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Abstract. Fix an integer n ≥ 1. Then the simplex Πn, Birkhoff poly-

tope Ωn, and Latin square polytope Λn each yield projective geometries
obtained by identifying antipodal points on a sphere bounding a ball cen-

tered at the barycenter of the polytope. We investigate conditions for

homogeneous coordinates of points in the projective geometries to locate
exact vertices of the respective polytopes, namely crisp distributions, per-

mutation matrices, and quasigroups or Latin squares respectively. In the
latter case, the homogeneous conditions form a crucial part of a recent

projective-geometrical approach to the study of orthogonality of Latin

squares. Coordinates based on the barycenter of Ωn are also suited to
the analysis of generalized doubly stochastic matrices, observing that or-

thogonal matrices of this type form a subgroup of the orthogonal group.

1. Introduction

A number of hard open combinatorial problems involve quasigroups and
Latin squares, for example the existence question for a projective plane of
order 12, or determination of the maximum number (known from [6] to be
less than 9) of mutually orthogonal Latin squares of order 10. Recently, some
relaxation techniques have been proposed in order to open up such problems
to geometrical methods using a notion of (weak) approximate quasigroup or
Latin square [7]. The concept of orthogonality has been extended from exact to
approximate quasigroups or Latin squares, based either on convex geometry or
projective geometry [5]. The extended concept of orthogonality specifies a space
of approximate orthogonal mates to a given set of exact quasigroups or Latin
squares. Once such a space has been determined, a solution of the combinatorial
problems involves the question of identifying any exact quasigroups or Latin
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squares that may lie in the space of approximate orthogonal mates. That
question is the topic of this paper.

Successive sections of the paper consider the respective convex sets Πn of
probability distributions on an n-element set (§2), the Birkhoff polytope Ωn
of bistochastic matrices (§3), and the Latin square polytope Λn of tristochas-
tic tensors, interpreted as (weak) approximate quasigroups or Latin squares
(§5). Each section considers various conditions for recognizing exact structures
within the convex sets, namely crisp distributions in Πn, permutation matrices
in Ωn, and quasigroups or Latin squares in Λn. In other words, these exactness
conditions apply to the convex geometry.

The barycenter O of each of the successive convex sets Πn,Ωn,Λn is the
center of a small ball that lies entirely within the corresponding convex sets.
The boundary of the ball is a sphere, and identification of diametrically op-
posed points on the sphere produces a projective geometry. This projective
geometry is also defined by the set of lines through O in the affine hull of
the corresponding convex set. Since the (extended) orthogonality of approxi-
mate quasigroups or Latin squares is well-defined on the intersection of these
lines with Λn, orthogonality of these structures is a projective concept [5, §6].
Rather curiously, the orthogonality conditions [5, Th. 6.2] reduce to the usual
linear-algebraic concept of orthogonality of two vectors, even though the com-
binatorial notion of Latin square orthogonality is not normally considered as
being directly related to geometric orthogonality.

We are confronted with the issue of recognizing when a line through O, in
each of the respective convex sets, contains an exact structure. The primary
results of the paper, Theorems 2.6, 3.5, and 5.5, provide purely projective
necessary and sufficient conditions for this to happen, based on the Partition
Condition of Definition 2.5.

Now let L1, . . . , Lr be r mutually orthogonal n×n Latin squares. The subset
of the Latin polytope Λn consisting of all approximate Latin squares orthog-
onal to each of L1, . . . , Lr yields a linear subspace L(L1, . . . , Lr) or L in the
projective geometry of Λn. Theorem 5.5 then recognizes any exact orthogonal
mate of L1, . . . , Lr (which of course may or may not exist) by the satisfac-
tion of the Partition Condition for each of the n2 homogeneous n-dimensional
coordinate vectors that serve to specify an approximate Latin square in the
linear subspace L. Search techniques for a witness of the partition conditions
in L thus become a topic for active research that is opened up by the present
paper. It is anticipated that hybrid methods, along the lines of the augmented
annealing of [3], currently offer the best chance of success.

A secondary topic of the paper involves the affine hull RΩn of the Birkhoff
polytope Ωn — the space of generalized doubly stochastic or biaffine matrices.
Given the recent attention that has been paid to identifying orthogonal matrices
of this type [4,12], Section 4 examines some connections between that problem
and the main themes of the current paper. In particular, Theorem 4.3 and its
corollary parametrize the group structure of biaffine orthogonal matrices.
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2. Stochastic vectors

Fix a dimension or degree n > 1. Then an n-dimensional vector t is said to
be stochastic if its components are non-negative, and sum to 1. Such a vector is
exact if there is a single non-zero component, namely 1. Consider the uniform
stochastic vector O = ( 1

n , . . . ,
1
n ). We will coordinatize the n-dimensional affine

real space of n-dimensional vectors as a linear space with respect to O as an
origin. Thus an arbitrary vector t = (t1, . . . , tn) of degree n is given by

(2.1) ti = Xi +
1

n

for 1 ≤ i ≤ n, with Xi = 0 corresponding to O.

Lemma 2.1. Consider the vector t given by (2.1). Suppose that

Xi ≥ −
1

n

for 1 ≤ i ≤ n. Then t is stochastic if and only if the equation

(2.2)

n∑
i=1

Xi = 0

holds.

The linear condition (2.2) serves to specify an (n− 1)-dimensional real sub-
space of the space of n-dimensional real vectors. The subspace is the linear hull
of the simplex Πn, the set of all the stochastic vectors with n coordinates. The
space of lines in the linear hull of Πn is the projective geometry PG

(
n− 2,R

)
.

Here, we may take [X1, . . . , Xn] with (2.2), and not all Xi being zero, as homo-
geneous coordinates for the projective geometry, identifying [X1, . . . , Xn] and
[Y1, . . . , Yn] if there is a non-zero scalar λ such that Yi = λXi for 1 ≤ i ≤ n.

Remark 2.2. Since the simplex that we are denoting here by Πn is (n − 1)-
dimensional, it is usually described as ∆n−1, with the suffix referring to the
topological dimension. However, in the present context, where the simplex is
taken as the space of probability distributions on an n-element set, considered
along with the Birkhoff polytope Ωn and Latin square polytope Λn, the suffix
n is more appropriate, attached to the letter Π standing for the probability
distributions.

Lemma 2.3. Let t = (t1, . . . , tn) be a stochastic vector. Then the following
are equivalent:

(a) The stochastic vector t is exact;
(b) The condition

(2.3)

n∑
i=1

t2i = 1

holds;
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(c) The condition

(2.4)
∑

1≤i6=j≤n

titj = 0

holds;
(d) The condition

(2.5) ∀ 1 ≤ i 6= j ≤ n , titj = 0

holds.

Proof. (a)⇒(b) is immediate.
(b)⇒(c): Suppose (2.3) holds. Then since t is stochastic, we have

1 =
( n∑
i=1

ti

)2
=

n∑
i=1

t2i +
∑

1≤i 6=j≤n

titj = 1 +
∑

1≤i 6=j≤n

titj ,

so (2.4) holds.
(c)⇒(d): Because the components of t are non-negative, (2.4) implies that

(2.5) holds.
(d)⇒(a): Suppose (2.5) holds. Then at most one component of t is non-

zero. Since t is stochastic, this non-zero component must be 1, and then t is
exact. �

Lemma 2.4. Consider a stochastic vector t as given by (2.1). Then the fol-
lowing are equivalent:

(a) The stochastic vector t is exact;
(b) The condition

(2.6)

n∑
i=1

X2
i = 1− 1

n

holds;
(c) The condition

(2.7)
∑

1≤i6=j≤n

XiXj =
1

n
− 1

holds;
(d) The condition

(2.8) XiXj +
1

n

(
Xi +Xj

)
+

1

n2
= 0

holds for all 1 ≤ i 6= j ≤ n.

Proof. (a)⇔(b) By Lemma 2.3, the stochastic vector is exact if and only if

1 =

n∑
i=1

(
Xi +

1

n

)(
Xi +

1

n

)
=

n∑
k=1

X2
i +

2

n

n∑
i=1

Xi +

n∑
k=1

1

n2
.

By Lemma 2.1, the linear term sums to 0, and the result follows.
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(a)⇔(c) Note that

0 =

(
n∑
i=1

Xi

)2

=

n∑
i=1

X2
i +

∑
1≤i6=j≤n

XiXj

by Lemma 2.1.
(a)⇔(d) By Lemma 2.3, the stochastic vector is exact if and only if

0 =
(
Xi +

1

n

)(
Xj +

1

n

)
= XiXj +

1

n

(
Xi +Xj

)
+

1

n2

for all 1 ≤ i 6= j ≤ n. �

The theorem below uses the product form for integer partitions [11, p. 50].
In contrast with the non-homogenous exactness conditions (2.6)–(2.8), it gives
a homogeneous condition for exactness.

Definition 2.5. Homogeneous coordinates [X1, . . . , Xn] are described as sat-
isfying the Partition Condition if there is an (n − 1) · 1-partition of values in
the multiset {X1, . . . , Xn}. In other words, one of the coordinates takes an
exceptional value, while all the remaining coordinates are equal.

Theorem 2.6. Homogeneous coordinates [X1, . . . , Xn] specify a line, in the
linear hull of the simplex Πn centered at O, that passes through an exact sto-
chastic vector if and only if they satisfy the Partition Condition.

Proof. Certainly, the necessity of the Partition Condition is immediate. Now
suppose that the Partition Condition holds, so that the multiset {X1, . . . , Xn}
contains n−1 copies of a real number v, complemented by a single copy of −(n−
1)v. It will be shown that there is a nonzero scalar λ such that λ[X1, . . . , Xn]
satisfies the conditions (2.8) of Lemma 2.4(d).

Consider distinct indices i and j for which Xi = Xj = v. Then the condition
(2.8) on λ[X1, . . . , Xn] reduces to the equation

λ2v2 + 2
λv

n
+

1

n2
= 0 ,

satisfied by λ = −1/(nv). Then for distinct indices i and j with Xi = v and
Xj = −(n− 1)v, the condition (2.8) on λ[X1, . . . , Xn] reduces to the equation

λ2v[−(n− 1)v] +
λ

n
[−(n− 1)v + v] +

1

n2
= 0

which is also satisfied by λ = −1/(nv). �
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3. Doubly stochastic matrices

A square matrix T of degree n is considered as a stack T = (t1, . . . , tn) of
row vectors t1, . . . , tn. Thus T is specified by the vector components (ti)j for
1 ≤ i, j ≤ n, the matrix entries [T ]ij = (ti)j . The matrix T is row stochastic if
each row vector ti, for 1 ≤ i ≤ n, is a stochastic vector. It is column stochastic
if its transpose is row stochastic. It is doubly stochastic or bistochastic if it is
both row and column stochastic. It is said to be exact if it is a permutation
matrix.

Lemma 3.1. Let T be a doubly stochastic square matrix.

(a) T is exact if and only if
∣∣{(i, j) | [T ]ij = 1}

∣∣ = n.
(b) T is exact if and only if its transpose is exact.

Lemma 3.2. Let T be a doubly stochastic matrix of degree n > 1. For 1 ≤
k ≤ n, let t(j) be the stochastic vector that is the transpose of the j-th column
of T . Then the following are equivalent:

(a) T is exact.
(b) The condition

(3.1) ∀ 1 ≤ i 6= j ≤ n ,
n∑
k=1

[T ]ik[T ]jk = 0

holds.
(c) The condition

(3.2) ∀ 1 ≤ i 6= j ≤ n , [T ]ik[T ]jk = 0

holds for all 1 ≤ k ≤ n.
(d) The stochastic vector t(j) is exact for each 1 ≤ j ≤ n.
(e) The stochastic vector ti is exact for each 1 ≤ i ≤ n.

Proof. (a)⇒(b) If T is a permutation matrix, then it is orthogonal, and the
condition (3.1) holds.

(b)⇒(c) Suppose (3.1) holds. Since T is doubly stochastic, each entry of T
is nonnegative, and so (3.2) holds.

(c)⇒(d) Condition (3.2) reduces to the condition (2.5) of Lemma 2.3 for
t(k). Thus t(k) is exact.

(d)⇒(e): Consider a nonzero entry [T ]ij of a row ti. Since t(j) is exact by
(d), [T ]ij = 1. Then since T is row stochastic, all the other components of ti
are zero, and so ti is exact.

(e)⇒(a): Condition (e) implies that
∣∣{(i, j) | [T ]ij = 1}

∣∣ = n, so T is exact
by Lemma 3.1. �

Fix a degree n > 1. Consider the uniform doubly stochastic matrixO = 1
nJn,

where Jn is the all-ones matrix of degree n. We coordinatize the n2-dimensional
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affine real space of (n × n)-matrices as a linear space with respect to O as an
origin. Thus an arbitrary square matrix T of degree n is given by

(3.3) [T ]ij = Xij +
1

n

for 1 ≤ i, j ≤ n, with Xij = 0 corresponding to O.

Lemma 3.3. Consider the square matrix T given by (3.3). Suppose that

Xij ≥ −
1

n

for 1 ≤ i, j ≤ n.

(a) The matrix T is row-stochastic if and only if

(3.4)

n∑
j=1

Xij = 0

for 1 ≤ i ≤ n.
(b) The matrix T is column-stochastic if and only if

(3.5)

n∑
i=1

Xij = 0

for 1 ≤ j ≤ n.
(c) The matrix T is doubly stochastic if and only if the conditions (3.4)

and (3.5) hold.

The 2n linear conditions listed in (3.4) and (3.5) serve to specify an (n−1)2-
dimensional real subspace of the n2-dimensional real linear space of square
matrices. (Note that n2 − 2n < (n − 1)2; the conditions (3.4) and (3.5) are
not independent.) The subspace is the linear hull of the polytope Ωn centered
at O. The space of lines in the linear hull of Ωn is the projective geometry
PG
(
(n− 1)2 − 1,R

)
.

Lemma 3.4. Consider a doubly stochastic matrix T , written in the notation
(3.3). The following conditions are equivalent:

(a) T is exact;
(b) The condition

∀ 1 ≤ i 6= j ≤ n ,
n∑
k=1

XikXjk = − 1

n
(3.6)

holds;
(c) The condition

∀ 1 ≤ i 6= j ≤ n , ∀ 1 ≤ k ≤ n ,(3.7)

XikXjk +
1

n

(
Xik +Xjk

)
+

1

n2
= 0

holds.
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Proof. (a)⇔(b) By Lemma 3.2, the matrix T is a permutation matrix if and
only if

0 =

n∑
k=1

(
Xik +

1

n

)(
Xjk +

1

n

)
=

n∑
k=1

XikXjk +
1

n

n∑
k=1

(
Xik +Xjk

)
+

1

n

for all 1 ≤ i 6= j ≤ n. By Lemma 3.3, the linear terms vanish, and the result
follows.

(a)⇔(c) By Lemma 3.2, the matrix T is a permutation matrix if and only if

0 =
(
Xik +

1

n

)(
Xjk +

1

n

)
= XikXjk +

1

n

(
Xik +Xjk

)
+

1

n2

for all 1 ≤ i 6= j ≤ n and 1 ≤ k ≤ n. �

The respective exactness conditions (3.6) and (3.7) of Lemma 3.4(b) and
(c) are not homogeneous. A homogeneous condition for locating permutation
matrices in Ωn may be obtained as follows.

Theorem 3.5. Let [Xij | 1 ≤ i, j ≤ n] be homogeneous coordinates that satisfy
the conditions (3.4) and (3.5). Then in the linear hull of the polytope Ωn
centered at O, the coordinates specify a line that passes through a permutation
matrix if and only if the homogeneous coordinates [Xi1, . . . , Xin] satisfy the
Partition Condition for 1 ≤ i ≤ n.

Proof. By Lemma 3.2, a doubly stochastic matrix T = (t1, . . . , tn) is exact
if and only if each stochastic vector ti, for 1 ≤ i ≤ n, is exact. By Theo-
rem 2.6, this happens if and only if, for 1 ≤ i ≤ n, the homogeneous coordinates
[Xi1, . . . , Xin] satisfy the Partition Condition, writing T as in (3.3). �

4. Generalized doubly stochastic matrices

A matrix T is generalized doubly stochastic [4,12] or biaffine if each row and
column sum is 1 (as is the case for doubly stochastic matrices), but the entries
are not required to be non-negative. Like any matrix of degree n, a biaffine
matrix T of degree n may be written in the form (3.3). The row and column
sum conditions guaranteeing the generalized double stochasticity then take the
form of (3.4) and (3.5). In other words, the linear hull RΩn of the polytope
Ωn centered at O is precisely the set of biaffine matrices. The intention of this
section is to demonstrate the utility of the representation (3.3), or its matrix
version (4.1) below, in the study of biaffine matrices.

Lemma 4.1. Let

(4.1) T =
1

n
Jn +X

be an n× n matrix.
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(a) The matrix T is biaffine if and only if the equations

(4.2) XJn = 0 = JnX

are satisfied.
(b) A biaffine matrix T is orthogonal if and only if the equation

(4.3) XXT = In −
1

n
Jn

is satisfied.

Proof. (a) Note that

[XJn]ik =

n∑
j=1

Xij

for 1 ≤ i, k ≤ n, so the left-hand equation in (4.2) is equivalent to
n∑
j=1

[T ]ij =

n∑
j=1

( 1

n
+Xij

)
=

n∑
j=1

1

n
= 1

for 1 ≤ i ≤ n. Similarly, the right-hand equation in (4.2) is equivalent to the
column sums of T all being 1.

(b) Suppose that T is biaffine, and thus satisfies (4.2) by (a). Then

TT> =
( 1

n
Jn +X

)
·
( 1

n
Jn +X

)>
=

1

n
Jn +

1

n
(XJn)> +

1

n
XJn +XX> =

1

n
Jn +XX> .

Thus the orthogonality condition TT> = In is equivalent to (4.3), as required.
�

Lemma 4.1 offers an alternative to other characterizations of biaffine orthog-
onal matrices, such as in [4, 12].

Lemma 4.2. The set RΩn of biaffine matrices is closed under matrix multi-
plication and transposition.

Proof. Consider elements T1 = 1
nJn +X1 and T2 = 1

nJn +X2 of RΩn, so that
X1 and X2 satisfy the conditions (4.2) of Lemma 4.1. Then

T1T2 =
( 1

n
Jn +X1

)
·
( 1

n
Jn +X2

)
(4.4)

=
1

n
Jn +

1

n
JnX2 +

1

n
X1Jn +X1X2 =

1

n
Jn +X1X2 .

Now JnX1X2 = 0 and X1X2Jn= 0 by (4.2), so that T1T2 ∈ RΩn by Lemma 4.1.
It is clear from the definition that the set of biaffine matrices is closed under
transposition. �

Theorem 4.3. The set AAOn = RΩn ∩On(R) of orthogonal biaffine matrices
forms a subgroup of the orthogonal group On(R).
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Proof. Apply the Subgroup Test [10, Prop. 4.43]. Consider elements T1, T2 of
AAOn. Since On(R) is a group (in which transposition acts as inversion), we
have T1T

>
2 ∈ On(R). Again, we have T1T

>
2 ∈ RΩn by Lemma 4.2. �

Remark 4.4. For n > 1, note[
2−1/2 −2−1/2

2−1/2 2−1/2

]
⊕ In−2 ∈ On(R) r AAOn ,

so AAOn is a proper subgroup of the orthogonal group. The subgroup AAOn
corresponds geometrically to the elements of On(R) fixing the vector [1, 1, . . . , 1],
so abstractly it is isomorphic to On−1(R).

Corollary 4.5. Let Xn be the set of all n× n matrices which satisfy the con-
ditions (4.2) and (4.3) of Lemma 4.1. Then Xn forms a group under matrix
multiplication, with identity element In − 1

nJn, and transposition as inversion.

Proof. The mutually inverse maps

(4.5) ξ : AAOn → Xn;T 7→ T − 1

n
Jn

and

(4.6) τ : Xn → AAOn;X 7→ 1

n
Jn +X

serve to transport the group structure from AAOn to Xn. By (4.4), the group
multiplication in Xn is just matrix multiplication. By (4.3), matrix transposi-
tion furnishes the group inversion. �

We conclude this section with the following observation which is often useful
for the generation of orthogonal biaffine matrices.

Proposition 4.6. (a) The set Xn is closed under negation.
(b) The set AAOn is closed under the transformation σ : T 7→ 2

nJn − T .

Proof. (a) is immediate from the conditions of Lemma 4.1.
(b) Note Tσ = (−T ξ)τ , using the respective maps (4.5) and (4.6) from the

proof of Corollary 4.5. �

Example 4.7. The permutation matrix image1 0 0
0 0 1
0 1 0

σ =
1

3

−1 2 2
2 2 −1
2 −1 2


is the orthogonal biaffine matrix presented in [12].
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5. Triply stochastic tensors

A cubic tensor T of degree n is considered as a stack T = (T1, . . . , Tn)
of matrices T1, . . . , Tn. Thus T is specified by the matrix entries [Ti]jk for
1 ≤ i, j, k ≤ n. It is triply stochastic or tristochastic if and only if

n∑
j=1

Tj = Jn

and each matrix Ti, for 1 ≤ i ≤ n, is doubly stochastic. A triply stochastic cubic
tensor T = (T1, . . . , Tn) is exact if and only if each matrix Ti, for 1 ≤ i ≤ n, is
a permutation matrix. In this case, the corresponding set of matrices is sharply
transitive [1], [2], [8], [9, §8.1].

Lemma 5.1. Let T = (T1, . . . , Tn) be a triply stochastic cubic tensor.

(a) T is exact if and only if
∣∣{(i, j, k) | [Ti]jk = 1}

∣∣ = n2.
(b) T is exact if and only if any one of its parastrophes is exact.

Lemma 5.2. Let S = (S1, . . . , Sn) be a triply stochastic cubic tensor. Then
the following are equivalent:

(a) S is exact;
(b) The condition

(5.1) ∀ 1 ≤ i 6= j ≤ n , ∀ 1 ≤ k, l ≤ n , [Si]kl[Sj ]kl = 0

holds.
(c) The conditions

(5.2) ∀ 1 ≤ i 6= j ≤ n , tr(SiS
∗
j ) = 0

or

(5.3) ∀ 1 ≤ i 6= j ≤ n ,
n∑
k=1

n∑
l=1

[Si]kl[Sj ]kl = 0

hold.

Proof. (a)⇔(b) The triply stochastic cubic tensor S is exact if and only if, for
1 ≤ k, l ≤ n, there is a unique index 1 ≤ h ≤ n such that [Sh]kl = 1.

(b)⇔(c) Certainly, (5.1) implies (5.3). The converse follows since each sum-
mand in (5.3) is nonnegative. �

Fix a degree n > 1. Consider the uniform triply stochastic cubic tensor
O = ( 1

nJn, . . . ,
1
nJn). We coordinatize the n3-dimensional affine real space of

cubic tensors as a linear space with respect to O as an origin. Thus an arbitrary
cubic tensor T = (T1, . . . , Tn) of degree n is given by

(5.4) [Ti]jk = Xijk +
1

n

for 1 ≤ i, j, k ≤ n, with Xijk = 0 corresponding to O.
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Lemma 5.3. Consider the cubic tensor [Ti]jk given by (5.4). Suppose that

Xijk ≥ −
1

n

for 1 ≤ i, j, k ≤ n.

(a) Each matrix of the stack T = (T1, . . . , Tn) is row-stochastic if and only
if

(5.5)

n∑
k=1

Xijk = 0

for 1 ≤ i, j ≤ n.
(b) Each matrix of the stack T = (T1, . . . , Tn) is column-stochastic if and

only if

(5.6)

n∑
j=1

Xijk = 0

for 1 ≤ i, k ≤ n.
(c) The matrices Ti of the stack T = (T1, . . . , Tn) sum to Jn if and only if

(5.7)

n∑
i=1

Xijk = 0

for 1 ≤ j, k ≤ n.
(d) The cubic tensor is triply stochastic if and only if the conditions (5.5)–

(5.7) hold.

Together, the 3n2 linear conditions (5.5)–(5.7) serve to specify an (n− 1)3-
dimensional real subspace of the n3-dimensional real linear space of cubic ten-
sors. (Note that n3 − 3n2 < (n − 1)3; indeed the conditions (5.5)–(5.7) are
not independent.) The subspace is the linear hull of the polytope Λn centered
at O. The space of lines in this linear hull of Λn is the projective geometry
PG
(
(n− 1)3 − 1,R

)
.

The following result expresses the exactness of a triply stochastic cubic ten-
sor (5.4) in terms of the homogeneous coordinates Xijk.

Lemma 5.4. A triply stochastic cubic tensor [Ti]jk as given by (5.4) is exact
if and only if the condition

∀ 1 ≤ i 6= j ≤ n ,
n∑
k=1

n∑
l=1

XiklXjkl = −1(5.8)

holds.

Proof. By Lemma 5.2, the triply stochastic cubic tensor is exact if and only if

0 =

n∑
k=1

n∑
l=1

(
Xikl +

1

n

)(
Xjkl +

1

n

)
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=

n∑
k=1

n∑
l=1

XiklXjkl +
1

n

n∑
k=1

n∑
l=1

(
Xikl +Xjkl

)
+ 1

for all 1 ≤ i 6= j ≤ n. By Lemma 5.3, the linear terms vanish, and the result
follows. �

Note that the exactness condition (5.8) is not homogeneous. On the other
hand, the following result provides a homogeneous condition for locating exact
triply stochastic cubic tensors.

Theorem 5.5. Suppose that [Xijk | 1 ≤ i, j, k ≤ n] are homogeneous coor-
dinates satisfying the conditions (5.5)–(5.7). Then they specify a line, in the
linear hull of the polytope Λn centered at O, passing through an exact triply sto-
chastic cubic tensor if and only if the homogeneous coordinates [Xij1, . . . , Xijn]
satisfy the Partition Condition, for 1 ≤ i, j ≤ n.

Proof. A triply stochastic cubic tensor [Ti]jk, written as in (5.4), is exact if
and only if each doubly stochastic matrix Ti, for 1 ≤ i ≤ n, is exact. By
Theorem 3.5, this happens if and only if, for 1 ≤ i, j ≤ n, the homogeneous
coordinates [Xij1, . . . , Xijn] satisfy the Partition Condition. �
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