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Abstract. Two quasigroup identities of importance in combina-
torics, Schroeder’s Second Law and Stein’s Third Law, share many
common features that are incorporated under the guise of palin-
dromic quasigroups. A graph-theoretical technique yields a topo-
logical proof for the congruence restrictions on the spectrum of
Schroeder or outer palindromic quasigroups. The potential for a
comparable proof applicable to Stein or inner palindromic quasi-
groups raises open graph-theoretical and combinatorial problems.
Imposition of extra sūdoku-like conditions on Latin squares of
square order, based on the coloring of so-called sūdoku graphs,
leads to the concept of a sūdoku quasigroup. It is shown that the
spectrum of inner palindromic sūdoku quasigroups comprises every
perfect square, thereby identifying the chromatic number of each
sūdoku graph.

1. Introduction

Two classical quasigroup identities, of considerable importance in
combinatorics, are

(xy)(yx) = x

— Schröder’s (Second) Law [1, 3, 9], and

(xy)(yx) = y

— Stein’s Third Law [1, 3, 8]. The first of the two main themes of
this paper concerns the relationships between the two identities. Since
the traditional eponymic names are merely confusing in the current
context, it will be helpful to rename the two identities generically as
palindromic identities, with reference to the palindromic form of their
common left-hand sides. Since the single variable on the right-hand
side of Schröder’s Second Law is the outer variable in the palindrome,
that law will be called the outer palindromic identity. Similarly, Stein’s
Third Law will be called the inner palindromic identity, as the single
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variable on its right-hand side is the inner variable in the palindrome.
(As an additional mnemonic, one might note that the word “outer”
begins with the vowel “o” appearing in the name Schröder, while the
word “inner” begins with the vowel “i” appearing in Stein’s name.)

The congruence condition

(1.1) n ≡ 0, 1 mod 4

on the spectrum (set of orders of finite models) of outer palindromic
quasigroups was obtained by Lindner et al. using a combinatorial anal-
ysis [9, Th. 2]. Recently, B. Kerby and the author obtained a direct
topological proof for this condition [7, Cor. 7.5], a graph-theoretical
variant of the “alternate proof” proposed by Norton and Stein for the
idempotent case [11, Th.4.2]. Baker [1] proved the necessity of the con-
gruence condition (1.1) for idempotent outer palindromic quasigroups
by associating a balanced incomplete block design with parameters
k = 4 and λ = 3 to each such quasigroup, and then quoting known
restrictions for these BIBDs [5]. By similar means, he showed that
idempotent, inner palindromic quasigroups are also subject to the re-
striction (1.1). Later, Lindner et al. used a combinatorial method [8,
§8] to extend the restriction to arbitrary inner palindromic quasigroups.
Thus the spectral condition (1.1) may be seen as a general feature of
palindromic quasigroups.

Section 2 presents the graph-theoretical background to the topolog-
ical approach used in [7]. A cycle graph CQ, consisting entirely of
disjoint cycles in the finite case, is associated with each quasigroup Q.
Among all finite quasigroups of a given order n ≡ 0, 1 mod 4, the outer
palindromic quasigroups are characterized as those that maximize the
number of cycles in the cycle graph (Theorem 2.1). Problem 2.2 raises
the open question of what happens when n ≡ 2, 3 mod 4. Section 3
then shows how the topological method may be used to derive the con-
gruence restriction (1.1) on the spectrum for outer palindromic quasi-
groups, and formulates open problems in connection with its possible
extension to inner palindromic quasigroups.

Sūdoku quasigroups, whose multiplication tables are Latin squares
satisfying additional constraints familiar from sūdoku puzzles, form the
second main theme of this paper. In analogy with the graph-theoretical
definition of an n × n Latin square as an n-coloring of the Cartesian
product Kn�Kn, Section 4 defines a sūdoku graph SDr on r4 vertices,
and then specifies a sūdoku Latin square as an r2-coloring of SDr. The
main new result of the paper, Theorem 5.6, shows that the spectrum of
inner palindromic sūdoku quasigroups comprises every perfect square,
and thereby identifies the chromatic number of each sūdoku graph.
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2. The cycle graph of a quasigroup

A quasigroup (Q, ·) is defined as a set Q equipped with a binary
multiplication x · y or xy (which binds more strongly that x · y), where
in x · y = z, any two of x, y, z specify the third uniquely. This unique
specification may be formulated as

x · y = z ⇔ x = z/y ⇔ y = x\z
using supplementary binary operations z/y of right division and x\z
of left division.1 Since a quasigroup multiplication is not necessarily
assumed to be associative, brackets proliferate. However, the stronger
binding of juxtaposition may be used to reduce their number. For
example, the outer and inner palindromic identities may be written as
xy ·yx = x and xy ·yx = y respectively. The body of the multiplication
table of a quasigroup is a Latin square. Conversely, each Latin square
may be given row and column labels to make it the multiplication table
of a quasigroup. For a recent treatment of quasigroups, see [12].

Consider the group G = ⟨t1, t2, t3 | t21 = t22 = t23 = 1⟩, the free
product of three cyclic groups of order 2. It may be implemented as
the set of words in the alphabet {t1, t2, t3} without repeated letters.
The identity element is the empty word. Inversion of a word reverses
it. The product of two words is their juxtaposition, with cancelation
of any repeated letters, e.g. t1t2t1 · t1t3 = t1t2t3. The group G has
a right action on the index set I = {1, 2, 3} by the transpositions
t1 = (2 3), t2 = (3 1), t3 = (1 2) — so that ti fixes i for 1 ≤ i ≤ 3.

The marked multiplication table MQ of a quasigroup Q is defined to
be the set MQ = {(x, y, z, i) ∈ Q3 × I | xy = z}, of size 3|Q|2. The
group G has a right action on MQ with:

(x, y, z, i)t1 = (y/z, z, y, it1) ;

(x, y, z, i)t2 = (z, z\x, x, it2) ;
(x, y, z, i)t3 = (y, x, y · x, it3).

The undirected Cayley graph of this action is denoted by ΓQ. A stabi-
lizing edge in ΓQ is an edge of the form

( , , , i) ti ( , , , i)

for 1 ≤ i ≤ 3. Then the cycle graph CQ of Q is the subgraph of ΓQ

obtained by removing all the stabilizing edges. If Q is finite, the cycle
graph is a union of disjoint cycles

· · · ( , , , 2) t1 ( , , , 3) t2 ( , , , 1) t3 ( , , , 2) · · ·
1The notation for the divisions should be familiar to users of matlab R⃝.
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[7, Prop. 3.1]. The cycle number σ(CQ) or σ(Q) of the quasigroup Q is
defined as the number of connected components (cycles for finite Q) in
the cycle graph CQ. The following result shows how outer palindromic
quasigroups maximize the cycle number.

Theorem 2.1. [7, Th. 4.1] Let Q be a quasigroup of finite order n.

(a) The cycle number of Q satisfies the inequality

(2.1) σ(CQ) ≤ n2 .

(b) Equality obtains in (2.1) iff Q is outer palindromic.

Since equality in (2.1) is possible iff n lies in the spectrum of outer
palindromic quasigroups, the following problem is raised.

Problem 2.2. For n ≡ 2, 3 mod 4:

(a) Determine the maximum possible cycle number for a quasigroup
of order n;

(b) Characterize those quasigroups which achieve the maximum.

Remark 2.3. By [7, Prop. 4.7], the unique (quasi)group of order 2 has
cycle number 3.

3. The dual complex

The cycle graph of a quasigroup Q yields a two-dimensional cell
complex which is the basis for the combinatorial topology used in [7]
to derive the congruence restriction (1.1). The set of 0-dimensional
cells (“vertices”) is the unmarked multiplication table

V = {(x, y, xy) | x, y ∈ Q} .
From now on, assume that Q has finite order n. Then |V | = n2.

The unmarking projection is defined as

MQ → V ; (x, y, z, i) 7→ (x, y, z) .

Consider a cycle of CQ. Its vertices are certain marked triples. Un-
marking these vertices induces a quotient graph with loops. Deletion of
the loops leaves a cycle, known as a collapsed cycle. Define the set F of
2-dimensional cells (“faces”) as the set of all collapsed cycles (including
mere points arising from idempotents of Q). Then |F | = σ(Q).

Altogether, the unmarking projection induces a quotient graph of
CQ on the vertex set V . Delete all loops from this quotient graph (as
discussed above for the individual cycles), and let E denote the set
of remaining edges. This is the set of 1-cells in the complex. Then
|E| = 3n(n− 1)/2 [7, Prop. 5.4(b)]. Boundaries and an orientation are
defined in [7, §6] to make a complex F → E → V , known as the dual
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complex since it is dual to the complex originally constructed in the
idempotent case by Norton and Stein [10], and more recently extended
to the general case [6].

For each natural number n, define the triangular number T (n) =
n(n + 1)/2, the number of elements in a triangle with n in the base
layer, n− 1 in the next layer, . . . , up to 1 at the apex.

Theorem 3.1. [7, Th. 7.3] For a quasigroup Q of finite order n, the
cycle number σ(CQ) of Q is congruent to T (n) modulo 2.

Proof. Since the dual complex is oriented, it has even Euler character-
istic |F | − |V | + |E| = σ(Q) − 3n(n − 1)/2 + n2, which is congruent
modulo 2 to σ(Q)− T (n). �

Corollary 3.2. [7, Cor. 7.5] If Q is an outer palindromic quasigroup
of finite order n, then n is congruent to 0 or 1 modulo 4.

Proof. By Theorem 2.1, σ(Q) = n2, while by Theorem 3.1, σ(CQ) ≡
n(n+ 1)/2 mod 2. However, n2 ≡ n(n+ 1)/2 mod 2 if and only if n
is congruent to 0 or 1 modulo 4. �

The topological proof of Corollary 3.2, extending the “alternate
proof” proposed by Norton and Stein for the idempotent case [11,
Th.4.2], contrasts with the combinatorial analysis given by Lindner
et al. [9, Th. 2], and raises the following question.

Problem 3.3. Is there a topological/graph-theoretical proof for the
restriction n ≡ 0, 1 mod 4 on the spectrum of inner palindromic quasi-
groups?

Preliminary investigations have revealed no special features of cycle
graphs of inner palindromic quasigroups that might be exploited for
a solution to Problem 3.3. However, it is conceivable that a different
graph might form the basis for a comparable approach.

While the precise spectrum for inner palindromic quasigroups com-
prises all positive integers congruent to 0 or 1 modulo 4, the spec-
trum for outer palindromic quasigroups excludes 5 from that set [2,
Table III.2.42]. There is a better match in the spectra of idempotent
palindromic quasigroups: the inner case excludes 4 and 8, while the
outer case excludes 5 and 9 [2, Table III.2.43]. This correspondence
suggests the following problem, where a positive solution might look
like an elaborate analogue of the well-known relationship between idem-
potent quasigroups of some finite order h and unipotent loops of order
n+ 1 [12, Prop. 1.5].
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Problem 3.4. Is the existence of an inner palindromic quasigroup of
order congruent to 0 modulo 4 directly related to the existence of an
outer palindromic quasigroup of order congruent to 1 modulo 4?

4. Sūdoku graphs

For each element n of the set N of natural numbers (which is taken to
include 0), define n = {i ∈ N | i < n} as the model n-element set. For
a < b ∈ N, define the half-open interval [a, b) = {i ∈ N | a ≤ i < b}.

For a vertex set V and a subset S of the power set 2V , a graph
VS is determined by the specification that a clique is induced on each
element of S, and that there are no further edges. For example, on the
vertex set V = n× n with a positive integer n, the subset

(4.1) S =
{
{i} × n , n× {j}

∣∣ i, j < n
}

of 2V yields the Cartesian product Kn�Kn as VS. In order to relate to
Latin square language for n-colorings of Kn�Kn, the subsets {i} × n
of V appearing in (4.1) are called rows, while the subsets n × {j} are
called columns.

Now consider a positive integer r. Set n = r2, and take V = n× n.
Define the subset S =

(4.2)
{
{i}×n , n×{j} , [rk, rk+ r)× [rl, rl+ r)

∣∣∣ i, j < n; k, l < r
}

of 2V . Then the sūdoku graph SDr is defined as VS in this case. As in
the previous example, the subsets {i} × n of V appearing in (4.2) are
called rows, while the subsets n× {j} are called columns. The subsets
[rk, rk + r) × [rl, rl + r) are called regions, while their intersections
with the rows and columns are known respectively as subrows and
subcolumns.

Proposition 4.1. For a positive integer r, consider the sūdoku graph
SDr on r4 vertices.

(a) The graph SDr is regular, of valency (3r + 1)(r − 1).
(b) The graph SDr contains 1

2
r4(3r + 1)(r − 1) edges.

(c) The chromatic number χ (SDr) of SDr is at least r2.

Proof. The sūdoku graph SDr consists of r
2 cliques Kr2 for the rows, r

2

cliques for the columns, and a further clique for each of the r2 regions.
In total, this would give 3r2T (r2 − 1) edges. However, each region
contains r subrows and r subcolumns. Thus the edges of 2r cliques Kr

are counted twice in each of the r2 regions. In other words, 2r3T (r−1)
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edges have been counted twice. Thus the exact number of edges is

3r2
(
r2

2

)
− 2r3

(
r

2

)
=

r4

2

(
3(r2 − 1)− 2(r − 1)

)
=

r4

2
(3r2 − 2r − 1) ,

as required for (b). Since the edges are distributed evenly over the r4

vertices, (a) follows. Finally, the cliques Kr2 in SDr witness (c). �
Remark 4.2. In Corollary 5.7 below, it will be noted that in fact
χ (SDr) = r2.

Definition 4.3. (a) A sūdoku Latin square is defined as an r2-coloring
of SDr, for some positive integer r known as the radix. (As usual, the
square r2 is described as the order or size.) The colored rows, columns,
and regions of SDr are called the respective rows, columns, and regions
of the sūdoku Latin square.
(b) A sūdoku Latin square of order n = r2 is described as standard if
the coloring set is n.

As with conventional Latin squares, one may interpret a sūdoku
Latin square as an actual square matrix, wherein the regions correspond
to submatrices (compare [4, §1.9]).

Example 4.4. The following table displays a standard sūdoku Latin
square of radix 2, with four regions corresponding to the marked 2× 2
squares.

0 1 3 2

2 3 1 0

1 0 2 3

3 2 0 1

This sūdoku Latin square will be denoted by T .

5. Sūdoku quasigroups

Definition 5.1. (a) A standard sūdoku quasigroup is a quasigroup
where:

(1) The body of the multiplication table is a standard sūdoku Latin
square;

(2) The row {i}× n is labeled by i, for each natural number i < n,
and

(3) The column n × {j} is labeled by j, for each natural number
j < n.
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(b) A sūdoku quasigroup is a quasigroup that is isomorphic to a stan-
dard sūdoku quasigroup.

Example 5.2. The multiplication table below, whose body is taken
from Example 4.4, portrays a standard sūdoku quasigroup of order 22.

T 0 1 2 3

0 0 1 3 2

1 2 3 1 0

2 1 0 2 3

3 3 2 0 1

In accord with Example 4.4, this sūdoku quasigroup is also denoted by
T . As the following calculations show:

10 · 01 = 21 = 0 = 13 = 20 · 02 ; 20 · 02 = 13 = 0 = 00 = 00 · 00 ;
21 · 12 = 01 = 1 = 20 = 31 · 13 ; 31 · 13 = 20 = 1 = 33 = 11 · 11 ;
32 · 23 = 03 = 2 = 31 = 02 · 20 ; 02 · 20 = 31 = 2 = 22 = 22 · 22 ;
03 · 30 = 23 = 3 = 02 = 13 · 31 ; 13 · 31 = 02 = 3 = 11 = 33 · 33 ,

the quasigroup T is inner palindromic (satisfies Stein’s Third Law).

Proposition 5.3. Let L and R be standard sūdoku quasigroups, with
respective orders m = r2 and n = s2. Then the direct product L×R is
a sūdoku quasigroup.

Proof. As a direct product of two quasigroups, L × R is certainly a
quasigroup. Consider the regions Lij = [ri, ri + r) × [rj, rj + r) of L
for i, j < r and Rkl = [sk, sk + s)× [sl, sl + s) of R for k, l < s. Since
L is a sūdoku quasigroup, the set [ri, ri + r) · [rj, rj + r) of products
in each region Lij contains all m = r2 elements of the set L. Similarly,
the set [sk, sk + s) · [sl, sl + s) of products in each region Rkl contains
all n = s2 elements of the set R. Take regions(

[ri, ri+ r)× [sk, sk + s)
)
×

(
[rj, rj + r)× [sl, sl + s)

)
of L×R for i, j < r and k, l < s. Since the set(

[ri, ri+ r)× [sk, sk + s)
)
·
(
[rj, rj + r)× [sl, sl + s)

)
of products in such a region contains∣∣∣([ri, ri+ r)× [sk, sk + s)

)
·
(
[rj, rj + r)× [sl, sl + s)

)∣∣∣
=

∣∣[ri, ri+ r) · [rj, rj + r)
∣∣ · ∣∣[sk, sk + s) · [sl, sl + s)

∣∣
= mn = |L×R|

elements, it follows that L×R is a sūdoku quasigroup. �
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Suppose that (A,+, 0) is an additive abelian group of finite odd order
r = 2q + 1. For each element a of A, define 1

2
a = (q + 1)a, so that

1
2
a+ 1

2
a = (2q+2)a = (2q+1)a+ a = a. Similarly, write 1

4
a = 1

2
1
2
a, so

that a = 1
2
2a = 1

4
4a for each a in A.

Proposition 5.4. Define a product

(a, b) · (c, d) = 1

2
(a+ b+ c− d,−a+ b+ c+ d )

on the direct square of an additive abelian group A of finite odd order.
Then (A2, ·) is an inner palindromic sūdoku quasigroup, with a region

(5.1) A2
(a,c) =

{
(a, b) · (c, d)

∣∣ b, d ∈ A
}

for each element (a, c) of A2.

Proof. For elements (a, b), (c, d), and (e, f) of A2, one has

(a, b) · (c, d) = (e, f)

⇔ (a, b) = (d+ e− f,−c+ e+ f) =: (e, f)/(c, d)(5.2)

⇔ (c, d) = (−b+ e+ f, a− e+ f) =: (a, b)\(e, f) ,(5.3)

so that (A2, ·) is a quasigroup (A2, ·, /, \) with divisions defined by (5.2)
and (5.3). Furthermore,

(a, b)(c, d) · (c, d)(a, b)

=
1

2

(
(a+ b+ c− d,−a+ b+ c+ d) · (c+ d+ a− b,−c+ d+ a+ b)

)
=

1

4
(4c, 4d) = (c, d) ,

so that (A2, ·) is inner palindromic. Finally, each element (e, f) of A2

appears in the region A2
(a,c) of (5.1) as (a, b) · (c, d) with b = −c+ e+ f

(comparing the second components in (5.2) above) and d = a − e + f
(comparing the second components in (5.3) above). Thus (A2, ·) is a
sūdoku quasigroup. �

Example 5.5. Consider the additive group A = (Z/3,+, 0) of integers
modulo 3. By Proposition 5.4, there is an inner palindromic sūdoku
quasigroup (A2, ·) of order 9, with a multiplication table
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0 1 2 3 4 5 6 7 8

0 0 5 7 8 1 3 4 6 2

1 8 1 3 4 6 2 0 5 7

2 4 6 2 0 5 7 8 1 3

3 7 0 5 3 8 1 2 4 6

4 3 8 1 2 4 6 7 0 5

5 2 4 6 7 0 5 3 8 1

6 5 7 0 1 3 8 6 2 4

7 1 3 8 6 2 4 5 7 0

8 6 2 4 5 7 0 1 3 8

that has been “standardized” by the map A2 → 9; (a, b) 7→ 3a+ b.

Theorem 5.6. For each positive integer r as radix, there is an inner
palindromic sūdoku quasigroup of order r2.

Proof. Suppose r = 2ed for an odd integer d. Consider the additive
group A = (Z/d,+, 0) of integers modulo d. By Proposition 5.4, there
is an inner palindromic sūdoku quasigroup (A2, ·) of order d2. Now
Example 5.2 and inductive application of Proposition 5.3 yield an inner
palindromic sūdoku quasigroup T e of order 22e. By Proposition 5.3
again, T e × (A2, ·) is an inner palindromic sūdoku quasigroup of order
22ed2 = r2. �
Corollary 5.7. For each positive integer r, the chromatic number
χ (SDr) of the sūdoku graph SDr is r2.

Proof. By Theorem 5.6, χ (SDr) ≤ r2. On the other hand, it was noted
in Proposition 4.1(c) that χ (SDr) ≥ r2. �
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