
is the product of (Xi)i∈I in

Set, where each projection map πi :
∏
Xi → Xi is given by fπi = if .

Proposition 6.2. For each family (Xi, αi)i∈I of P-coalgebras, there exists a
product of (Xi, αi)i∈I in Set−−→P , which is preserved by the underlying set functor.

If I = ∅, then the product is the terminal coalgebra ({∗}, α) with ∗α = {∗}.
If I �= ∅, then its structure map α is given by (

∏
i∈I xi)α =

∏
i∈I(xiαi), i.e.

each projection map πi is a P-homomorphism.

Proof. It is easy to check that ({∗}, α) is the terminal coalgebra. Suppose
I �= ∅. Let (Y, αY ) be a P-coalgebra. For each i ∈ I, let ϕi : Y → Xi be a
lower P-morphism. Then there is a unique map ψ : Y → ∏

Xi in Set with
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ψπi = ϕi.

∏
Xi

πi � Xi

Y
ϕ i

��

ψ

(
∏

Xi)P

α

�
πP

i � XiP

αi

�

Y P

αY

� ϕ
P
i

��

ψ P

For given y ∈ Y , we have yψ =
∏

(yϕi) since ψπi = ϕi. So yψα =
∏

(yϕiαi).
Let

∏
bi ∈ yαY ψ

P be given. Then it is enough to show that ∀ i ∈ I, bi ∈ yϕiαi.
Note that bi ∈ yαY ψ

PπP
i = yαY (ψπi)

P . Since

yαY (ψπi)
P = yαYϕ

P
i (P is a functor and ψπi = ϕi)

⊆ yϕiαi (ϕi is a lower P-morphism),

bi ∈ yϕiαi. Therefore ψ is a lower P-morphism. �

Proposition 6.3. Let f : (X,αX) → (Z, αZ) and g : (Y, αY ) → (Z, αZ) be
two lower P-morphisms. Then there exists a pullback

(
(P, αP ), (πX , πY )

)
in

Set−−→P which is preserved by the underlying set functor, i.e.

P = {(x, y) ∈ X × Y | xf = yg} ,

where πX and πY are the projection maps. The structure map αP is given by

(x, y)αP = P ∩ [(xαX)× (yαY )]

for x ∈ X and y ∈ Y .

Proof. Let (L, αL) be a P-coalgebra, and let qX : L→ X and qY : L → Y be
lower P-morphisms such that qXf = qY g. Let P = {(x, y) ∈ X×Y | xf = yg}.
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Then there is a unique map τ : L→ P in Set with τπX = qX and τπY = qY .

L

P
πX �

τ

�

X

qX

�

LP
�

α L

Y

πY

� g �

q
Y

�

Z

f

�

PP
πP

X

�

�

α P

τ P

�

XP

�

α X

q P
X

�

Y P

πP
Y

�

gP
�

�

α Y

q PY

�

ZP

fP

��

α Z

For given l ∈ L, note that lτ = (lqX , lqY ) since τπX = qX and τπY = qY . So

lταP = P ∩ [(lqXαX)× (lqY αY )] .

Let (a, b) ∈ lαLτ
P be given. Then a ∈ lαLτ

PπP
X and b ∈ lαLτ

PπP
Y . Since

lαLτ
PπP

X = lαLq
P
X (P is a functor and τπX = qX)

⊆ lqXαX (qX is a lower P-morphism),

a ∈ lqXαX . Similarly, b ∈ lqY αY . Therefore τ is a lower P-morphism. �
By Proposition 6.2 and 6.3, we obtain the following.

Theorem 6.4. Set−−→P is complete.

Proposition 6.5. Set−−→P (resp. Set←−−P) is weakly SI-factorizable.

Proof. Let ϕ : (X,αX) → (Y, αY ) be a lower P-morphism. Suppose that
f : X � Z and g : Z � Y , for some set Z, give an SI-factorization with
fg = ϕ. For given z ∈ Z, we define a structure map α on Z by

zα =
⋃

xf=z

xαXf
P .

Then it is easy to see that both f : (X,αX) � (Z, α) and g : (Z, α) � (Y, αY )
are lower P-morphisms. The case of upper P-morphisms follows on defining
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a structure map α for Z by

zα =
⋂

xf=z

xαXf
P .

�

By Theorem 5.6 and Proposition 6.5, we obtain the following.

Corollary 6.6. Each weak coquasivariety of Set−−→P is complete.

6.2. Cocompleteness. In this paragraph, we show that Set−−→P is cocomplete.

By Proposition 4.3, each sum exists in Set−−→P . So, for the cocompleteness, it

suffices to show the existence of pushouts.

Lemma 6.7. Let f : (X,αX) → (Y, αY ) and g : (X,αX) → (Z, αZ) be two
lower P-morphisms. Suppose that they have a pushout ((P, β), (pY , pZ)). Let
θ be the smallest equivalence relation on Y + Z containing all pairs (xf, xg)
with x ∈ X. Then the natural projection nat θ : (Y + Z, αΣ) → ((Y + Z)θ, β)
is a lower P-morphism.

Proof. Since the pushout is preserved by the underlying set functor according
to Lemma 6.1, P = (Y + Z)θ, where θ is the smallest equivalence relation
on Y + Z containing all pairs (xf, xg) with x ∈ X. Furthermore, pY =
ιY (nat θ) and pZ = ιZ(nat θ), where ιY and ιZ are the insertion maps into the
coproduct, and nat θ is the natural projection. Note that pY and pZ are lower
P-morphisms. By Proposition 4.3, ιY and ιZ are P-homomorphisms.

Y
ιY � Y + Z

nat θ � (Y + Z)θ

Y P

αY

�

ιPY
� (Y + Z)P

αΣ

�

(nat θ)P
� (Y + Z)θP

β
�

For given y ∈ Y ,

yαΣ(nat θ)P = yιY αΣ(nat θ)P

= yαY ι
P
Y (nat θ)P (ιY is a P-homomorphism)

⊆ yιY (nat θ)β (pY = ιY (nat θ) is a lower P-morphism)

= y(nat θ)β.

Similarly, for given z ∈ Z, zαΣ(nat θ)P ⊆ z(nat θ)β. Thus nat θ is a lower
P-morphism. �
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By Lemma 6.7, it is natural to study the structure maps on Aθ such that
nat θ is a lower P-morphism. Indeed, for an arbitrary equivalence relation θ
on A, we can give a structure on Aθ so that nat θ is a lower P-morphism as
follows.

Definition 6.8. Let (A, α) be a P-coalgebra, and let θ be an equivalence
relation on A. We define a P-coalgebra (Aθ, αθ) by

aθαθ =
⋃

(a,b)∈θ

bα(nat θ)P .

It is easy to see that αθ is well-defined.

Proposition 6.9. Let (A, α) be a P-coalgebra, and let θ be an equivalence
relation on A. Then for each aθ ∈ Aθ, the image aθαθ is the smallest subset
of Aθ consistent with nat θ being a lower P-morphism.

Proof.

A
nat θ�� Aθ

AP
α

�

(nat θ)P
� AθP

αθ
�

Let a ∈ A be given. Note that

a(nat θ)αθ = aθαθ =
⋃

(a,b)∈θ

bα(nat θ).

Since aα(nat θ)P ⊆ ⋃
(a,b)∈θ bα(nat θ), the map nat θ is a lower P-morphism.

Now suppose that nat θ is a lower P-morphism with a structure map β on Aθ.
Then for given aθ ∈ Aθ and for each b ∈ aθ, we have

bα(nat θ)P ⊆ b(nat θ)β = a(nat θ)β = aθβ.

Thus aθαθ ⊆ aθβ. �
Proposition 6.10. Let f : (X,αX) → (Y, αY ) and g : (X,αX) → (Z, αZ) be
two lower P-morphisms. Then the pushout

(
(P, αP ), (pY , pZ)

)
of f and g exists

in Set−−→P , and is preserved by the underlying set functor, i.e. P = (Y + Z)θ

with pY = ιY (nat θ) and pZ = ιZ(nat θ), where θ is the smallest equivalence
relation on Y +Z containing all pairs (xf, xg) with x ∈ X. The structure map
αP is αθ.

Proof. Let qY : Y → L and qZ : Z → L be lower P-morphisms such that
fqY = gqZ . Then there is a unique map τ : (Y +Z)θ → L such that pY τ = qY
and pZτ = qZ . Let αΣ be the structure map of the sum of (Y, αY ) and (Z, αZ),
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as in Proposition 4.3. Then αΣ is the sum of αY and αZ . Let aθ ∈ (Y + Z)θ.
Without loss of generality, we may assume that a ∈ Y . Let b ∈ aθ. If b ∈ Y ,
then

bαΣ(nat θ)PτP = bαΣp
P
Y τ

P

= bαY q
P
Y

⊆ bqY αL (qY is a lower P-morphism)

= aqY αL = aθταL.

X
f � Y

Z

g
� pZ � (Y + Z)θ

pY
�

XP fP
�

�

α X

Y P

�
α Y

L

q
Y

�

τ
�qZ �

ZP
gP

� pPZ�

�

α Z

(Y + Z)θP
pPY
��

α θ

LP

�

α L

q P
Y

�

τ P
�qP

Z �

If b ∈ Z, then

bαΣ(nat θ)PτP = bαΣp
P
Zτ

P

= bαZq
P
Z

⊆ bqZαL (qZ is a lower P-morphism)

= aqY αL = aθταL.

Since aθαθ =
⋃

(a,b)∈θ bαΣ(nat θ)P , τ is a lower P-morphism. �

By Proposition 4.3 and 6.10, we obtain the following.

Theorem 6.11. Set−−→P is cocomplete.

7. Graphic coalgebras with lower morphisms

Recall that G is the class of all graphic P-coalgebras.
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Proposition 7.1. Let f be a lower P-morphism from (X,α) to (Y, β) in G.
Then f preserves edges, and thus forms a graph homomorphism between the
induced graphs. Conversely, each graph homomorphism is a lower P-morphism
between the corresponding graphic P-coalgebras.

Proof. If x′ ∈ xα, then x′f ∈ xfβ since xαfP ⊆ xfβ. So f preserves edges.
The other direction is immediate. �

Proposition 7.1 shows that the homomorphism concept has been relaxed to
a proper level. We denote the full subcategory of Set−−→P with object class G by

Gph−−−→. Let Graph denote the category of graphs, where Ob(Graph) is the

class of all undirected graphs including loops, and Mor(Graph) is the class of
all edge-preserving maps. By Proposition 7.1, the category Gph−−−→ is equivalent

to Graph. Since the completeness of Graph is known [11], Gph−−−→ is complete.

We present a coalgebraic proof of completeness for Gph−−−→.

By Corollary 6.6, it suffices to prove that G is a weak coquasivariety of Set−−→P .

First note that G is not a coquasivariety of Set−−→P . Take (X = {0, 1}, α) ∈ G
with 0α = {1} and 1α = {0}. Let (X, β) be the P-coalgebra with 0β = {1}
and 1β = ∅. Take (X, γ) ∈ G with 0γ = 1γ = ∅.

0 0 0

γ
id � ι�

1 1

β
�

1

α

The canonical inclusion map ι : (X, β) → (X,α) is a lower P-morphism, and
the identity map (X, γ) → (X, β) is a surjective lower P-morphism. Since
({0, 1}, β) �∈ G, the class G is neither a covariety nor a coquasivariety. Note
that by Proposition 4.3, each coproduct exists in Set−−→P .

Proposition 7.2. The class G is a weak coquasivariety of Set−−→P .

Proof. Clearly, G is closed under Σ. Let f : (X,αX)→ (Y, αY ) be a surjective
lower P-morphism with (X,αX) ∈ G. We define a structure map α on Y by

yα =
⋃

xf=y

xαXf
P

for y ∈ Y . For each x ∈ X, we have xαXf
P ⊆ ⋃

x′f=xf x
′αXf

P = xfα, so

f : (X,αX)→ (Y, α) is a lower P-morphism. Now for x in X with xf = y, we
have xαXf

P ⊆ yαY . Thus yαιP ⊆ yιαY for each y ∈ Y , and (Y, α) ≤w (Y, αY ).
Now suppose that y1 ∈ y2α with y1, y2 ∈ Y . Then y1 ∈ aαXf

P for some
a ∈ X with af = y2, so there is an element b of aαX such that bf = y1. Since
(X,αX) ∈ G, we have a ∈ bαX . Thus y2 = af ∈ bαXf

P , and y2 ∈ y1α. �
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Corollary 7.3. Gph−−−→ is complete.

8. Upper P-morphisms

In Section 6, it was seen that although the category SetP is not complete, the
category Set−−→P is bicomplete. This is an example of the advantages gained by

weak homomorphisms. For upper P-morphisms, the situation is reversed. By
Theorem 2.4, SetP is cocomplete. We now show that Set←−−P is not cocomplete.

Lemma 8.1. If a colimit exists in Set←−−P , then it is preserved by the underlying

set functor U : Set←−−P → Set.

Proof. The underlying set functor has a right adjoint G defined on objects by
G : X �→ (

X : X �→ 2X ; x �→ ∅

)
. Then as a left adjoint, U is cocontinuous. �

Lemma 8.2. Let f : (X,αX) → (Y, αY ) and g : (X,αX) → (Z, αZ) be two
upper P-morphisms. Suppose that they have a pushout

(
(P, β), (pY , pZ)

)
. Let

θ be the smallest equivalence relation on Y + Z containing all pairs (xf, xg)
with x ∈ X. Then the natural projection nat θ : (Y + Z, αΣ) → ((Y + Z)θ, β)
is an upper P-morphism.

Proof. Reverse the direction of the inclusions in Lemma 6.7. �
Definition 8.3. Let (A, α) be a P-coalgebra, and let θ be an equivalence
relation on A. We define a P-coalgebra (Aθ, αu,θ) by

aθαu
θ =

⋂
(a,b)∈θ

bα(nat θ)P .

It is easy to see that αu,θ is well-defined.

Proposition 8.4. Let (A, α) be a P-coalgebra, and let θ be an equivalence
relation on A. Then for each element aθ of Aθ, the image aθαu

θ is the largest
subset of Aθ consistent with nat θ being an upper P-morphism.

Proof.

A
nat θ�� Aθ

AP
α

�

(nat θ)P
� AθP

αu
θ

�

Let a ∈ A be given. Note that

a(nat θ)αu
θ = aθαu

θ =
⋂

(a,b)∈θ

bα(nat θ)P .
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Since aα(nat θ)P ⊇ ⋂
(a,b)∈θ bα(nat θ)P , the map nat θ is an upper P-morphism.

Now suppose that nat θ is an upper P-morphism, with a structure map β on
Aθ. Then for given aθ ∈ Aθ and for each b ∈ aθ, we have

bα(nat θ)P ⊇ b(nat θ)β = a(nat θ)β = aθβ.

Thus aθαu
θ ⊇ aθβ. �

Theorem 8.5. The category Set←−−P is not cocomplete.

Proof. One counterexample suffices. Let (X = {x1, x2}, αX) be a coalgebra
such that x1αX = {x2} and x2αX = X. Suppose that (Y = {y1, y2}, αY )
and (Z = {z1, z2}, αZ) are coalgebras such that y1αY = {y2}, y2αY = {y1},
z1αZ = {z2}, and z2αZ = {z2}. Let f : X → Y be the map defined by xi = yi

for i = 1, 2, and let g : X → Z be the map defined by xi = zi for i = 1, 2.
Then f and g are upper P-morphisms.

z1 z2 � g
x1 x2

f� y1 y2

{z2}
αZ

�
{z2}
αZ

�
{x2}
αX

�
{x1, x2}

αX
�

{y2}
αY
�
{y1}
αY
�

yθ
1

p
Z �

yθ
2

�

p Y

{yθ
2}

αu,θ
�

∅

αu,θ

�

Now assume that the pushout ((P, α), (pY , pZ)) of f and g exists in Set←−−P .

Then by Lemma 8.1, P = (Y +Z)θ, where θ is the smallest equivalence relation
on Y +Z containing all pairs (xf, xg) with x ∈ X. Furthermore, pY = ιY (nat θ)
and pZ = ιZ(nat θ). It can readily be seen that (Y + Z)θ = {yθ

1, y
θ
2} with

yθ
1 = {y1, z1} and yθ

2 = {y2, z2}. Let (L = {0}, αL) be a P-coalgebra such that
0αL = {0}. Let qY : Y → L and qZ : Z → L be the constant functions. Then
qY and qZ are upper P-morphisms such that fqY = gqZ . There is a unique
upper P-morphism τ : (Y + Z)θ → L such that pY τ = qY and pZτ = qZ .
By Lemma 8.2 and Proposition 8.4, τ should be an upper P-morphism with
structure map αu,θ on (Y + Z)θ. However,

yθ
2α

u
θτ

P = ∅ �⊇ {0} = yθ
2ταL ,

which is a contradiction. Thus there is no pushout of f and g in Set←−−P . �
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