Random walks which converge after a finite number of steps

Ken Johnson, Penn State Abington
A random walk on a finite group G associated to a probability p may be defines as follows. The states for the walk are the elements of G and if the walk is at an element h it moves to the element $h g$ with probability $p(g)$. After n steps of the walk, the probability of being at a given element g is $p^{* n}(g)$ where the convolution

$$
p_{1} * p_{2}(g)=\sum_{h \in G} p_{1}\left(g h^{-1}\right) p_{2}(h)
$$

and $p^{* n}(g)=p * p * \ldots * p$ (n times). The uniform probability U on G is defined by $U(g)=1 /|G|$ for all g in G.

The following question appeared in a paper by Zhmud and Vishnevetskiy What are the conditions on G and p such that

$$
\begin{equation*}
p^{* n}=U \tag{1}
\end{equation*}
$$

for some finite positive integer n ?
They define $\Omega(G)$ to be the set of probabilities p such that (1) holds. Their results may be summarized as follows.
(a) The groups for which $\Omega(G)=U$ are either abelian groups or of the form $A \times Q_{8}$ where A is an elementary abelian 2-group.
(b) For any $p \in \Omega(G), p^{* r}=U$ where r is the maximal degree of an irreducible representation of G.
(c) If $f \in \Omega(G)$ and f is constant on conjugacy classes then $f=U$.

I will explain an approach via group matrices and relate the result to a result of Taussky which gives a completely different condition on a group to be in the class described in (a). It may be that the question finding $\Omega(Q)$ for loops may be interesting-for example it would appear that if Q is the Octonion loop $\Omega(Q)=0$.

