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Abstract
For a unital ring S, an S-linear quasigroup is a unital S-module, with automorphisms
 and λ giving a (nonassociative) multiplication x · y = x + yλ. If S is the field of
complex numbers, then ordinary characters provide a complete linear isomorphism
invariant for finite-dimensional S-linear quasigroups. Over other rings, it is an open
problem to determine tractably computable isomorphism invariants. The paper inves-
tigates this isomorphism problem for Z-linear quasigroups. We consider the extent to
which ordinary characters classify Z-linear quasigroups and their representations of the
free group on two generators. We exhibit non-isomorphic Z-linear quasigroups with
the same ordinary character. For a subclass of Z-linear quasigroups, equivalences of the
corresponding ordinary representations are realized by permutational intertwinings.
This leads to a new equivalence relation on Z-linear quasigroups, namely permuta-
tional similarity. Like the earlier concept of central isotopy, permutational similarity
is intermediate between isomorphism and isotopy.

Keywords Quasigroup · Isotopy · Group isotope · T-quasigroup · Ordinary
character · Permutation similarity

Mathematics Subject Classification 20N05

1 Introduction

Quasigroups (Q, ·) are nonassociative analogues of groups, retaining the cancelativity
of the multiplication. A pique1 (P, ·, e) is a quasigroup with a nullary operation that

1 An acronym for “Pointed Idempotent QUasigroup(E)”.

B Jonathan D. H. Smith
jdhsmith@iastate.edu

Stefanie G. Wang
sgwang.math@gmail.com

1 Department of Mathematics, Iowa State University, Ames, IA 50011, USA

2 Department of Mathematics, Trinity College, Hartford, CT 06106, USA

123



São Paulo Journal of Mathematical Sciences (2020) 14:152–164 153

selects an idempotent element e. The inner multiplication group of a pique P is the
stabilizer of e in the group of permutations of P generated by all the right and left
multiplications.

For a commutative, unital ring S, an S-linear pique or S-linear quasigroup is an
S-module A equipped with automorphisms  and λ that furnish a pique multiplication
x · y = x + yλ, with 0 as the pointed idempotent. Two S-linear piques are S-
isomorphic if they are isomorphic via an invertible S-linear transformation (module
isomorphism).

Finite-dimensional C-linear piques are classified up to C-linear isomorphism by
their so-called ordinary characters, obtained from the representation of the free group
on two generators that they afford. Given a finite Z-linear pique A, one may linearize
the underlying combinatorial structure to obtain a C-linear pique CA, the so-called
complexification of the Z-linear pique A. Our primary concern is the extent to which
ordinary characters of complexifications classify Z-linear piques. The main result
(Theorem 3.11) shows that for a large class of Z-linear pique structures, namely on
cyclic groups of order not divisible by 8, two piques that have the same complexified
ordinary character are permutationally similar, i.e., the permutation actions of their
respective inner multiplication groups are similar.

1.1 Outline of the paper

We begin with definitions and examples of quasigroups and linear quasigroups in
Sect. 2. We define linear quasigroups and their S-linear representations for a com-
mutative unital ring S. Theorem 2.12 identifies S-linear piques with the S-linear
representations of the free group on two generators that they afford. This allows us to
study the representations in lieu of the piques. Permutational similarity is defined in
Sect. 2.4, while Sect. 2.5 defines ordinary characters and the complexifications of Z-
linear piques. Theorem 2.16 observes that isomorphic Z-linear piques have the same
ordinary character.

Section 3 considers isomorphism invariants for Z-linear piques on cyclic groups of
finite order not divisible by 8. Linear piques defined on Z/n for n < 5 are classified up
to isomorphism by the ordinary characters of their complexifications, the permutation
characters introduced in Definition 3.1 (Sect. 3.2). However, ordinary character theory
does not suffice to cover all linear piques. Indeed, Proposition 3.12 exhibits non-
isomorphic pique structures on Z/5 having the same permutation character. The main
result (Theorem 3.11) proves that linear piques defined on cyclic groups of order not
divisible by 8, having the same permutation character, are permutationally similar.
The final Sect. 3.6 observes that the same statement actually still applies for pique
structures on Z/8.

1.2 Related invariants

Given a commutative, unital ring S and an S-module A, the S-linear piques con-
structed on A are all isotopic to the abelian group (A, +, 0). Their classification up
to isomorphism may be regarded as a special case of the main problem considered
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by Drápal in [4], namely the isomorphism problem for isotopes of a given (not nec-
essarily abelian) group. However, the general solution to the isomorphism problem
provided by [4] appears to be computationally intractable, leaving open the search for
less powerful but rather more accessible invariants. This situation is analogous to that
prevailing in knot theory, where the existence of complete invariants does not pre-
clude the continuing search for various weaker invariants with a lower computational
complexity.

1.3 Conventions

The paper follows the general algebraic convention of placing a function to the right
of its argument, either on the line or as a superfix. This convention allows composites
of functions to be read in natural order from left to right, and serves to minimize the
occurrence of brackets, which otherwise proliferate when one studies non-associative
structures.

2 Linear piques

2.1 Quasigroups and piques

Definition 2.1 A quasigroup (Q, ·, \, /) is an algebra with three binary operations,
multiplication ·, left division \, and right division /, such that for all x, y ∈ Q,

y\(y · x) = x = (x · y)/y (2.1)

y · (y\x) = x = (x/y) · y (2.2)

are satisfied.

Definition 2.2 A pique (Q, ·, /, \, e) is a quasigroup with a pointed idempotent ele-
ment e such that e · e = e.

Definition 2.3 [10, Sect. 2.4] Let (Q, ·, /, \, e) be a pique. The stabilizer of e in the
group of permutations of Q generated by all the right multiplications R(q) : x → x ·q
and left multiplications L(q) : x → q · x (for q ∈ Q) is called the inner multiplication
group of the pique.

A pique is a pointed set, where the idempotent element serves as the basepoint.
Maps between pointed sets send basepoint to basepoint. For pique homomorphisms,
the pointed idempotent element of the domain maps to the pointed idempotent element
of the codomain.

Example 2.4 Each group is an associative pique, with the identity element as the
pointed idempotent element. The inner multiplication group is the inner automor-
phism group.
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Example 2.5 Integers under subtraction form a nonassociative pique, with 0 as the
pointed idempotent. The unique nontrivial element of the inner multiplication group
is the negation Z → Z : n → −n.

2.2 Linear piques

Definition 2.6 Suppose that S is a commutative, unital ring. A pique (A, ·, /, \, 0) is
said to be S-linear if there is a unital S-module structure (A, +, 0), with S-module
automorphisms λ and  such that

x · y = x + yλ, x/y = (x − yλ)
−1

, and x\y = (y − x)λ
−1

(2.3)

for x, y ∈ A.

We identify λ,  as the left and right multiplications by the pointed idempotent 0.

Example 2.7 On the one hand, the quasigroup (Z/4, x ◦1 y) with the nonassociative
multiplication x ◦1 y = x(1 2 3) + y(1 2) is a pique with 0 as the pointed idempotent
element. However, neither (1 2 3) nor (1 2) is an automorphism of Z/4. On the other
hand, the quasigroup (Z/4, x ◦2 y) with the nonassociative multiplication x ◦2 y =
x(1 3) + y(1 3) is also a pique with 0 as the pointed idempotent element. More
importantly, the permutation (1 3) corresponds to the automorphism of Z/4 defined
by x → 3x , so (Z/4, x ◦2 y) is a Z-linear pique.

Example 2.8 [9, Sect. 3.2] [11, Sect. 3] Suppose that S is a commutative unital ring.
Then S-linear representations of the free group F on two generators are equivalent
to S-linear piques. Indeed, suppose that F is free on elements R and S. If  : G →
EndS(A) is an S-linear representation, then an S-linear pique (A, ·, /, \, 0) is defined
by x · y = x + yλ with  = R and λ = L. Conversely, if (A, ·, /, \, 0) is an
S-linear pique, then R → R(0) and L → L(0) extends to an S-linear representation
 of F on A.

Remark 2.9 Linear piques, along with their shifted versions x · y = x + yλ + c (also
described as “T-quasigroups” [2,5]), have been studied for potential applications in
cryptography and related fields [1].

2.3 Equivalent representations

Throughout this section, S will denote a commutative, unital ring.

Definition 2.10 Let R, L be the free group on the doubleton {R, L}.
(a) Let (A, ·, /, \, 0) be an S-linear pique with x · y = x + yλ. Then the group

homomorphism

 : R, L → AutS(A, +, 0); R →  , L → λ

is described as the S-linear representation that is afforded by (A, ·, /, \, 0).
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(b) Consider two S-modules (A, +, 0) and (B, +, 0). Then corresponding S-linear
representations  : R, L → AutS(A, +, 0) and  : R, L → AutS(B, +, 0)

are equivalent whenever there exists an S-module isomorphism f : A → B such
that for all g in R, L, the diagram

A
g



f


A

f


B
g

 B

(2.4)

commutes. We call f the intertwining.

Note that the pair of equations

R f = f R and L f = f L (2.5)

is equivalent to the commuting of (2.4). Alternatively, one may require that the diagram

A

f


A
R



f


L
 A

f


B B
R


L

 B

(2.6)

commutes.

Lemma 2.11 Suppose that f : (A, ◦1) → (B, ◦2) is a pique isomorphism between
S-linear piques (A, ◦1) and (B, ◦2). Let  and  be the respective S-linear represen-
tations that they afford. Then the equations (2.5) hold.

Proof One has

a R f = (a ◦1 0) f = a f ◦2 0 = a f R and

aL f = (0 ◦1 a) f = 0 ◦2 a f = a f L .

for each element a of A. 
Theorem 2.12 Let (A, ◦1) and (B, ◦2) be two S-linear piques. Then they are iso-
morphic by an S-linear transformation f : A → B if and only if the S-linear
representations they afford are equivalent.

Proof Let f : (A, ◦1) → (B, ◦2) be an S-linear pique isomorphism. Suppose that
 : R, L → Aut(A, +, 0) and  : R, L → Aut(B, +, 0) are the respective S-
linear representations afforded by the S-linear piques. By Lemma 2.11, the equations
(2.5) hold. It follows that f is an intertwining witnessing the equivalence of  and .

123



São Paulo Journal of Mathematical Sciences (2020) 14:152–164 157

Now let  : R, L → Aut(A, +, 0) and  : R, L → Aut(B, +, 0) be equivalent
S-linear representations, with an intertwining f : A → B. Then for x, y in A, one has

(x ◦1 y) f = (x R + yL) f

= (x R) f + (yL) f

= x f R + y f L

= x f ◦2 y f ,

so that f : (A, ◦1) → (B, ◦2) is an S-linear pique isomorphism. 

2.4 Permutational similarity

In what follows, we will consider a modified version of the commuting diagram (2.6).

Definition 2.13 Let A be a finite abelian group, with Z-linear pique structures (A, ◦1)

and (A, ◦2) affording respective representations

i : R, L → Aut(A, +, 0)

for i = 1, 2. Then the piques (A, ◦1) and (A, ◦2), or the representations they afford,
are said to be permutationally similar, via a permutation  of the underlying set A, if
the diagram

A





A
R1 





L1 A




A A

R2


L2
 A

(2.7)

commutes. In other words, the permutation  conjugates both R1 to R2 and L1 to
L2 within the permutation group A! of the set A.

Consider two permutationally similar piques (A, ◦1) and (A, ◦2) as in Defini-
tion 2.13. If  is not an automorphism of the abelian group (A, +, 0), then the
permutational similarity of representations furnished by  is not an equivalence in
the sense of Definition 2.10. On the other hand, since both the piques are isotopic to
the abelian group A, they are mutually isotopic (compare [10, Sect. I.2] for a discus-
sion of isotopy). Furthermore, Theorem 2.12 shows that if two Z-linear piques on the
abelian group A are isomorphic, then they are permutationally similar. Thus permuta-
tional similarity is a relationship intermediate between isotopy and isomorphism. As
such, it is analogous to the relationship of central isotopy [10, Sect.3.4].

2.5 Ordinary characters ofC-linear piques

Definition 2.14 Let G be a group. For a complex vector space V , let GL(V ) be its
group of automorphisms.
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(a) An ordinary linear representation of G is defined as a homomorphism  : G →
GL(V ), for some finite-dimensional complex vector space V .

(b) The (ordinary) character of an ordinary linear representation  : G → GL(V ) is
the function χ or χ : G → C; g → Tr(g).

Definition 2.15 Let (A, ·, /, \, 0) be a finite Z-linear pique, affording the Z-linear
representation  : R, L → Aut(A, +, 0). Let CA be the complex vector space with
basis A. Then the complexification of (A, ·, /, \, 0) is the C-linear pique structure
(CA, ·, /, \, 0) obtained by extension of the pique structure (A, ·, /, \, 0). Thus

C : R → (CA → CA; a → a R) , L → (CA → CA; a → aL)

serves to specify the C-linear representation C that is afforded by the complexification
of (A, ·, /, \, 0).

Theorem 2.16 Let f : (A, ·, /, \, 0) → (B, ·, /, \, 0) be an isomorphism of finite
Z-linear piques affording respective Z-linear representations  and . Then the
respective C-linear representations C and C of their complexifications have the
same ordinary character.

Proof The bijection f : A → B may be extended to a unique C-linear isomorphism
C f : CA → CB. By Lemma 2.11, one has g f = f g for all g in R, L. By
linearity, one then has gC(C f ) = (C f )gC for all g in R, L. Let χA and χB be the
respective characters of C and C. Then

χB(gC) = Tr(gC) = Tr

(C f )−1gC(C f )

 = Tr(gC) = χA(gC)

for each g in R, L. 

Remark 2.17 Although the result will not be needed for subsequent work in the current
paper, it should be noted that Theorem 2.12, along with [9, Prop. 634], [10, Th. 12.4],
implies that finite-dimensional C-linear quasigroups are classified up to C-linear iso-
morphism by their ordinary characters.

3 Linear piques on finite cyclic groups

3.1 Permutation characters

The following definition provides a purely combinatorial specification for the character
of the ordinary representation that is afforded by the complexification of a finite Z-
linear pique (compare [7, Exercise 2.2]).

Definition 3.1 Let (A, ·, /, \, 0) be a finite Z-linear pique, affording the Z-linear rep-
resentation  : R, L → Aut(A, +, 0). For an element g of R, L, the permutation
character χ(g) is the number of fixed points of the permutation g of the set A.
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Although the group R, L is infinite, the permutation character is determined by
the fixed-point numbers for each member of the finite set R, L of permutations of
A, the inner multiplication group of the pique (A, ·, /, \, 0). We generally use cycle
notation for permutations of A, recognizing the number of fixed points of a permutation
as the number of one-cycles in its cycle decomposition.

For 1 < n ∈ Z, we will consider Z-linear piques defined on finite cyclic groups
(Z/n, +.0). We write (Z/n)∗ for the group of units of the monoid (Z/n, ·, 1), the set
of residues coprime to n. We use the isomorphism

(Z/n)∗ → Aut(Z/n, +, 0); r → (x → r x)

[8, 5.7.11] to identify automorphisms of finite cyclic groups. Thus the order of the
automorphism group Aut(Z/n, +, 0) is given by the Euler function ϕ(n). We note the
following for future reference.

Lemma 3.2 Let p be a prime number, and let k be a positive integer. Then an auto-
morphism of Z/pk has p j many fixed points, for some 0 < j ≤ k.

Proof The set of fixed points of a group automorphism forms a subgroup of the group
in question. The result then follows by Lagrange’s Theorem. 

3.2 Linear piques on small cyclic groups

We build piques on Z/3 by assigning automorphisms of (Z/3, +, 0) to R, L . Since
R, L can be 1 or 2, we have four possibilities for the binary multiplication. Here,
we exhibit the permutation character table for Z-linear representations of each linear
pique defined on Z/3 (Table 1).

The ordinary characters of R, L are distinct for linear piques of order 3. By The-
orem 2.16, the four piques are all mutually non-isomorphic. Thus the permutation
character completely resolves the isomorphism classes of linear piques of order 3:

Proposition 3.3 Linear piques defined on Z/3 are classified completely up to isomor-
phism by their permutation characters.

In similar vein, one obtains the following:

Proposition 3.4 Linear piques defined on each of Z/2 and Z/4 are classified com-
pletely up to isomorphism by their permutation characters.

Table 1 Permutation characters
for linear piques on Z/3

x · y R L χ(R) χ(L)

x + y (1) (1) 3 3

x + 2y (1) (1 2) 3 1

2x + y (1 2) (1) 1 3

2x + 2y (1 2) (1 2) 1 1
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3.3 Cyclic groups of prime power order

Consider a cyclic group Z/pk , where p is a prime and k is a positive integer.

Lemma 3.5 [8, 5.7.12] If p is an odd prime and k is a positive integer, or p = 2 and
k ∈ {1, 2}, then Aut(Z/pk , +, 0) is a cyclic group of order ϕ(pk) = pk−1(p − 1).

Lemma 3.6 Let Z-linear representations i : R, L → Aut(Z/pk ) have equal
respective permutation characters χi , for i = 1, 2. Then for each element g of R, L,
the automorphisms g1 and g2 have the same order.

Proof Suppose, without loss of generality, that s = |g1| ≥ |g2| = t . Then
χ1(gt ) = χ2(gt ) = pk , so that g1t = gt1 = 1 and s ≤ t . 

In the following, a linear permutation representation of a finite group is the lin-
earization of a permutation representation. Thus let G → X ! be a homomorphism
from a group G to the group X ! of bijections of a finite set X . Then, for a commuta-
tive, unital ring S, let SX denote the free S-module on X . The corresponding linear
permutation representation of G on the module SX sends each group element g to the
permutation matrix determined by the action of g on X .

Lemma 3.7 [3, Ex. 2.1] Two linear permutation representations of a finite cyclic group,
with the same character, are isomorphic.

Proposition 3.8 Let p be a prime number, and let k be a positive integer. Suppose that
two linear pique structures defined on Z/pk have the same permutation character.
Suppose that one of the three following hypotheses applies:

(a) Let p be an odd prime;
(b) Let p = 2 and k ∈ {1, 2};
(c) Let p = 2 and k > 2, but assume that the inner multiplication groups of the two

piques are cyclic.

Then the corresponding representations are permutationally similar.

Proof Suppose that, for i = 1, 2, the piques correspond to respective representations
i : R, L → Aut(Z/pk ). Recall that the image of R, L under i is the inner
multiplication group of the corresponding pique.

Suppose, without loss of generality, that |R, L1 | ≥ |R, L2 |. Let g be an
element of R, L whose image under 1 generates R, L1 , so the order of g1 is
|R, L1 |. Then by Lemma 3.6, the order of g2 is |R, L1 |. Thus |R, L1 | =
|R, L2 |, and g2 generates R, L2 . Consider the finite cyclic group G ∼= g1 ∼=
g2, with permutation representations i : G → Aut(Z/pk ); gi t → gti for i =
1, 2. The respective permutation characters are equal, so by Lemma 3.7, the two
permutation representations i of G are isomorphic. It follows that the representations
1, 2 are permutationally similar. 
Remark 3.9 The first two rows of Table 2 provide an illustration of Proposition 3.8(c).
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3.4 Cyclic groups of order not divisible by 8

For any positive integer m, consider a factorization

m =
s

i=1

pki
i

with distinct primes p1 < · · · < ps for 1 ≤ i ≤ s. Write qi = pki
i for 1 ≤ i ≤ s. We

refer to qi as the pi -part of m. Now for 1 < n ∈ Z, fix the notation n = s
i=1 pki

i ,
with distinct primes p1 < · · · < ps and positive exponents k1, . . . , ks , for 1 ≤ i ≤ s.

Lemma 3.10 [8, 5.7.3] Let A be an abelian group of order n. For 1 ≤ i ≤ s, let Ai

be the Sylow pi -subgroup of A. Then Aut(A) ∼= s
i=1 Aut(Ai ).

The Chinese Remainder Theorem gives a direct sum decomposition

c : Z/n →
s

i=1

Z/qi ; x → (x1, . . . , xs) . (3.1)

In turn, application of Lemma 3.10 to the cyclic group Z/n yields the isomorphism

a : Aut(Z/n) →
s

i=1

Aut(Z/qi ); θ → (θ1, . . . , θs) . (3.2)

For an automorphism θ of Z/n , let (θ) be the number of fixed points of θ . For
1 ≤ i ≤ s, let i (θi ) be the number of fixed points of θi on Z/qi . By virtue of the set
isomorphism c : Z/n → s

i=1 Z/qi , one has

(θ) =
s

i=1

i (θi ) .

Then by Lemma 3.2, i (θi ) is the pi -part of (θ).
Now restrict the fixed integer n by requiring that it not be divisible by 8. In our

notation, this means that k1 < 3 if p1 = 2. As a consequence, the automorphism
groups Aut(Z/qi ) are all cyclic by Lemma 3.5.

Theorem 3.11 Let A be a finite cyclic group whose order is not divisible by 8. Then
if two Z-linear piques on A have the same permutation character, they are permuta-
tionally similar.

Proof By transport of structure, it suffices to examine the case where A = Z/n , with
notation as above. Consider the representations ,  of R, L corresponding to the
two pique structures. Suppose that their respective permutation characters are χ and
χ . By the hypothesis, these characters coincide. In particular, for each element g of
R, L, and for each 1 ≤ i ≤ s, the respective pi -parts of χi (g) and χ 

i (g) of χ(g)

and χ (g) coincide.
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For each 1 ≤ i ≤ s, and for each element g of R, L, define gi = (g)i and g
i =

(g
)i using the notation embodied in (3.2). One obtains respective representations i

and 
i of R, L on Z/qi , with equal permutation characters χi (g) and χ 

i (g). By
Proposition 3.8, it follows that these representations are permutationally similar, say
by permutations bi : Z/qi → Z/qi . Then the permutation b of Z/n , defined by setting
xb = (x1b1, . . . , xsbs)c−1 in the notation of (3.1), yields the desired permutation
similarity between  and . 

In general, it does not seem to be known to what extent Theorem 3.11 fails for
non-cyclic finite abelian groups A.

3.5 Linear piques onZ/5

Now we consider an explicit example of the preceding work using linear piques defined
on Z/5. Automorphisms of Z/5 are given by multiplication by non-zero elements. The
following table lists the permutations for each element in (Z/5)

∗.

Automorphism 1 2 3 4

Permutation (1) (1 2 4 3) (1 3 4 2) (1 4)(2 3)

Let x ◦1 y = x + 2y and x ◦2 y = x + 3y. Since the identity (xx)x = (yy)y holds
in (Z/5, ◦1), but not in (Z/5, ◦2), the respective piques are certainly not isomorphic,
even as magmas under the quasigroup multiplication.

On the other hand, the representations of (Z/5, ◦1) and (Z/5, ◦2) have the same
permutation character. In each case, R maps to the identity, and L maps to a 4-cycle.
Let {ei | 0 ≤ i < 5} be the standard basis for C5. Consider the permutation matrix

P(2 3) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

of the permutation (2 3). Define the linear transformation

τ : C5 → C5; ei → ei P(2 3) .

Since the 4-cycles (1 2 4 3) and (1 3 4 2) are conjugated by (2 3), the ordinary
representations for the non-isomorphic Z-linear piques (Z/5, ◦1) and (Z/5, ◦2) are
permutationally similar. We may summarize as follows.

Proposition 3.12 There is a pair of Z-linear piques on Z/5 which have the same
permutation character, and are permutationally similar, but which are not isomorphic.
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3.6 Linear piques defined onZ/8

In this section, to provide some context for Theorem 3.11, we examine the classification
of Z-linear pique structures defined on Z/8. To construct a Z-linear pique on Z/8, we
must assign , λ the values 1, 3, 5, or 7. The following table lists the permutations for
each element in (Z/8)

∗.

Automorphism 1 3 5 7

Permutation (1) (1 3)(2 6)(5 7) (1 5)(3 7) (1 7)(2 6)(3 5)

If two linear piques have the same permutation characters, then the permutations
associated with R, L must have the same cycle type. The only possibilities for iso-
morphic ordinary representations are listed in the following table. We omit opposite
quasigroups.

The permutations for 3 and 7 are conjugated by (3 7), while those for 1 and 5 are fixed
under conjugation by (3 7). Thus for equivalent complexified ordinary representations,
the permutation matrix P(3 7) serves as a permutation intertwining. We may summarize
as follows, referring to Table 2.

Proposition 3.13 If a pair of Z-linear piques on Z/8 have the same permutation char-
acter, then they are permutationally similar.

Table 2 Partial character table for linear piques on Z/8

x · y R L χ(R) χ(L) χ(L2) χ(RL)

x + 3y (1) (1 3)(2 6)(5 7) 8 2 8 2

x + 7y (1) (1 7)(2 6)(3 5) 8 2 8 2

5x + 3y (1 5)(3 7) (1 3)(2 6)(5 7) 4 2 8 2

5x + 7y (1 5)(3 7) (1 7)(2 6)(3 5) 4 2 8 2
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