
Primitive recursion

Definition
Given a binary function β(m, n) and any a ∈ N define the function
ϕ(n) as follows;

ϕ(0) := a and ϕ(n + 1) := β(n, ϕ(n)).

I Note how the successor function σ0(n) = n + 1 is built
directly into the definition of primitive recursion.

I The class PR is built up from σ0 the constant functions and
the projections πi (a1, ..., ai , ..., an) = ai by substitution and
primitive recursion.

DMACC John M. Gillespie 1

Primitive recursion

Definition
Given a binary function β(m, n) and any a ∈ N define the function
ϕ(n) as follows;

ϕ(0) := a and ϕ(n + 1) := β(n, ϕ(n)).

I Note how the successor function σ0(n) = n + 1 is built
directly into the definition of primitive recursion.

I The class PR is built up from σ0 the constant functions and
the projections πi (a1, ..., ai , ..., an) = ai by substitution and
primitive recursion.

DMACC John M. Gillespie 2

Primitive recursion

Definition
Given a binary function β(m, n) and any a ∈ N define the function
ϕ(n) as follows;

ϕ(0) := a and ϕ(n + 1) := β(n, ϕ(n)).

I Note how the successor function σ0(n) = n + 1 is built
directly into the definition of primitive recursion.

I The class PR is built up from σ0 the constant functions and
the projections πi (a1, ..., ai , ..., an) = ai by

substitution and
primitive recursion.

DMACC John M. Gillespie 3

Primitive recursion

Definition
Given a binary function β(m, n) and any a ∈ N define the function
ϕ(n) as follows;

ϕ(0) := a and ϕ(n + 1) := β(n, ϕ(n)).

I Note how the successor function σ0(n) = n + 1 is built
directly into the definition of primitive recursion.

I The class PR is built up from σ0 the constant functions and
the projections πi (a1, ..., ai , ..., an) = ai by substitution

and
primitive recursion.

DMACC John M. Gillespie 4

Primitive recursion

Definition
Given a binary function β(m, n) and any a ∈ N define the function
ϕ(n) as follows;

ϕ(0) := a and ϕ(n + 1) := β(n, ϕ(n)).

I Note how the successor function σ0(n) = n + 1 is built
directly into the definition of primitive recursion.

I The class PR is built up from σ0 the constant functions and
the projections πi (a1, ..., ai , ..., an) = ai by substitution and
primitive recursion.

DMACC John M. Gillespie 5

Two surprisingly useful functions

We define by primitive recursion sg and s̄g.

I sg(0) = 0 with sg(n + 1) = 1.

I s̄g(0) = 1 with s̄g(n + 1) = 0.

I Exponent notation is used e.g. 11sg = 1 and 2s̄g = 0.

DMACC John M. Gillespie 6

Two surprisingly useful functions

We define by primitive recursion sg and s̄g.

I sg(0) = 0 with sg(n + 1) = 1.

I s̄g(0) = 1 with s̄g(n + 1) = 0.

I Exponent notation is used e.g. 11sg = 1 and 2s̄g = 0.

DMACC John M. Gillespie 7

Examples

Well known primitive recursive functions. Takes some work!

1. The n-th prime pn

2. The exponent expl(n) of the l-th prime in the prime
factorization of n ∈ N.

3. The residue res(a,n) of a modulo n.

4. Restricted subtraction a ·− b.

DMACC John M. Gillespie 8

Examples

Well known primitive recursive functions. Takes some work!

1. The n-th prime pn

2. The exponent expl(n) of the l-th prime in the prime
factorization of n ∈ N.

3. The residue res(a,n) of a modulo n.

4. Restricted subtraction a ·− b.

DMACC John M. Gillespie 9

Examples

Well known primitive recursive functions. Takes some work!

1. The n-th prime pn

2. The exponent expl(n) of the l-th prime in the prime
factorization of n ∈ N.

3. The residue res(a,n) of a modulo n.

4. Restricted subtraction a ·− b.

DMACC John M. Gillespie 10

Examples

Well known primitive recursive functions. Takes some work!

1. The n-th prime pn

2. The exponent expl(n) of the l-th prime in the prime
factorization of n ∈ N.

3. The residue res(a,n) of a modulo n.

4. Restricted subtraction a ·− b.

DMACC John M. Gillespie 11

Examples

I If we let

S(n) =
n∑

i=1

s̄g(res(n, i))

then S(n) yields the number of divisors of n.

I If we let

π(n) =
n∑

i=2

s̄g(S(n) ·− 2)

then π(n) yields the number of primes among 2, ..., n.

Then the nth prime is the least j such that π(j) = n + 1.

DMACC John M. Gillespie 12

Examples

I If we let

S(n) =
n∑

i=1

s̄g(res(n, i))

then S(n) yields the number of divisors of n.

I If we let

π(n) =
n∑

i=2

s̄g(S(n) ·− 2)

then π(n) yields the number of primes among 2, ..., n.

Then the nth prime is the least j such that π(j) = n + 1.

DMACC John M. Gillespie 13

Examples

I If we let

S(n) =
n∑

i=1

s̄g(res(n, i))

then S(n) yields the number of divisors of n.

I If we let

π(n) =
n∑

i=2

s̄g(S(n) ·− 2)

then π(n) yields the number of primes among 2, ..., n.

Then the nth prime is the least j such that π(j) = n + 1.

DMACC John M. Gillespie 14

Examples

I If we let

S(n) =
n∑

i=1

s̄g(res(n, i))

then S(n) yields the number of divisors of n.

I If we let

π(n) =
n∑

i=2

s̄g(S(n) ·− 2)

then π(n) yields the number of primes among 2, ..., n.

Then the nth prime is the least j such that π(j) = n + 1.

DMACC John M. Gillespie 15

Examples

I If we let

S(n) =
n∑

i=1

s̄g(res(n, i))

then S(n) yields the number of divisors of n.

I If we let

π(n) =
n∑

i=2

s̄g(S(n) ·− 2)

then π(n) yields the number of primes among 2, ..., n.

Then the nth prime is the least j such that π(j) = n + 1.

DMACC John M. Gillespie 16

Bounded search

Suppose a function τ(a1, ..., ar , n) is given which satisfies the
following formula.

(∀a1 . . . ∀ar∃n)(τ(~a, n) = 0)

Then the smallest n for which τ(a1, ..., ar , n) = 0 is given by the
expression below.

B∑
i=0

i∏
j=0

τ(~a, j)sg

= τ(~a, 0)sg + τ(~a, 0)sgτ(~a, 1)sg + τ(~a, 0)sgτ(~a, 1)sgτ(~a, 2)sg + . . .

+ τ(~a, 0)sgτ(~a, 1)sg . . . τ(~a,B)sg

DMACC John M. Gillespie 17

Bounded search

Suppose a function τ(a1, ..., ar , n) is given which satisfies the
following formula.

(∀a1 . . . ∀ar∃n)(τ(~a, n) = 0)

Then the smallest n for which τ(a1, ..., ar , n) = 0 is given by the
expression below.

B∑
i=0

i∏
j=0

τ(~a, j)sg

= τ(~a, 0)sg + τ(~a, 0)sgτ(~a, 1)sg + τ(~a, 0)sgτ(~a, 1)sgτ(~a, 2)sg + . . .

+ τ(~a, 0)sgτ(~a, 1)sg . . . τ(~a,B)sg

DMACC John M. Gillespie 18

Bounded search

Suppose a function τ(a1, ..., ar , n) is given which satisfies the
following formula.

(∀a1 . . . ∀ar∃n)(τ(~a, n) = 0)

Then the smallest n for which τ(a1, ..., ar , n) = 0 is given by the
expression below.

B∑
i=0

i∏
j=0

τ(~a, j)sg

= τ(~a, 0)sg + τ(~a, 0)sgτ(~a, 1)sg + τ(~a, 0)sgτ(~a, 1)sgτ(~a, 2)sg + . . .

+ τ(~a, 0)sgτ(~a, 1)sg . . . τ(~a,B)sg

DMACC John M. Gillespie 19

Bounded search

The following notation is fairly standard.

µj [τ(~a, j) = 0] =
B∑
i=0

i∏
j=0

τ(~a, j)sg

I The bound B is specific to the function τ .

I For example the nth prime pn satisfies pn < 22n .

I This provides the bound B = 22n .

DMACC John M. Gillespie 20

Bounded search

The following notation is fairly standard.

µj [τ(~a, j) = 0] =
B∑
i=0

i∏
j=0

τ(~a, j)sg

I The bound B is specific to the function τ .

I For example the nth prime pn satisfies pn < 22n .

I This provides the bound B = 22n .

DMACC John M. Gillespie 21

Bounded search

The following notation is fairly standard.

µj [τ(~a, j) = 0] =
B∑
i=0

i∏
j=0

τ(~a, j)sg

I The bound B is specific to the function τ .

I For example the nth prime pn satisfies pn < 22n .

I This provides the bound B = 22n .

DMACC John M. Gillespie 22

Bounded search

The following notation is fairly standard.

µj [τ(~a, j) = 0] =
B∑
i=0

i∏
j=0

τ(~a, j)sg

I The bound B is specific to the function τ .

I For example the nth prime pn satisfies pn < 22n .

I This provides the bound B = 22n .

DMACC John M. Gillespie 23

The length of n ∈ N

Consider the problem of finding the index l of the largest prime
dividing n ∈ N and suppose n > 1.

I Take the sign of the sum

sg(expl(n) + exp2(n) + . . .+ expn(n)).

I What we seek is the smallest j such that

sg(expj+1(n) + expj+2(n) + . . .+ expn(n)) = 0.

DMACC John M. Gillespie 24

The length of n ∈ N

Consider the problem of finding the index l of the largest prime
dividing n ∈ N and suppose n > 1.

I Take the sign of the sum

sg(expl(n) + exp2(n) + . . .+ expn(n)).

I What we seek is the smallest j such that

sg(expj+1(n) + expj+2(n) + . . .+ expn(n)) = 0.

DMACC John M. Gillespie 25

The length of n ∈ N

Consider the problem of finding the index l of the largest prime
dividing n ∈ N and suppose n > 1.

I Take the sign of the sum

sg(expl(n) + exp2(n) + . . .+ expn(n)).

I What we seek is the smallest j such that

sg(expj+1(n) + expj+2(n) + . . .+ expn(n)) = 0.

DMACC John M. Gillespie 26

The length of n ∈ N

The following primitive recursive function yields the index of the
largest prime divisor of the natural number n.

long(n) =
n∑

k=0

k∏
j=0

sg

 n∑
l=j+1

expl(n)

I The bound n is sufficient since n < pn.

I This yields the smallest j such that expl(n) = 0 if l > j .

DMACC John M. Gillespie 27

The length of n ∈ N

The following primitive recursive function yields the index of the
largest prime divisor of the natural number n.

long(n) =
n∑

k=0

k∏
j=0

sg

 n∑
l=j+1

expl(n)

I The bound n is sufficient since n < pn.

I This yields the smallest j such that expl(n) = 0 if l > j .

DMACC John M. Gillespie 28

The length of n ∈ N

The following primitive recursive function yields the index of the
largest prime divisor of the natural number n.

long(n) =
n∑

k=0

k∏
j=0

sg

 n∑
l=j+1

expl(n)

I The bound n is sufficient since n < pn.

I This yields the smallest j such that expl(n) = 0 if l > j .

DMACC John M. Gillespie 29

Other forms of recursion

Course-of-values recursion

Definition
Given a binary function β and any a ∈ N define ϕ as follows;

ϕ(0) = a and ϕ(n + 1) = β(
n∏

i=0

p
ϕ(i)
i , n).

We can prove that such a definition yields a primitive recursive
function.

DMACC John M. Gillespie 30

Course-of-values recursion

Definition of ϕ

ϕ(0) = a and ϕ(n + 1) = β(
n∏

i=0

p
ϕ(i)
i , n)

Define a function ψ(n) =
∏n

i=0 p
ϕ(n)
i . Then ψ(0) = 2a and

ψ(n + 1) = ψ(n) · pϕ(n+1)
n+1

= ψ(n) · pβ(ψ(n),n)
n+1

Thus ψ is primitive recursive and ϕ(n) = expn ψ(n) hence ϕ is also
primitive recursive.

DMACC John M. Gillespie 31

Course-of-values recursion

Definition of ϕ

ϕ(0) = a and ϕ(n + 1) = β(
n∏

i=0

p
ϕ(i)
i , n)

Define a function ψ(n) =
∏n

i=0 p
ϕ(n)
i . Then ψ(0) = 2a and

ψ(n + 1) = ψ(n) · pϕ(n+1)
n+1

= ψ(n) · pβ(ψ(n),n)
n+1

Thus ψ is primitive recursive and ϕ(n) = expn ψ(n) hence ϕ is also
primitive recursive.

DMACC John M. Gillespie 32

Course-of-values recursion

Definition of ϕ

ϕ(0) = a and ϕ(n + 1) = β(
n∏

i=0

p
ϕ(i)
i , n)

Define a function ψ(n) =
∏n

i=0 p
ϕ(n)
i . Then ψ(0) = 2a and

ψ(n + 1) = ψ(n) · pϕ(n+1)
n+1

= ψ(n) · pβ(ψ(n),n)
n+1

Thus ψ is primitive recursive and ϕ(n) = expn ψ(n) hence ϕ is also
primitive recursive.

DMACC John M. Gillespie 33

Course-of-values recursion

Definition of ϕ

ϕ(0) = a and ϕ(n + 1) = β(
n∏

i=0

p
ϕ(i)
i , n)

Define a function ψ(n) =
∏n

i=0 p
ϕ(n)
i . Then ψ(0) = 2a and

ψ(n + 1) = ψ(n) · pϕ(n+1)
n+1

= ψ(n) · pβ(ψ(n),n)
n+1

Thus ψ is primitive recursive and ϕ(n) = expn ψ(n) hence ϕ is also
primitive recursive.

DMACC John M. Gillespie 34

Another form of recursion

Simultaneous recursion

Definition
Given a, b ∈ N and binary functions β1 and β2 define σ1 and σ2;
σ1(0) = a, σ2(0) = b with

σ1(n + 1) = β1(σ1(n), σ2(n))

σ2(n + 1) = β2(σ1(n), σ2(n)).

We can prove that such a definition yields primitive recursive
functins σ1 and σ2.

DMACC John M. Gillespie 35

Another form of recursion

Simultaneous recursion

Definition
Given a, b ∈ N and binary functions β1 and β2 define σ1 and σ2;
σ1(0) = a, σ2(0) = b with

σ1(n + 1) = β1(σ1(n), σ2(n))

σ2(n + 1) = β2(σ1(n), σ2(n)).

We can prove that such a definition yields primitive recursive
functins σ1 and σ2.

DMACC John M. Gillespie 36

Simultaneous recursion

σ1(0) = a and σ2(0) = b

σ1(n + 1) = β1(σ1(n), σ2(n))

σ2(n + 1) = β2(σ1(n), σ2(n)).

Define a function ψ(n) = p
σ1(n)
1 ·pσ2(n)

2 . So then ψ(0) = pa1 ·pb2 and

ψ(n + 1) = p
σ1(n+1)
1 · pσ2(n+1)

2

= p
β1(σ1(n),σ2(n))
1 · pβ2(σ1(n),σ2(n)

2

= p
β1(exp1 ψ(n),exp2 ψ(n))
1 · pβ2(exp1 ψ(n),exp2 ψ(n))

2

Hence ψ is primitive recursive ⇒ σ1 and σ2 are primitive recursive.

DMACC John M. Gillespie 37

Simultaneous recursion

σ1(0) = a and σ2(0) = b

σ1(n + 1) = β1(σ1(n), σ2(n))

σ2(n + 1) = β2(σ1(n), σ2(n)).

Define a function ψ(n) = p
σ1(n)
1 ·pσ2(n)

2 . So then ψ(0) = pa1 ·pb2 and

ψ(n + 1) = p
σ1(n+1)
1 · pσ2(n+1)

2

= p
β1(σ1(n),σ2(n))
1 · pβ2(σ1(n),σ2(n)

2

= p
β1(exp1 ψ(n),exp2 ψ(n))
1 · pβ2(exp1 ψ(n),exp2 ψ(n))

2

Hence ψ is primitive recursive ⇒ σ1 and σ2 are primitive recursive.

DMACC John M. Gillespie 38

Simultaneous recursion

σ1(0) = a and σ2(0) = b

σ1(n + 1) = β1(σ1(n), σ2(n))

σ2(n + 1) = β2(σ1(n), σ2(n)).

Define a function ψ(n) = p
σ1(n)
1 ·pσ2(n)

2 . So then ψ(0) = pa1 ·pb2 and

ψ(n + 1) = p
σ1(n+1)
1 · pσ2(n+1)

2

= p
β1(σ1(n),σ2(n))
1 · pβ2(σ1(n),σ2(n)

2

= p
β1(exp1 ψ(n),exp2 ψ(n))
1 · pβ2(exp1 ψ(n),exp2 ψ(n))

2

Hence ψ is primitive recursive ⇒ σ1 and σ2 are primitive recursive.

DMACC John M. Gillespie 39

Simultaneous recursion

σ1(0) = a and σ2(0) = b

σ1(n + 1) = β1(σ1(n), σ2(n))

σ2(n + 1) = β2(σ1(n), σ2(n)).

Define a function ψ(n) = p
σ1(n)
1 ·pσ2(n)

2 . So then ψ(0) = pa1 ·pb2 and

ψ(n + 1) = p
σ1(n+1)
1 · pσ2(n+1)

2

= p
β1(σ1(n),σ2(n))
1 · pβ2(σ1(n),σ2(n)

2

= p
β1(exp1 ψ(n),exp2 ψ(n))
1 · pβ2(exp1 ψ(n),exp2 ψ(n))

2

Hence ψ is primitive recursive ⇒ σ1 and σ2 are primitive recursive.

DMACC John M. Gillespie 40

Nested recursion

Example

Given known functions α, β and γ define ϕ(0, a) = α(a) with

ϕ(n + 1, a) = β(n, ϕ(n, γ(n, a, ϕ(n, a)))).

I This function is indeed primitive recursive.

I But in such a definition if you have induction on multiple
variables then your function may no longer be PR.

DMACC John M. Gillespie 41

Nested recursion

Example

Given known functions α, β and γ define ϕ(0, a) = α(a) with

ϕ(n + 1, a) = β(n, ϕ(n, γ(n, a, ϕ(n, a)))).

I This function is indeed primitive recursive.

I But in such a definition if you have induction on multiple
variables then your function may no longer be PR.

DMACC John M. Gillespie 42

Nested recursion

Example

Given known functions α, β and γ define ϕ(0, a) = α(a) with

ϕ(n + 1, a) = β(n, ϕ(n, γ(n, a, ϕ(n, a)))).

I This function is indeed primitive recursive.

I But in such a definition if you have induction on multiple
variables then your function may no longer be PR.

DMACC John M. Gillespie 43

General recursive functions

General recursive functions are defined in terms of a system of
equations.

I The class of general recursive functions coincides with the
class of all computable functions.

I Hence functions of the λ-calculus, Turing computable
functions, and so on are all general recursive functions.

I Given a defining system of equations you may not be able to
tell if you have a working definition.

I In general the problem is undecidable.

DMACC John M. Gillespie 44

General recursive functions

General recursive functions are defined in terms of a system of
equations.

I The class of general recursive functions coincides with the
class of all computable functions.

I Hence functions of the λ-calculus, Turing computable
functions, and so on are all general recursive functions.

I Given a defining system of equations you may not be able to
tell if you have a working definition.

I In general the problem is undecidable.

DMACC John M. Gillespie 45

General recursive functions

General recursive functions are defined in terms of a system of
equations.

I The class of general recursive functions coincides with the
class of all computable functions.

I Hence functions of the λ-calculus, Turing computable
functions, and so on are all general recursive functions.

I Given a defining system of equations you may not be able to
tell if you have a working definition.

I In general the problem is undecidable.

DMACC John M. Gillespie 46

General recursive functions

General recursive functions are defined in terms of a system of
equations.

I The class of general recursive functions coincides with the
class of all computable functions.

I Hence functions of the λ-calculus, Turing computable
functions, and so on are all general recursive functions.

I Given a defining system of equations you may not be able to
tell if you have a working definition.

I In general the problem is undecidable.

DMACC John M. Gillespie 47

General recursive functions

General recursive functions are defined in terms of a system of
equations.

I The class of general recursive functions coincides with the
class of all computable functions.

I Hence functions of the λ-calculus, Turing computable
functions, and so on are all general recursive functions.

I Given a defining system of equations you may not be able to
tell if you have a working definition.

I In general the problem is undecidable.

DMACC John M. Gillespie 48

General recursive functions

Given a defining system of equations there are two numbers which
are noteworthy.

The index of the function being defined σs and the number A
of axioms.

Example

1. σ1(0, x2) = x2

2. σ1(σ0(x1), x2) = σ0(σ1(x1, x2))

3. σ2(0, x2) = 0

4. σ2(σ0(x1), x2) = σ1(σ2(x1, x2), x2)

5. σ3(x1) = σ2(x1, x1)

I For this example s = 3, A = 5 and σ3 is the square function.

DMACC John M. Gillespie 49

General recursive functions

Given a defining system of equations there are two numbers which
are noteworthy.

The index of the function being defined σs and the number A
of axioms.

Example

1. σ1(0, x2) = x2

2. σ1(σ0(x1), x2) = σ0(σ1(x1, x2))

3. σ2(0, x2) = 0

4. σ2(σ0(x1), x2) = σ1(σ2(x1, x2), x2)

5. σ3(x1) = σ2(x1, x1)

I For this example s = 3, A = 5 and σ3 is the square function.

DMACC John M. Gillespie 50

General recursive functions

Given a defining system of equations there are two numbers which
are noteworthy.

The index of the function being defined σs and the number A
of axioms.

Example

1. σ1(0, x2) = x2

2. σ1(σ0(x1), x2) = σ0(σ1(x1, x2))

3. σ2(0, x2) = 0

4. σ2(σ0(x1), x2) = σ1(σ2(x1, x2), x2)

5. σ3(x1) = σ2(x1, x1)

I For this example s = 3, A = 5 and σ3 is the square function.

DMACC John M. Gillespie 51

General recursive functions

Given a defining system of equations there are two numbers which
are noteworthy.

The index of the function being defined σs and the number A
of axioms.

Example

1. σ1(0, x2) = x2

2. σ1(σ0(x1), x2) = σ0(σ1(x1, x2))

3. σ2(0, x2) = 0

4. σ2(σ0(x1), x2) = σ1(σ2(x1, x2), x2)

5. σ3(x1) = σ2(x1, x1)

I For this example s = 3, A = 5 and σ3 is the square function.

DMACC John M. Gillespie 52

General recursive functions

Example

1. σ1(0) = 0

2. σ1(σ0(x1)) = x1

3. σ2(0, x2) = x2

4. σ2(σ0(x1), x2) = σ0(σ2(x1, x2))

5. σ3(0) = 1

6. σ3(σ0(x1)) = σ2(ϕ(x1), ϕ(σ1(x1)))

I For this example s = 3, A = 6. Can you identify the function
σ3?

DMACC John M. Gillespie 53

General recursive functions

Example

1. σ1(0) = 0

2. σ1(σ0(x1)) = x1

3. σ2(0, x2) = x2

4. σ2(σ0(x1), x2) = σ0(σ2(x1, x2))

5. σ3(0) = 1

6. σ3(σ0(x1)) = σ2(ϕ(x1), ϕ(σ1(x1)))

I For this example s = 3, A = 6. Can you identify the function
σ3?

DMACC John M. Gillespie 54

General recursive functions

Example

1. σ1(0) = 0

2. σ1(σ0(x1)) = x1

3. σ2(x1, 0) = x1

4. σ2(x1, σ0(x2)) = σ1(σ2(x1, x2))

I For this example s = 2 and A = 4.

I σ2(x1, x2) = x1 ·− x2.

DMACC John M. Gillespie 55

General recursive functions

Example

1. σ1(0) = 0

2. σ1(σ0(x1)) = x1

3. σ2(x1, 0) = x1

4. σ2(x1, σ0(x2)) = σ1(σ2(x1, x2))

I For this example s = 2 and A = 4.

I σ2(x1, x2) = x1 ·− x2.

DMACC John M. Gillespie 56

Computations as deductions

Axioms

{
σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)

Deductions

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (3)
z(3, 2) σ1(0, σ0(0)) = σ0(0) (4)
n(2, 2) σ1(σ0(x1), σ0(x2)) = σ0(σ1(x1, σ0(x2))) (5)
z(5, i) σ1(σ0(0), σ0(0)) = σ0(σ1(0, σ0(0))) (6)
sub(4, 6, 15) σ1(σ0(0), σ0(0)) = σ0(σ0(0)) (7)

This illustrates the three admissable steps in any computation;
n, z and sub.

DMACC John M. Gillespie 57

Computations as deductions

Axioms

{
σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)

Deductions

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (3)

z(3, 2) σ1(0, σ0(0)) = σ0(0) (4)
n(2, 2) σ1(σ0(x1), σ0(x2)) = σ0(σ1(x1, σ0(x2))) (5)
z(5, i) σ1(σ0(0), σ0(0)) = σ0(σ1(0, σ0(0))) (6)
sub(4, 6, 15) σ1(σ0(0), σ0(0)) = σ0(σ0(0)) (7)

This illustrates the three admissable steps in any computation;
n, z and sub.

DMACC John M. Gillespie 58

Computations as deductions

Axioms

{
σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)

Deductions

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (3)
z(3, 2) σ1(0, σ0(0)) = σ0(0) (4)

n(2, 2) σ1(σ0(x1), σ0(x2)) = σ0(σ1(x1, σ0(x2))) (5)
z(5, i) σ1(σ0(0), σ0(0)) = σ0(σ1(0, σ0(0))) (6)
sub(4, 6, 15) σ1(σ0(0), σ0(0)) = σ0(σ0(0)) (7)

This illustrates the three admissable steps in any computation;
n, z and sub.

DMACC John M. Gillespie 59

Computations as deductions

Axioms

{
σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)

Deductions

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (3)
z(3, 2) σ1(0, σ0(0)) = σ0(0) (4)
n(2, 2) σ1(σ0(x1), σ0(x2)) = σ0(σ1(x1, σ0(x2))) (5)

z(5, i) σ1(σ0(0), σ0(0)) = σ0(σ1(0, σ0(0))) (6)
sub(4, 6, 15) σ1(σ0(0), σ0(0)) = σ0(σ0(0)) (7)

This illustrates the three admissable steps in any computation;
n, z and sub.

DMACC John M. Gillespie 60

Computations as deductions

Axioms

{
σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)

Deductions

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (3)
z(3, 2) σ1(0, σ0(0)) = σ0(0) (4)
n(2, 2) σ1(σ0(x1), σ0(x2)) = σ0(σ1(x1, σ0(x2))) (5)
z(5, i) σ1(σ0(0), σ0(0)) = σ0(σ1(0, σ0(0))) (6)

sub(4, 6, 15) σ1(σ0(0), σ0(0)) = σ0(σ0(0)) (7)

This illustrates the three admissable steps in any computation;
n, z and sub.

DMACC John M. Gillespie 61

Computations as deductions

Axioms

{
σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)

Deductions

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (3)
z(3, 2) σ1(0, σ0(0)) = σ0(0) (4)
n(2, 2) σ1(σ0(x1), σ0(x2)) = σ0(σ1(x1, σ0(x2))) (5)
z(5, i) σ1(σ0(0), σ0(0)) = σ0(σ1(0, σ0(0))) (6)
sub(4, 6, 15) σ1(σ0(0), σ0(0)) = σ0(σ0(0)) (7)

This illustrates the three admissable steps in any computation;
n, z and sub.

DMACC John M. Gillespie 62

Computations as deductions

Axioms

{
σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)

Deductions

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (3)
z(3, 2) σ1(0, σ0(0)) = σ0(0) (4)
n(2, 2) σ1(σ0(x1), σ0(x2)) = σ0(σ1(x1, σ0(x2))) (5)
z(5, i) σ1(σ0(0), σ0(0)) = σ0(σ1(0, σ0(0))) (6)
sub(4, 6, 15) σ1(σ0(0), σ0(0)) = σ0(σ0(0)) (7)

This illustrates the three admissable steps in any computation;
n, z and sub.

DMACC John M. Gillespie 63

The admissable steps

I z(i , j) denotes plugging zero into the j variable of equation i .

I n(i , j) denotes non-zero evaluation; We are plugging σ0(xj)
into equation i in the variable j .

I sub(i , j , k) denotes substitution of RHS of equation i into
equation j at the kth position.

DMACC John M. Gillespie 64

The admissable steps

I z(i , j) denotes plugging zero into the j variable of equation i .

I n(i , j) denotes non-zero evaluation; We are plugging σ0(xj)
into equation i in the variable j .

I sub(i , j , k) denotes substitution of RHS of equation i into
equation j at the kth position.

DMACC John M. Gillespie 65

The admissable steps

I z(i , j) denotes plugging zero into the j variable of equation i .

I n(i , j) denotes non-zero evaluation; We are plugging σ0(xj)
into equation i in the variable j .

I sub(i , j , k) denotes substitution of RHS of equation i into
equation j at the kth position.

DMACC John M. Gillespie 66

Computations as deductions

Axioms

σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)
σ2(0, x2) = 0 (3)
σ2(σ0(x1), x2) = σ1(σ2(x1, x2), x2) (4)

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (5)
z(5, 2) σ1(0, σ0(0)) = σ0(0) (6)
n(4, 2) σ2(σ0(x1), σ0(x2)) = σ1(σ2(x1, σ0(x2)), σ0(x2)) (7)
z(7, i) σ2(σ0(0), σ0(0)) = σ1(σ2(0, σ0(0)), σ0(0)) (8)
n(3, 2) σ2(0, σ0(x2)) = 0 (9)
z(9, 2) σ2(0, σ0(0)) = 0 (10)
sub(10, 8) σ2(σ0(0), σ0(0))) = σ1(0, σ0(0)) (11)
sub(6, 11) σ2(σ0(0), σ0(0))) = σ0(0) (12)

DMACC John M. Gillespie 67

Computations as deductions

Axioms

σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)
σ2(0, x2) = 0 (3)
σ2(σ0(x1), x2) = σ1(σ2(x1, x2), x2) (4)

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (5)

z(5, 2) σ1(0, σ0(0)) = σ0(0) (6)
n(4, 2) σ2(σ0(x1), σ0(x2)) = σ1(σ2(x1, σ0(x2)), σ0(x2)) (7)
z(7, i) σ2(σ0(0), σ0(0)) = σ1(σ2(0, σ0(0)), σ0(0)) (8)
n(3, 2) σ2(0, σ0(x2)) = 0 (9)
z(9, 2) σ2(0, σ0(0)) = 0 (10)
sub(10, 8) σ2(σ0(0), σ0(0))) = σ1(0, σ0(0)) (11)
sub(6, 11) σ2(σ0(0), σ0(0))) = σ0(0) (12)

DMACC John M. Gillespie 68

Computations as deductions

Axioms

σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)
σ2(0, x2) = 0 (3)
σ2(σ0(x1), x2) = σ1(σ2(x1, x2), x2) (4)

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (5)
z(5, 2) σ1(0, σ0(0)) = σ0(0) (6)

n(4, 2) σ2(σ0(x1), σ0(x2)) = σ1(σ2(x1, σ0(x2)), σ0(x2)) (7)
z(7, i) σ2(σ0(0), σ0(0)) = σ1(σ2(0, σ0(0)), σ0(0)) (8)
n(3, 2) σ2(0, σ0(x2)) = 0 (9)
z(9, 2) σ2(0, σ0(0)) = 0 (10)
sub(10, 8) σ2(σ0(0), σ0(0))) = σ1(0, σ0(0)) (11)
sub(6, 11) σ2(σ0(0), σ0(0))) = σ0(0) (12)

DMACC John M. Gillespie 69

Computations as deductions

Axioms

σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)
σ2(0, x2) = 0 (3)
σ2(σ0(x1), x2) = σ1(σ2(x1, x2), x2) (4)

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (5)
z(5, 2) σ1(0, σ0(0)) = σ0(0) (6)
n(4, 2) σ2(σ0(x1), σ0(x2)) = σ1(σ2(x1, σ0(x2)), σ0(x2)) (7)

z(7, i) σ2(σ0(0), σ0(0)) = σ1(σ2(0, σ0(0)), σ0(0)) (8)
n(3, 2) σ2(0, σ0(x2)) = 0 (9)
z(9, 2) σ2(0, σ0(0)) = 0 (10)
sub(10, 8) σ2(σ0(0), σ0(0))) = σ1(0, σ0(0)) (11)
sub(6, 11) σ2(σ0(0), σ0(0))) = σ0(0) (12)

DMACC John M. Gillespie 70

Computations as deductions

Axioms

σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)
σ2(0, x2) = 0 (3)
σ2(σ0(x1), x2) = σ1(σ2(x1, x2), x2) (4)

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (5)
z(5, 2) σ1(0, σ0(0)) = σ0(0) (6)
n(4, 2) σ2(σ0(x1), σ0(x2)) = σ1(σ2(x1, σ0(x2)), σ0(x2)) (7)
z(7, i) σ2(σ0(0), σ0(0)) = σ1(σ2(0, σ0(0)), σ0(0)) (8)

n(3, 2) σ2(0, σ0(x2)) = 0 (9)
z(9, 2) σ2(0, σ0(0)) = 0 (10)
sub(10, 8) σ2(σ0(0), σ0(0))) = σ1(0, σ0(0)) (11)
sub(6, 11) σ2(σ0(0), σ0(0))) = σ0(0) (12)

DMACC John M. Gillespie 71

Computations as deductions

Axioms

σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)
σ2(0, x2) = 0 (3)
σ2(σ0(x1), x2) = σ1(σ2(x1, x2), x2) (4)

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (5)
z(5, 2) σ1(0, σ0(0)) = σ0(0) (6)
n(4, 2) σ2(σ0(x1), σ0(x2)) = σ1(σ2(x1, σ0(x2)), σ0(x2)) (7)
z(7, i) σ2(σ0(0), σ0(0)) = σ1(σ2(0, σ0(0)), σ0(0)) (8)
n(3, 2) σ2(0, σ0(x2)) = 0 (9)

z(9, 2) σ2(0, σ0(0)) = 0 (10)
sub(10, 8) σ2(σ0(0), σ0(0))) = σ1(0, σ0(0)) (11)
sub(6, 11) σ2(σ0(0), σ0(0))) = σ0(0) (12)

DMACC John M. Gillespie 72

Computations as deductions

Axioms

σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)
σ2(0, x2) = 0 (3)
σ2(σ0(x1), x2) = σ1(σ2(x1, x2), x2) (4)

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (5)
z(5, 2) σ1(0, σ0(0)) = σ0(0) (6)
n(4, 2) σ2(σ0(x1), σ0(x2)) = σ1(σ2(x1, σ0(x2)), σ0(x2)) (7)
z(7, i) σ2(σ0(0), σ0(0)) = σ1(σ2(0, σ0(0)), σ0(0)) (8)
n(3, 2) σ2(0, σ0(x2)) = 0 (9)
z(9, 2) σ2(0, σ0(0)) = 0 (10)

sub(10, 8) σ2(σ0(0), σ0(0))) = σ1(0, σ0(0)) (11)
sub(6, 11) σ2(σ0(0), σ0(0))) = σ0(0) (12)

DMACC John M. Gillespie 73

Computations as deductions

Axioms

σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)
σ2(0, x2) = 0 (3)
σ2(σ0(x1), x2) = σ1(σ2(x1, x2), x2) (4)

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (5)
z(5, 2) σ1(0, σ0(0)) = σ0(0) (6)
n(4, 2) σ2(σ0(x1), σ0(x2)) = σ1(σ2(x1, σ0(x2)), σ0(x2)) (7)
z(7, i) σ2(σ0(0), σ0(0)) = σ1(σ2(0, σ0(0)), σ0(0)) (8)
n(3, 2) σ2(0, σ0(x2)) = 0 (9)
z(9, 2) σ2(0, σ0(0)) = 0 (10)
sub(10, 8) σ2(σ0(0), σ0(0))) = σ1(0, σ0(0)) (11)

sub(6, 11) σ2(σ0(0), σ0(0))) = σ0(0) (12)

DMACC John M. Gillespie 74

Computations as deductions

Axioms

σ1(0, x2) = x2 (1)
σ1(σ0(x1), x2) = σ0(σ1(x1, x2)) (2)
σ2(0, x2) = 0 (3)
σ2(σ0(x1), x2) = σ1(σ2(x1, x2), x2) (4)

n(1, 2) σ1(0, σ0(x2)) = σ0(x2) (5)
z(5, 2) σ1(0, σ0(0)) = σ0(0) (6)
n(4, 2) σ2(σ0(x1), σ0(x2)) = σ1(σ2(x1, σ0(x2)), σ0(x2)) (7)
z(7, i) σ2(σ0(0), σ0(0)) = σ1(σ2(0, σ0(0)), σ0(0)) (8)
n(3, 2) σ2(0, σ0(x2)) = 0 (9)
z(9, 2) σ2(0, σ0(0)) = 0 (10)
sub(10, 8) σ2(σ0(0), σ0(0))) = σ1(0, σ0(0)) (11)
sub(6, 11) σ2(σ0(0), σ0(0))) = σ0(0) (12)

DMACC John M. Gillespie 75

Key component of the Kleene normal form

The Kleene operator

Given a function τ(a1, ..., ar , n) in which for every ~a there exists an
n such that τ(~a, n) = 0 we can define a new function ϕ(~a).

ϕ(a1, ..., ar) = µj [τ(a1, ..., ar) = 0]

This is the unbounded search.

lim
B→∞

B∑
i=0

i∏
j=0

τ(~a, j)sg

We will use this Kleene operator later to search through
computations.

DMACC John M. Gillespie 76

Key component of the Kleene normal form

The Kleene operator

Given a function τ(a1, ..., ar , n) in which for every ~a there exists an
n such that τ(~a, n) = 0 we can define a new function ϕ(~a).

ϕ(a1, ..., ar) = µj [τ(a1, ..., ar) = 0]

This is the unbounded search.

lim
B→∞

B∑
i=0

i∏
j=0

τ(~a, j)sg

We will use this Kleene operator later to search through
computations.

DMACC John M. Gillespie 77

Key component of the Kleene normal form

The Kleene operator

Given a function τ(a1, ..., ar , n) in which for every ~a there exists an
n such that τ(~a, n) = 0 we can define a new function ϕ(~a).

ϕ(a1, ..., ar) = µj [τ(a1, ..., ar) = 0]

This is the unbounded search.

lim
B→∞

B∑
i=0

i∏
j=0

τ(~a, j)sg

We will use this Kleene operator later to search through
computations.

DMACC John M. Gillespie 78

Key component of the Kleene normal form

The Kleene operator

Given a function τ(a1, ..., ar , n) in which for every ~a there exists an
n such that τ(~a, n) = 0 we can define a new function ϕ(~a).

ϕ(a1, ..., ar) = µj [τ(a1, ..., ar) = 0]

This is the unbounded search.

lim
B→∞

B∑
i=0

i∏
j=0

τ(~a, j)sg

We will use this Kleene operator later to search through
computations.

DMACC John M. Gillespie 79

The Kleene operator as a general recursive function

Suppose a function τ(a1, ..., ar , n) is already given. We define a
new function σ.

I σ(j , a1, ..., ar , 0) = j

I σ(j , a1, ..., ar , n + 1) = σ(j + 1, a1, ..., ar , τ(a1, ..., ar , j + 1))

Then µj [τ(a1, ..., ar , j) = 0] = σ(0, a1, ..., ar , τ(a1, ..., ar , 0)).

DMACC John M. Gillespie 80

The Kleene operator as a general recursive function

Suppose a function τ(a1, ..., ar , n) is already given. We define a
new function σ.

I σ(j , a1, ..., ar , 0) = j

I σ(j , a1, ..., ar , n + 1) = σ(j + 1, a1, ..., ar , τ(a1, ..., ar , j + 1))

Then µj [τ(a1, ..., ar , j) = 0] = σ(0, a1, ..., ar , τ(a1, ..., ar , 0)).

DMACC John M. Gillespie 81

Kleene’s theorem states that any general recursive function
ϕ can be put in the form

ϕ = ψ(µ[τ])

where µ is the Kleene operator and ψ and τ are primitive
recursive.

I This is the normal form we wish to prove exists.

I This proves the Kleene operator cannot be primitive recursive.

I This also proves that if we augment the class PR with the
Kleene operator this yields the class of all computable
functions.

DMACC John M. Gillespie 82

Kleene’s theorem states that any general recursive function
ϕ can be put in the form

ϕ = ψ(µ[τ])

where µ is the Kleene operator and ψ and τ are primitive
recursive.

I This is the normal form we wish to prove exists.

I This proves the Kleene operator cannot be primitive recursive.

I This also proves that if we augment the class PR with the
Kleene operator this yields the class of all computable
functions.

DMACC John M. Gillespie 83

Kleene’s theorem states that any general recursive function
ϕ can be put in the form

ϕ = ψ(µ[τ])

where µ is the Kleene operator and ψ and τ are primitive
recursive.

I This is the normal form we wish to prove exists.

I This proves the Kleene operator cannot be primitive recursive.

I This also proves that if we augment the class PR with the
Kleene operator this yields the class of all computable
functions.

DMACC John M. Gillespie 84

Kleene’s theorem states that any general recursive function
ϕ can be put in the form

ϕ = ψ(µ[τ])

where µ is the Kleene operator and ψ and τ are primitive
recursive.

I This is the normal form we wish to prove exists.

I This proves the Kleene operator cannot be primitive recursive.

I This also proves that if we augment the class PR with the
Kleene operator this yields the class of all computable
functions.

DMACC John M. Gillespie 85

Arithmetization of computations

We begin with the basic Godel numbering of symbols.

Individual symbol Godel number
σn 2n + 2, n = 0, 1, ...
0 1
= 3
(5
) 7
, 9
xn 2n + 9, n = 1, 2, ...

By Godel numbering the symbols used in computations we can
employ standard arithmetic to sort through sets of computations.
Furthermore we can hone in on those computations which are
actually correct.

DMACC John M. Gillespie 86

Arithmetization of computations

We begin with the basic Godel numbering of symbols.

Individual symbol Godel number
σn 2n + 2, n = 0, 1, ...
0 1
= 3
(5
) 7
, 9
xn 2n + 9, n = 1, 2, ...

By Godel numbering the symbols used in computations we can
employ standard arithmetic to sort through sets of computations.

Furthermore we can hone in on those computations which are
actually correct.

DMACC John M. Gillespie 87

Arithmetization of computations

We begin with the basic Godel numbering of symbols.

Individual symbol Godel number
σn 2n + 2, n = 0, 1, ...
0 1
= 3
(5
) 7
, 9
xn 2n + 9, n = 1, 2, ...

By Godel numbering the symbols used in computations we can
employ standard arithmetic to sort through sets of computations.
Furthermore we can hone in on those computations which are
actually correct.

DMACC John M. Gillespie 88

More on Godel numbers

Some examples of symbol sequences and their Godel numbers.

Example

1. σ0(0) has Godel number p2
1p

5
2p

1
3p

7
4

2. σ0(σ0(0)) has Godel number p2
1p

5
2p

2
3p

5
4p

1
5p

7
6p

7
7

3. σ2(x1) = x1 has Godel number p4
1p

5
2p

11
3 p7

4p
3
5p

11
6

4. σ0(xi) has Godel number p2
1p

5
2p

2i+9
3 p7

4

DMACC John M. Gillespie 89

More on Godel numbers

Some examples of symbol sequences and their Godel numbers.

Example

1. σ0(0) has Godel number p2
1p

5
2p

1
3p

7
4

2. σ0(σ0(0)) has Godel number p2
1p

5
2p

2
3p

5
4p

1
5p

7
6p

7
7

3. σ2(x1) = x1 has Godel number p4
1p

5
2p

11
3 p7

4p
3
5p

11
6

4. σ0(xi) has Godel number p2
1p

5
2p

2i+9
3 p7

4

DMACC John M. Gillespie 90

More on Godel numbers

Some examples of symbol sequences and their Godel numbers.

Example

1. σ0(0) has Godel number p2
1p

5
2p

1
3p

7
4

2. σ0(σ0(0)) has Godel number p2
1p

5
2p

2
3p

5
4p

1
5p

7
6p

7
7

3. σ2(x1) = x1 has Godel number p4
1p

5
2p

11
3 p7

4p
3
5p

11
6

4. σ0(xi) has Godel number p2
1p

5
2p

2i+9
3 p7

4

DMACC John M. Gillespie 91

More on Godel numbers

Some examples of symbol sequences and their Godel numbers.

Example

1. σ0(0) has Godel number p2
1p

5
2p

1
3p

7
4

2. σ0(σ0(0)) has Godel number p2
1p

5
2p

2
3p

5
4p

1
5p

7
6p

7
7

3. σ2(x1) = x1 has Godel number p4
1p

5
2p

11
3 p7

4p
3
5p

11
6

4. σ0(xi) has Godel number p2
1p

5
2p

2i+9
3 p7

4

DMACC John M. Gillespie 92

Godel numbering a computation

This is the first example computation.

Axioms

{
q1 := p4

1p
5
2p

1
3p

9
4p

13
5 p7

6p
3
7p

13
8

. . .

Deductions

q3 := p4

1p
5
2 . . . p

13
13p

7
14

...
q7 := p4

1p
5
2 . . . p

7
19p

7
20

The entire computation is encoded in the Godel number
pq1

1 pq2
2 . . . pq7

7 .

DMACC John M. Gillespie 93

Basic strategy

I Every computation is assigned a Godel number pe1
1 pe2

2 . . . pell .

I Each exponent ei is the Godel number of an equation.

I The first A equations e1,...,eA are the axioms.

I The rest eA+1,...,el are expected to be deductions from
previous equations.

I We require functions which can detect such deductions.

DMACC John M. Gillespie 94

Basic strategy

I Every computation is assigned a Godel number pe1
1 pe2

2 . . . pell .

I Each exponent ei is the Godel number of an equation.

I The first A equations e1,...,eA are the axioms.

I The rest eA+1,...,el are expected to be deductions from
previous equations.

I We require functions which can detect such deductions.

DMACC John M. Gillespie 95

Basic strategy

I Every computation is assigned a Godel number pe1
1 pe2

2 . . . pell .

I Each exponent ei is the Godel number of an equation.

I The first A equations e1,...,eA are the axioms.

I The rest eA+1,...,el are expected to be deductions from
previous equations.

I We require functions which can detect such deductions.

DMACC John M. Gillespie 96

Basic strategy

I Every computation is assigned a Godel number pe1
1 pe2

2 . . . pell .

I Each exponent ei is the Godel number of an equation.

I The first A equations e1,...,eA are the axioms.

I The rest eA+1,...,el are expected to be deductions from
previous equations.

I We require functions which can detect such deductions.

DMACC John M. Gillespie 97

Basic strategy

I Every computation is assigned a Godel number pe1
1 pe2

2 . . . pell .

I Each exponent ei is the Godel number of an equation.

I The first A equations e1,...,eA are the axioms.

I The rest eA+1,...,el are expected to be deductions from
previous equations.

I We require functions which can detect such deductions.

DMACC John M. Gillespie 98

Basic strategy

I Every computation is assigned a Godel number pe1
1 pe2

2 . . . pell .

I Each exponent ei is the Godel number of an equation.

I The first A equations e1,...,eA are the axioms.

I The rest eA+1,...,el are expected to be deductions from
previous equations.

I We require functions which can detect such deductions.

DMACC John M. Gillespie 99

Basic strategy

I We will construct a primitive recursive function τ1 such that
τ1(ω, i) = 0 if and only if ei = z(j , k) for j < i in the
computation ω.

I

(∃j∃k)[(j < i) ∧ (k < ω) ∧ (ei = z(j , k))]

I We will construct similar primitive recursive functions τ2 and
τ3 for the other deduction steps n and sub.

I Then τ1(ω, i)τ2(ω, i)τ3(ω, i) will equal zero if and only if the
ith equation of ω is some proper deduction.

DMACC John M. Gillespie 100

Basic strategy

I We will construct a primitive recursive function τ1 such that
τ1(ω, i) = 0 if and only if ei = z(j , k) for j < i in the
computation ω.

I

(∃j∃k)[(j < i) ∧ (k < ω) ∧ (ei = z(j , k))]

I We will construct similar primitive recursive functions τ2 and
τ3 for the other deduction steps n and sub.

I Then τ1(ω, i)τ2(ω, i)τ3(ω, i) will equal zero if and only if the
ith equation of ω is some proper deduction.

DMACC John M. Gillespie 101

Basic strategy

I We will construct a primitive recursive function τ1 such that
τ1(ω, i) = 0 if and only if ei = z(j , k) for j < i in the
computation ω.

I

(∃j∃k)[(j < i) ∧ (k < ω) ∧ (ei = z(j , k))]

I We will construct similar primitive recursive functions τ2 and
τ3 for the other deduction steps n and sub.

I Then τ1(ω, i)τ2(ω, i)τ3(ω, i) will equal zero if and only if the
ith equation of ω is some proper deduction.

DMACC John M. Gillespie 102

Basic strategy

I We will construct a primitive recursive function τ1 such that
τ1(ω, i) = 0 if and only if ei = z(j , k) for j < i in the
computation ω.

I

(∃j∃k)[(j < i) ∧ (k < ω) ∧ (ei = z(j , k))]

I We will construct similar primitive recursive functions τ2 and
τ3 for the other deduction steps n and sub.

I Then τ1(ω, i)τ2(ω, i)τ3(ω, i) will equal zero if and only if the
ith equation of ω is some proper deduction.

DMACC John M. Gillespie 103

Admissable deduction step z

Substituting zero for the variable xi in the equation e altars
the Godel number as follows.

z(e, i) =

long(e)∏
j=1

pj

 1 if expj(e) = 2i + 9
expj(e) else

This function is primitive recursive.

DMACC John M. Gillespie 104

Admissable deduction step z

Substituting zero for the variable xi in the equation e altars
the Godel number as follows.

z(e, i) =

long(e)∏
j=1

pj

 1 if expj(e) = 2i + 9
expj(e) else

This function is primitive recursive.

DMACC John M. Gillespie 105

Admissable deduction step z

Substituting zero for the variable xi in the equation e altars
the Godel number as follows.

z(e, i) =

long(e)∏
j=1

pj

 1 if expj(e) = 2i + 9
expj(e) else

This function is primitive recursive.

DMACC John M. Gillespie 106

Admissable deduction step n

Substituting a non-zero value σ0(xi) in the variable xi of
equation e altars the Godel number as follows.

n(e, i) =

long(e)⊗
j=1

{
q if expj(e) = 2i + 9

p
expj(e)
1 else

}

This function is primitive recursive. What is q?

DMACC John M. Gillespie 107

Admissable deduction step n

Substituting a non-zero value σ0(xi) in the variable xi of
equation e altars the Godel number as follows.

n(e, i) =

long(e)⊗
j=1

{
q if expj(e) = 2i + 9

p
expj(e)
1 else

}

This function is primitive recursive. What is q?

DMACC John M. Gillespie 108

Admissable deduction step n

Substituting a non-zero value σ0(xi) in the variable xi of
equation e altars the Godel number as follows.

n(e, i) =

long(e)⊗
j=1

{
q if expj(e) = 2i + 9

p
expj(e)
1 else

}

This function is primitive recursive.

What is q?

DMACC John M. Gillespie 109

Admissable deduction step n

Substituting a non-zero value σ0(xi) in the variable xi of
equation e altars the Godel number as follows.

n(e, i) =

long(e)⊗
j=1

{
q if expj(e) = 2i + 9

p
expj(e)
1 else

}

This function is primitive recursive. What is q?

DMACC John M. Gillespie 110

Useful formulas

If m is the Godel number of an equation then eq(m) locates the
equality sign.

eq(m) = µj[j ≤ long(m) ∧ expj(m) = 3]

Bounded search =⇒ PR.

eq(m) = 1 +

long(m)∑
i=1

i∏
j=1

sg
(
sg(expj(m) ·− 3) + sg(3 ·− expj(m))

)

DMACC John M. Gillespie 111

Useful formulas

If m is the Godel number of an equation then eq(m) locates the
equality sign.

eq(m) = µj[j ≤ long(m) ∧ expj(m) = 3]

Bounded search =⇒ PR.

eq(m) = 1 +

long(m)∑
i=1

i∏
j=1

sg
(
sg(expj(m) ·− 3) + sg(3 ·− expj(m))

)

DMACC John M. Gillespie 112

Useful formulas

If m is the Godel number of an equation then β(m) denotes the
Godel number of the left-hand side of the equation.

β(m) =

eq(m) ·−1∏
j=1

p
expj (m)

j

DMACC John M. Gillespie 113

Useful formulas

Then the right-hand side of equation m which we denote by γ(m)
is the following.

γ(m) =

long(m) ·−eq(m)∏
j=1

p
expj+eq(m)(m)

j

DMACC John M. Gillespie 114

Does a given equation contain some term?

Here we are testing for a copy of β(m) in the expression n
beginning at location j + 1. Denote this predicate β(m, n, j).

long(β(m))∑
i=1

sg(expi+j(n) ·− expi β(m)) + sg(expi β(m) ·− expi+j(n))

I Hence β(m, n, j) = 0 iff expi (β(m)) = expi+j(n) for every
1 ≤ i ≤ long(β(m)).

I So β(m, n, j) = 0 iff the expression for n contains the
expression for β(m) precisely after the jth symbol.

I Note that β(m, n, j) 6= 0 if long(n)− j < long(β(m)).

DMACC John M. Gillespie 115

Does a given equation contain some term?

Here we are testing for a copy of β(m) in the expression n
beginning at location j + 1. Denote this predicate β(m, n, j).

long(β(m))∑
i=1

sg(expi+j(n) ·− expi β(m)) + sg(expi β(m) ·− expi+j(n))

I Hence β(m, n, j) = 0 iff expi (β(m)) = expi+j(n) for every
1 ≤ i ≤ long(β(m)).

I So β(m, n, j) = 0 iff the expression for n contains the
expression for β(m) precisely after the jth symbol.

I Note that β(m, n, j) 6= 0 if long(n)− j < long(β(m)).

DMACC John M. Gillespie 116

Does a given equation contain some term?

Here we are testing for a copy of β(m) in the expression n
beginning at location j + 1. Denote this predicate β(m, n, j).

long(β(m))∑
i=1

sg(expi+j(n) ·− expi β(m)) + sg(expi β(m) ·− expi+j(n))

I Hence β(m, n, j) = 0 iff expi (β(m)) = expi+j(n) for every
1 ≤ i ≤ long(β(m)).

I So β(m, n, j) = 0 iff the expression for n contains the
expression for β(m) precisely after the jth symbol.

I Note that β(m, n, j) 6= 0 if long(n)− j < long(β(m)).

DMACC John M. Gillespie 117

Does a given equation contain some term?

Here we are testing for a copy of β(m) in the expression n
beginning at location j + 1. Denote this predicate β(m, n, j).

long(β(m))∑
i=1

sg(expi+j(n) ·− expi β(m)) + sg(expi β(m) ·− expi+j(n))

I Hence β(m, n, j) = 0 iff expi (β(m)) = expi+j(n) for every
1 ≤ i ≤ long(β(m)).

I So β(m, n, j) = 0 iff the expression for n contains the
expression for β(m) precisely after the jth symbol.

I Note that β(m, n, j) 6= 0 if long(n)− j < long(β(m)).

DMACC John M. Gillespie 118

The binary function eq(m, n)

We will use eq also to denote the binary function given below.

eq(m, n) = sg(m ·− n) + sg(n ·−m)

Hence eq(m, n) = 0 if and only if m = n. Then

long(β(m))∑
i=1

sg(expi+j(n) ·− expi β(m)) + sg(expi β(m) ·− expi+j(n))

simplifies to

β(m, n, j) =

long(β(m))∑
i=1

eq(expi+j(n), expi β(m)).

DMACC John M. Gillespie 119

The binary function eq(m, n)

We will use eq also to denote the binary function given below.

eq(m, n) = sg(m ·− n) + sg(n ·−m)

Hence eq(m, n) = 0 if and only if m = n.

Then

long(β(m))∑
i=1

sg(expi+j(n) ·− expi β(m)) + sg(expi β(m) ·− expi+j(n))

simplifies to

β(m, n, j) =

long(β(m))∑
i=1

eq(expi+j(n), expi β(m)).

DMACC John M. Gillespie 120

The binary function eq(m, n)

We will use eq also to denote the binary function given below.

eq(m, n) = sg(m ·− n) + sg(n ·−m)

Hence eq(m, n) = 0 if and only if m = n. Then

long(β(m))∑
i=1

sg(expi+j(n) ·− expi β(m)) + sg(expi β(m) ·− expi+j(n))

simplifies to

β(m, n, j) =

long(β(m))∑
i=1

eq(expi+j(n), expi β(m)).

DMACC John M. Gillespie 121

The binary function eq(m, n)

We will use eq also to denote the binary function given below.

eq(m, n) = sg(m ·− n) + sg(n ·−m)

Hence eq(m, n) = 0 if and only if m = n. Then

long(β(m))∑
i=1

sg(expi+j(n) ·− expi β(m)) + sg(expi β(m) ·− expi+j(n))

simplifies to

β(m, n, j) =

long(β(m))∑
i=1

eq(expi+j(n), expi β(m)).

DMACC John M. Gillespie 122

Admissable deduction step sub

Substituting γ(m) for β(m) in equation n altars it’s Godel
number as follows.

If β(m, n, j) = 0 then

sub(m, n, j) =

j∏
i=1

p
expi (n)
i ∗ γ(m) ∗

long(n) ·−(j+longβ(m))∏
i=1

p
expj+longβ(m)+i(n)

i

otherwise sub(m, n, j) = n.

This is a primitive recursive function.

DMACC John M. Gillespie 123

Admissable deduction step sub

Substituting γ(m) for β(m) in equation n altars it’s Godel
number as follows.

If β(m, n, j) = 0 then

sub(m, n, j) =

j∏
i=1

p
expi (n)
i ∗ γ(m) ∗

long(n) ·−(j+longβ(m))∏
i=1

p
expj+longβ(m)+i(n)

i

otherwise sub(m, n, j) = n.

This is a primitive recursive function.

DMACC John M. Gillespie 124

Valid deduction

The natural number ω is the Godel number of a valid deduction if
for every i ≤ long(ω) one of the following is true;

I expi (ω) is the Godel number of one of the defining equations.

I There exists j < i and some k such that
expi (ω) = z(expj(ω), k).

I There exists j < i and some k such that
expi (ω) = n(expj(ω), k)).

I ∃m, n < i and j where expi (ω) = sub(expm(ω), expn(ω), j)).

DMACC John M. Gillespie 125

Valid deduction

The natural number ω is the Godel number of a valid deduction if
for every i ≤ long(ω) one of the following is true;

I expi (ω) is the Godel number of one of the defining equations.

I There exists j < i and some k such that
expi (ω) = z(expj(ω), k).

I There exists j < i and some k such that
expi (ω) = n(expj(ω), k)).

I ∃m, n < i and j where expi (ω) = sub(expm(ω), expn(ω), j)).

DMACC John M. Gillespie 126

Valid deduction

The natural number ω is the Godel number of a valid deduction if
for every i ≤ long(ω) one of the following is true;

I expi (ω) is the Godel number of one of the defining equations.

I There exists j < i and some k such that
expi (ω) = z(expj(ω), k).

I There exists j < i and some k such that
expi (ω) = n(expj(ω), k)).

I ∃m, n < i and j where expi (ω) = sub(expm(ω), expn(ω), j)).

DMACC John M. Gillespie 127

Valid deduction

The natural number ω is the Godel number of a valid deduction if
for every i ≤ long(ω) one of the following is true;

I expi (ω) is the Godel number of one of the defining equations.

I There exists j < i and some k such that
expi (ω) = z(expj(ω), k).

I There exists j < i and some k such that
expi (ω) = n(expj(ω), k)).

I ∃m, n < i and j where expi (ω) = sub(expm(ω), expn(ω), j)).

DMACC John M. Gillespie 128

Valid deduction

Let τ1(ω, i) denote the predicate

(∃j∃k)[(j < i) ∧ (k ≤ ω) ∧ eq(expi ω, z(expj ω, k))]

I Thus τ1(ω, i) is primitive recursive and, as formulated below,
equals zero iff the property holds true.

τ1(ω, i) =
i ·−1∏
j=1

ω∏
k=1

eq(expi ω, z(expj ω, k))

DMACC John M. Gillespie 129

Valid deduction

Let τ1(ω, i) denote the predicate

(∃j∃k)[(j < i) ∧ (k ≤ ω) ∧ eq(expi ω, z(expj ω, k))]

I Thus τ1(ω, i) is primitive recursive and, as formulated below,
equals zero iff the property holds true.

τ1(ω, i) =
i ·−1∏
j=1

ω∏
k=1

eq(expi ω, z(expj ω, k))

DMACC John M. Gillespie 130

Valid deduction

Let τ2(ω, i) denote the predicate

(∃j∃k)[(j < i) ∧ (k ≤ ω) ∧ eq(expi ω,n(expj ω, k))]

I Thus τ2(ω, i) is primitive recursive and, as formulated below,
equals zero iff the property holds true.

τ2(ω, i) =
i ·−1∏
j=1

ω∏
k=1

eq(expi ω,n(expj ω, k))

DMACC John M. Gillespie 131

Valid deduction

Let τ2(ω, i) denote the predicate

(∃j∃k)[(j < i) ∧ (k ≤ ω) ∧ eq(expi ω,n(expj ω, k))]

I Thus τ2(ω, i) is primitive recursive and, as formulated below,
equals zero iff the property holds true.

τ2(ω, i) =
i ·−1∏
j=1

ω∏
k=1

eq(expi ω,n(expj ω, k))

DMACC John M. Gillespie 132

Valid deduction

Let τ3(ω, i) denote the predicate

(∃m)(∃n)(∃j)[(m, n < i) ∧ (j ≤ long(n)) ∧ expi ω = sub(expm ω, expn ω, j)]

I Thus τ3(ω, i) is primitive recursive and, as formulated below,
equals zero iff the property holds true.

τ3(ω, i) =
i ·−1∏
m=1

i ·−1∏
n=1

long(n)∏
j=1

eq(expi ω, sub(expm ω, expn ω, j))

DMACC John M. Gillespie 133

Valid deduction

Let τ3(ω, i) denote the predicate

(∃m)(∃n)(∃j)[(m, n < i) ∧ (j ≤ long(n)) ∧ expi ω = sub(expm ω, expn ω, j)]

I Thus τ3(ω, i) is primitive recursive and, as formulated below,
equals zero iff the property holds true.

τ3(ω, i) =
i ·−1∏
m=1

i ·−1∏
n=1

long(n)∏
j=1

eq(expi ω, sub(expm ω, expn ω, j))

DMACC John M. Gillespie 134

Useful formula

The symbol sequence σ0(0) represents the natural number one
and in general if σn

0 (0) then σ0(σn
0 (0)) represents n + 1.

The Godel numbers of these expressions have a primitive
recursive formula.

ζ(0) = p1
1 and ζ(n + 1) = p2

1p
5
2 ∗ ζ(n) ∗ p7

1

DMACC John M. Gillespie 135

Useful formula

The symbol sequence σ0(0) represents the natural number one
and in general if σn

0 (0) then σ0(σn
0 (0)) represents n + 1.

The Godel numbers of these expressions have a primitive
recursive formula.

ζ(0) = p1
1 and ζ(n + 1) = p2

1p
5
2 ∗ ζ(n) ∗ p7

1

DMACC John M. Gillespie 136

Useful formula

The symbol sequence σ0(0) represents the natural number one
and in general if σn

0 (0) then σ0(σn
0 (0)) represents n + 1.

The Godel numbers of these expressions have a primitive
recursive formula.

ζ(0) = p1
1 and ζ(n + 1) = p2

1p
5
2 ∗ ζ(n) ∗ p7

1

DMACC John M. Gillespie 137

The valid deduction of ϕ(a1, ..., ar)

Let τ4(a1, ..., ar , ω) denote the predicate

(∃a)[(a < γ(explongω(ω)) ∧ eq(explongω(ω),Φ(a))]

I Where Φ(a) := p2s+9
1 p5

2 ∗ ζ(a1) ∗ . . . ∗ ζ(ar) ∗ p7
1p

3
2 ∗ ζ(a))

τ4(a1, ..., ar , ω) =

γ(explongω(ω))∏
a=0

eq(explongω(ω),Φ(a))

DMACC John M. Gillespie 138

The valid deduction of ϕ(a1, ..., ar)

Let τ4(a1, ..., ar , ω) denote the predicate

(∃a)[(a < γ(explongω(ω)) ∧ eq(explongω(ω),Φ(a))]

I Where Φ(a) := p2s+9
1 p5

2 ∗ ζ(a1) ∗ . . . ∗ ζ(ar) ∗ p7
1p

3
2 ∗ ζ(a))

τ4(a1, ..., ar , ω) =

γ(explongω(ω))∏
a=0

eq(explongω(ω),Φ(a))

DMACC John M. Gillespie 139

PR detection of a valid computation

Let τ(a1, ..., ar , ω) denote the following formula

long(ω)∑
i=1+A

τ1(ω, i)τ2(ω, i)τ3(ω, i) + τ4(a1, ..., ar , ω)

I Thus ω is the Godel number of a valid computation of ϕ(~a) iff
τ(a1, ..., ar , ω) = 0.

I The function µω[τ(a1, ..., ar , ω) = 0] denotes the unbounded
search for a valid computation of ϕ(~a).

DMACC John M. Gillespie 140

PR detection of a valid computation

Let τ(a1, ..., ar , ω) denote the following formula

long(ω)∑
i=1+A

τ1(ω, i)τ2(ω, i)τ3(ω, i) + τ4(a1, ..., ar , ω)

I Thus ω is the Godel number of a valid computation of ϕ(~a) iff
τ(a1, ..., ar , ω) = 0.

I The function µω[τ(a1, ..., ar , ω) = 0] denotes the unbounded
search for a valid computation of ϕ(~a).

DMACC John M. Gillespie 141

PR detection of a valid computation

Let τ(a1, ..., ar , ω) denote the following formula

long(ω)∑
i=1+A

τ1(ω, i)τ2(ω, i)τ3(ω, i) + τ4(a1, ..., ar , ω)

I Thus ω is the Godel number of a valid computation of ϕ(~a) iff
τ(a1, ..., ar , ω) = 0.

I The function µω[τ(a1, ..., ar , ω) = 0] denotes the unbounded
search for a valid computation of ϕ(~a).

DMACC John M. Gillespie 142

Kleene normal form

Let ψ(ω) denote the function

µj [j < γ(explongω(ω)) ∧ ζ(j) = γ(explong(ω)(ω))]

Since j < γ(explongω(ω)) the function ψ is primitive recursive and
finally we have the normal form below.

ϕ = ψ(µω[τ(a1, ..., ar , ω) = 0])

Thus every GR function can be written as above where ψ is a
PR function and τ is a PR predicate on which the Kleene
operator acts.

DMACC John M. Gillespie 143

