
Primitive recursion

Definition
Given a binary function β(m, n) and any a ∈ N define the function
ϕ(n) as follows;

ϕ(0) := a and ϕ(n + 1) := β(n, ϕ(n)).

I Note how the successor function σ0(n) = n + 1 is built
directly into the definition of primitive recursion.

I The class PR is built up from σ0 the constant functions and
the projections πi (a1, ..., ai , ..., an) = ai by substitution and
primitive recursion.
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Two surprisingly useful functions

We define by primitive recursion sg and s̄g.

I sg(0) = 0 with sg(n + 1) = 1.

I s̄g(0) = 1 with s̄g(n + 1) = 0.

I Exponent notation is used e.g. 11sg = 1 and 2s̄g = 0.
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Examples

Well known primitive recursive functions. Takes some work!

1. The n-th prime pn

2. The exponent expl(n) of the l-th prime in the prime
factorization of n ∈ N.

3. The residue res(a,n) of a modulo n.

4. Restricted subtraction a ·− b.
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Examples

I If we let

S(n) =
n∑

i=1

s̄g(res(n, i))

then S(n) yields the number of divisors of n.

I If we let

π(n) =
n∑

i=2

s̄g(S(n) ·− 2)

then π(n) yields the number of primes among 2, ..., n.

Then the nth prime is the least j such that π(j) = n + 1.
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Bounded search

Suppose a function τ(a1, ..., ar , n) is given which satisfies the
following formula.

(∀a1 . . . ∀ar∃n)(τ(~a, n) = 0)

Then the smallest n for which τ(a1, ..., ar , n) = 0 is given by the
expression below.

B∑
i=0

i∏
j=0

τ(~a, j)sg

= τ(~a, 0)sg + τ(~a, 0)sgτ(~a, 1)sg + τ(~a, 0)sgτ(~a, 1)sgτ(~a, 2)sg + . . .

+ τ(~a, 0)sgτ(~a, 1)sg . . . τ(~a,B)sg
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Bounded search

The following notation is fairly standard.

µj [τ(~a, j) = 0] =
B∑
i=0

i∏
j=0

τ(~a, j)sg

I The bound B is specific to the function τ .

I For example the nth prime pn satisfies pn < 22n .

I This provides the bound B = 22n .
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The length of n ∈ N

Consider the problem of finding the index l of the largest prime
dividing n ∈ N and suppose n > 1.

I Take the sign of the sum

sg(expl(n) + exp2(n) + . . .+ expn(n)).

I What we seek is the smallest j such that

sg(expj+1(n) + expj+2(n) + . . .+ expn(n)) = 0.
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The length of n ∈ N

The following primitive recursive function yields the index of the
largest prime divisor of the natural number n.

long(n) =
n∑

k=0

k∏
j=0

sg

 n∑
l=j+1

expl(n)



I The bound n is sufficient since n < pn.

I This yields the smallest j such that expl(n) = 0 if l > j .
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Other forms of recursion

Course-of-values recursion

Definition
Given a binary function β and any a ∈ N define ϕ as follows;

ϕ(0) = a and ϕ(n + 1) = β(
n∏

i=0

p
ϕ(i)
i , n).

We can prove that such a definition yields a primitive recursive
function.
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Course-of-values recursion

Definition of ϕ

ϕ(0) = a and ϕ(n + 1) = β(
n∏

i=0

p
ϕ(i)
i , n)

Define a function ψ(n) =
∏n

i=0 p
ϕ(n)
i . Then ψ(0) = 2a and

ψ(n + 1) = ψ(n) · pϕ(n+1)
n+1

= ψ(n) · pβ(ψ(n),n)
n+1

Thus ψ is primitive recursive and ϕ(n) = expn ψ(n) hence ϕ is also
primitive recursive.
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Another form of recursion

Simultaneous recursion

Definition
Given a, b ∈ N and binary functions β1 and β2 define σ1 and σ2;
σ1(0) = a, σ2(0) = b with

σ1(n + 1) = β1(σ1(n), σ2(n))

σ2(n + 1) = β2(σ1(n), σ2(n)).

We can prove that such a definition yields primitive recursive
functins σ1 and σ2.
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Simultaneous recursion

σ1(0) = a and σ2(0) = b

σ1(n + 1) = β1(σ1(n), σ2(n))

σ2(n + 1) = β2(σ1(n), σ2(n)).

Define a function ψ(n) = p
σ1(n)
1 ·pσ2(n)

2 . So then ψ(0) = pa1 ·pb2 and

ψ(n + 1) = p
σ1(n+1)
1 · pσ2(n+1)

2

= p
β1(σ1(n),σ2(n))
1 · pβ2(σ1(n),σ2(n)

2

= p
β1(exp1 ψ(n),exp2 ψ(n))
1 · pβ2(exp1 ψ(n),exp2 ψ(n))

2

Hence ψ is primitive recursive ⇒ σ1 and σ2 are primitive recursive.
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Nested recursion

Example

Given known functions α, β and γ define ϕ(0, a) = α(a) with

ϕ(n + 1, a) = β(n, ϕ(n, γ(n, a, ϕ(n, a)))).

I This function is indeed primitive recursive.

I But in such a definition if you have induction on multiple
variables then your function may no longer be PR.

DMACC John M. Gillespie 41



Nested recursion

Example

Given known functions α, β and γ define ϕ(0, a) = α(a) with

ϕ(n + 1, a) = β(n, ϕ(n, γ(n, a, ϕ(n, a)))).

I This function is indeed primitive recursive.

I But in such a definition if you have induction on multiple
variables then your function may no longer be PR.

DMACC John M. Gillespie 42



Nested recursion

Example

Given known functions α, β and γ define ϕ(0, a) = α(a) with

ϕ(n + 1, a) = β(n, ϕ(n, γ(n, a, ϕ(n, a)))).

I This function is indeed primitive recursive.

I But in such a definition if you have induction on multiple
variables then your function may no longer be PR.

DMACC John M. Gillespie 43



General recursive functions

General recursive functions are defined in terms of a system of
equations.

I The class of general recursive functions coincides with the
class of all computable functions.

I Hence functions of the λ-calculus, Turing computable
functions, and so on are all general recursive functions.

I Given a defining system of equations you may not be able to
tell if you have a working definition.

I In general the problem is undecidable.
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General recursive functions

Given a defining system of equations there are two numbers which
are noteworthy.

The index of the function being defined σs and the number A
of axioms.

Example

1. σ1(0, x2) = x2

2. σ1(σ0(x1), x2) = σ0(σ1(x1, x2))

3. σ2(0, x2) = 0

4. σ2(σ0(x1), x2) = σ1(σ2(x1, x2), x2)

5. σ3(x1) = σ2(x1, x1)

I For this example s = 3, A = 5 and σ3 is the square function.
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General recursive functions

Example

1. σ1(0) = 0

2. σ1(σ0(x1)) = x1

3. σ2(0, x2) = x2

4. σ2(σ0(x1), x2) = σ0(σ2(x1, x2))

5. σ3(0) = 1

6. σ3(σ0(x1)) = σ2(ϕ(x1), ϕ(σ1(x1)))

I For this example s = 3, A = 6. Can you identify the function
σ3?
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General recursive functions

Example

1. σ1(0) = 0

2. σ1(σ0(x1)) = x1

3. σ2(x1, 0) = x1

4. σ2(x1, σ0(x2)) = σ1(σ2(x1, x2))

I For this example s = 2 and A = 4.

I σ2(x1, x2) = x1 ·− x2.
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Computations as deductions

Axioms

{
σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)

Deductions



n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (3)
z(3, 2) σ1(0, σ0(0)) = σ0(0) (4)
n(2, 2) σ1(σ0(x1), σ0(x2)) = σ0(σ1(x1, σ0(x2))) (5)
z(5, i) σ1(σ0(0), σ0(0)) = σ0(σ1(0, σ0(0))) (6)
sub(4, 6, 15) σ1(σ0(0), σ0(0)) = σ0(σ0(0)) (7)

This illustrates the three admissable steps in any computation;
n, z and sub.
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The admissable steps

I z(i , j) denotes plugging zero into the j variable of equation i .

I n(i , j) denotes non-zero evaluation; We are plugging σ0(xj)
into equation i in the variable j .

I sub(i , j , k) denotes substitution of RHS of equation i into
equation j at the kth position.
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Computations as deductions

Axioms


σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)
σ2(0, x2) = 0 (3)
σ2(σ0(x1), x2) = σ1(σ2(x1, x2), x2) (4)

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (5)
z(5, 2) σ1(0, σ0(0)) = σ0(0) (6)
n(4, 2) σ2(σ0(x1), σ0(x2)) = σ1(σ2(x1, σ0(x2)), σ0(x2)) (7)
z(7, i) σ2(σ0(0), σ0(0)) = σ1(σ2(0, σ0(0)), σ0(0)) (8)
n(3, 2) σ2(0, σ0(x2)) = 0 (9)
z(9, 2) σ2(0, σ0(0)) = 0 (10)
sub(10, 8) σ2(σ0(0), σ0(0))) = σ1(0, σ0(0)) (11)
sub(6, 11) σ2(σ0(0), σ0(0))) = σ0(0) (12)
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Key component of the Kleene normal form

The Kleene operator

Given a function τ(a1, ..., ar , n) in which for every ~a there exists an
n such that τ(~a, n) = 0 we can define a new function ϕ(~a).

ϕ(a1, ..., ar ) = µj [τ(a1, ..., ar ) = 0]

This is the unbounded search.

lim
B→∞

B∑
i=0

i∏
j=0

τ(~a, j)sg

We will use this Kleene operator later to search through
computations.
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The Kleene operator as a general recursive function

Suppose a function τ(a1, ..., ar , n) is already given. We define a
new function σ.

I σ(j , a1, ..., ar , 0) = j

I σ(j , a1, ..., ar , n + 1) = σ(j + 1, a1, ..., ar , τ(a1, ..., ar , j + 1))

Then µj [τ(a1, ..., ar , j) = 0] = σ(0, a1, ..., ar , τ(a1, ..., ar , 0)).

DMACC John M. Gillespie 80



The Kleene operator as a general recursive function

Suppose a function τ(a1, ..., ar , n) is already given. We define a
new function σ.

I σ(j , a1, ..., ar , 0) = j

I σ(j , a1, ..., ar , n + 1) = σ(j + 1, a1, ..., ar , τ(a1, ..., ar , j + 1))

Then µj [τ(a1, ..., ar , j) = 0] = σ(0, a1, ..., ar , τ(a1, ..., ar , 0)).

DMACC John M. Gillespie 81



Kleene’s theorem states that any general recursive function
ϕ can be put in the form

ϕ = ψ(µ[τ ])

where µ is the Kleene operator and ψ and τ are primitive
recursive.

I This is the normal form we wish to prove exists.

I This proves the Kleene operator cannot be primitive recursive.

I This also proves that if we augment the class PR with the
Kleene operator this yields the class of all computable
functions.
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Arithmetization of computations

We begin with the basic Godel numbering of symbols.

Individual symbol Godel number
σn 2n + 2, n = 0, 1, ...
0 1
= 3
( 5
) 7
, 9
xn 2n + 9, n = 1, 2, ...

By Godel numbering the symbols used in computations we can
employ standard arithmetic to sort through sets of computations.
Furthermore we can hone in on those computations which are
actually correct.
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More on Godel numbers

Some examples of symbol sequences and their Godel numbers.

Example

1. σ0(0) has Godel number p2
1p

5
2p

1
3p

7
4

2. σ0(σ0(0)) has Godel number p2
1p

5
2p

2
3p

5
4p

1
5p

7
6p

7
7

3. σ2(x1) = x1 has Godel number p4
1p

5
2p

11
3 p7

4p
3
5p

11
6

4. σ0(xi ) has Godel number p2
1p

5
2p

2i+9
3 p7

4
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3. σ2(x1) = x1 has Godel number p4
1p

5
2p

11
3 p7

4p
3
5p

11
6

4. σ0(xi ) has Godel number p2
1p

5
2p

2i+9
3 p7

4
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Godel numbering a computation

This is the first example computation.

Axioms

{
q1 := p4

1p
5
2p

1
3p

9
4p

13
5 p7

6p
3
7p

13
8

. . .

Deductions


q3 := p4

1p
5
2 . . . p

13
13p

7
14

...
q7 := p4

1p
5
2 . . . p

7
19p

7
20

The entire computation is encoded in the Godel number
pq1

1 pq2
2 . . . pq7

7 .
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Basic strategy

I Every computation is assigned a Godel number pe1
1 pe2

2 . . . pell .

I Each exponent ei is the Godel number of an equation.

I The first A equations e1,...,eA are the axioms.

I The rest eA+1,...,el are expected to be deductions from
previous equations.

I We require functions which can detect such deductions.
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Basic strategy

I We will construct a primitive recursive function τ1 such that
τ1(ω, i) = 0 if and only if ei = z(j , k) for j < i in the
computation ω.

I

(∃j∃k)[ (j < i) ∧ (k < ω) ∧ (ei = z(j , k)) ]

I We will construct similar primitive recursive functions τ2 and
τ3 for the other deduction steps n and sub.

I Then τ1(ω, i)τ2(ω, i)τ3(ω, i) will equal zero if and only if the
ith equation of ω is some proper deduction.
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Admissable deduction step z

Substituting zero for the variable xi in the equation e altars
the Godel number as follows.

z(e, i) =

long(e)∏
j=1

pj

 1 if expj(e) = 2i + 9
expj(e) else



This function is primitive recursive.
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Admissable deduction step n

Substituting a non-zero value σ0(xi) in the variable xi of
equation e altars the Godel number as follows.

n(e, i) =

long(e)⊗
j=1

{
q if expj(e) = 2i + 9

p
expj(e)
1 else

}

This function is primitive recursive. What is q?
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Useful formulas

If m is the Godel number of an equation then eq(m) locates the
equality sign.

eq(m) = µj[j ≤ long(m) ∧ expj(m) = 3]

Bounded search =⇒ PR.

eq(m) = 1 +

long(m)∑
i=1

i∏
j=1

sg
(
sg(expj(m) ·− 3) + sg(3 ·− expj(m))

)
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Useful formulas

If m is the Godel number of an equation then β(m) denotes the
Godel number of the left-hand side of the equation.

β(m) =

eq(m) ·−1∏
j=1

p
expj (m)

j

DMACC John M. Gillespie 113



Useful formulas

Then the right-hand side of equation m which we denote by γ(m)
is the following.

γ(m) =

long(m) ·−eq(m)∏
j=1

p
expj+eq(m)(m)

j
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Does a given equation contain some term?

Here we are testing for a copy of β(m) in the expression n
beginning at location j + 1. Denote this predicate β(m, n, j).

long(β(m))∑
i=1

sg( expi+j(n) ·− expi β(m) ) + sg( expi β(m) ·− expi+j(n) )

I Hence β(m, n, j) = 0 iff expi (β(m)) = expi+j(n) for every
1 ≤ i ≤ long(β(m)).

I So β(m, n, j) = 0 iff the expression for n contains the
expression for β(m) precisely after the jth symbol.

I Note that β(m, n, j) 6= 0 if long(n)− j < long(β(m)).
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The binary function eq(m, n)

We will use eq also to denote the binary function given below.

eq(m, n) = sg(m ·− n) + sg(n ·−m)

Hence eq(m, n) = 0 if and only if m = n. Then

long(β(m))∑
i=1

sg( expi+j(n) ·− expi β(m) ) + sg( expi β(m) ·− expi+j(n) )

simplifies to

β(m, n, j) =

long(β(m))∑
i=1

eq(expi+j(n), expi β(m)).
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Admissable deduction step sub

Substituting γ(m) for β(m) in equation n altars it’s Godel
number as follows.

If β(m, n, j) = 0 then

sub(m, n, j) =

j∏
i=1

p
expi (n)
i ∗ γ(m) ∗

long(n) ·−(j+longβ(m))∏
i=1

p
expj+longβ(m)+i(n)

i

otherwise sub(m, n, j) = n.

This is a primitive recursive function.
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Valid deduction

The natural number ω is the Godel number of a valid deduction if
for every i ≤ long(ω) one of the following is true;

I expi (ω) is the Godel number of one of the defining equations.

I There exists j < i and some k such that
expi (ω) = z(expj(ω), k).

I There exists j < i and some k such that
expi (ω) = n(expj(ω), k)).

I ∃m, n < i and j where expi (ω) = sub(expm(ω), expn(ω), j)).
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Valid deduction

Let τ1(ω, i) denote the predicate

(∃j∃k)[ (j < i) ∧ (k ≤ ω) ∧ eq(expi ω, z(expj ω, k)) ]

I Thus τ1(ω, i) is primitive recursive and, as formulated below,
equals zero iff the property holds true.

τ1(ω, i) =
i ·−1∏
j=1

ω∏
k=1

eq( expi ω, z(expj ω, k) )
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Valid deduction

Let τ2(ω, i) denote the predicate

(∃j∃k)[ (j < i) ∧ (k ≤ ω) ∧ eq(expi ω,n(expj ω, k)) ]

I Thus τ2(ω, i) is primitive recursive and, as formulated below,
equals zero iff the property holds true.

τ2(ω, i) =
i ·−1∏
j=1

ω∏
k=1

eq( expi ω,n(expj ω, k) )

DMACC John M. Gillespie 131



Valid deduction

Let τ2(ω, i) denote the predicate

(∃j∃k)[ (j < i) ∧ (k ≤ ω) ∧ eq(expi ω,n(expj ω, k)) ]

I Thus τ2(ω, i) is primitive recursive and, as formulated below,
equals zero iff the property holds true.

τ2(ω, i) =
i ·−1∏
j=1

ω∏
k=1

eq( expi ω,n(expj ω, k) )

DMACC John M. Gillespie 132



Valid deduction

Let τ3(ω, i) denote the predicate

(∃m)(∃n)(∃j)[ (m, n < i) ∧ (j ≤ long(n)) ∧ expi ω = sub(expm ω, expn ω, j) ]

I Thus τ3(ω, i) is primitive recursive and, as formulated below,
equals zero iff the property holds true.

τ3(ω, i) =
i ·−1∏
m=1

i ·−1∏
n=1

long(n)∏
j=1

eq(expi ω, sub(expm ω, expn ω, j))
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Useful formula

The symbol sequence σ0(0) represents the natural number one
and in general if σn

0 (0) then σ0(σn
0 (0)) represents n + 1.

The Godel numbers of these expressions have a primitive
recursive formula.

ζ(0) = p1
1 and ζ(n + 1) = p2

1p
5
2 ∗ ζ(n) ∗ p7

1
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The valid deduction of ϕ(a1, ..., ar)

Let τ4(a1, ..., ar , ω) denote the predicate

(∃a)[ (a < γ(explongω(ω)) ∧ eq(explongω(ω),Φ(a)) ]

I Where Φ(a) := p2s+9
1 p5

2 ∗ ζ(a1) ∗ . . . ∗ ζ(ar ) ∗ p7
1p

3
2 ∗ ζ(a))

τ4(a1, ..., ar , ω) =

γ(explongω(ω))∏
a=0

eq(explongω(ω),Φ(a))
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PR detection of a valid computation

Let τ(a1, ..., ar , ω) denote the following formula

long(ω)∑
i=1+A

τ1(ω, i)τ2(ω, i)τ3(ω, i) + τ4(a1, ..., ar , ω)

I Thus ω is the Godel number of a valid computation of ϕ(~a) iff
τ(a1, ..., ar , ω) = 0.

I The function µω[τ(a1, ..., ar , ω) = 0] denotes the unbounded
search for a valid computation of ϕ(~a).
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Kleene normal form

Let ψ(ω) denote the function

µj [j < γ(explongω(ω)) ∧ ζ(j) = γ(explong(ω)(ω)) ]

Since j < γ(explongω(ω)) the function ψ is primitive recursive and
finally we have the normal form below.

ϕ = ψ(µω[τ(a1, ..., ar , ω) = 0])

Thus every GR function can be written as above where ψ is a
PR function and τ is a PR predicate on which the Kleene
operator acts.
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