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Abstract. Hyperquasigroups were recently introduced to provide a more

symmetrical approach to quasigroups, and a far-reaching implementation of
triality (S3-action). In the current paper, various connections between hyper-
quasigroups and groups are examined, on the basis of established connections
between quasigroups and groups. A new graph-theoretical characterization of

hyperquasigroups is exhibited. Torsors are recognized as hyperquasigroups,
and group representations are shown to be equivalent to linear hyperquasi-
groups. The concept of orthant structure is introduced, as a tool for recovering

classical information from a hyperquasigroup.

1. Introduction

This paper is concerned with the recently introduced algebraic structures known
as hyperquasigroups, which are intended as refinements of quasigroups. A quasi-
group (Q, ·) was first understood as a set Q with a binary multiplication, denoted
by · or mere juxtaposition, such that in the equation

x · y = z ,

knowledge of any two of x, y, z specifies the third uniquely. To make a distinction
with subsequent concepts, it is convenient to describe a quasigroup in this original
sense as a combinatorial quasigroup (Q, ·). A loop (Q, ·, e) is a combinatorial quasi-
group (Q, ·) with an identity element e such that e ·x = x = x ·e for all x in Q. The
body of the multiplication table of a combinatorial quasigroup of finite order n is a
Latin square of order n, an n× n square array in which each row and each column
contains each element of an n-element set exactly once. Conversely, each Latin
square becomes the body of the multiplication table of a combinatorial quasigroup
if distinct labels from the square are attached to the rows and columns of the square.
In the guise of Latin squares, quasigroups form one of the oldest topics of algebra,
dating back at least as far as Euler [23]. Now in Bourbaki’s terminology [4, Ch.
1, §1.1], a set with a binary operation is a magma1, so a combinatorial quasigroup
is a special kind of magma. For each element q of a magma (Q, ·), define the left
multiplication

(1.1) L(q) : Q → Q;x 7→ q · x
and right multiplication

(1.2) R(q) : Q → Q;x 7→ x · q .
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If (Q, ·) is a combinatorial quasigroup, then the right and left multiplications are
bijections of the underlying set Q. Indeed, a magma (Q, ·) is a combinatorial
quasigroup if and only if the left multiplication L(q) and right multiplication R(q)
are bijective for each element q of Q.

Unfortunately, the combinatorial specification of a quasigroup does not admit the
use of deeper algebraic techniques. For example, there is a combinatorial quasigroup
(Q, ·) admitting a magma homomorphism f : (Q, ·) → (P, ·) whose image is not
a combinatorial quasigroup [27, Ch. I, Ex. 2.2.1]. In 1949, Evans [11] redefined
quasigroups as equational quasigroups, sets (Q, ·, /, \) equipped with three binary
operations of multiplication, right division / and left division \, satisfying the
identities:

(IL) v\(v · w) = w ;
∣∣ (IR) w = (w · v)/v ;

(SL) v · (v\w) = w ;
∣∣ (SR) w = (w/v) · v .

The identities (IL), (IR) give the injectivity of the left and right multiplications,
while (SL), (SR) give their surjectivity. An equational quasigroup (Q, ·, /, \) yields
a combinatorial quasigroup (Q, ·). Conversely, a combinatorial quasigroup (Q, ·)
yields an equational quasigroup (Q, ·, /, \) with divisions x/y = xR(y)−1 and x\y =
yL(x)−1. Equational quasigroups form a variety in the sense of universal algebra,
so homomorphic images of equational quasigroups are equational quasigroups [27,
p. 314]. Evans’ reformulation of the quasigroup concept opened up combinatorial
questions about quasigroups and Latin squares to analysis with algebraic techniques
[14].

The theory of equational quasigroups has an explicit twofold symmetry, given
by a chiral duality or S2-action between left and right. For example, reflection of
the identities (IL) and (SL) in the vertical line above yields the respective identities
(IR) and (SR)—especially given the symmetrical sans-serif typeface used for the
variables in these identities! The chiral symmetry interchanges the right and left
divisions, and reverses the order of the arguments in the binary operations. In
1951, Evans solved the word problem for equational quasigroups (and loops) [12].
The chiral duality led to some simplification of the solution, but still left many
separate cases to consider, at least in principle. Recently, however, Evans’ solution
of the word problem was drastically simplified by the explicit use of a stronger
triality symmetry or S3-action

2 that interchanges all three equational quasigroup
operations and their opposites [25]. Although this symmetry is already implicit in
the theory of equational quasigroups, and its presence has long been recognized, the
choice of specific operations in the equational theory has been an impediment to its
use in practice. Indeed, implementation of the symmetry entails the introduction
of a new approach to quasigroups, by means of the concept of a hyperquasigroup
[24, 26]. In the historical context, hyperquasigroups may thus be considered as a
further step beyond the progression from combinatorial quasigroups to equational
quasigroups.

The interplay between quasigroups and groups has long been a fundamental
theme of quasigroup theory, for example working with the (combinatorial) multi-
plication group of a quasigroup (compare Section 2), or obtaining quasigroups from
transversals to subgroups of groups (compare Section 10). The aim of the current

2The triality symmetry under consideration in the current paper was identified in [25] as
syntactic triality. That paper also discussed semantic triality, which is more closely related to the
triality symmetry of Moufang loops and the Coxeter-Dynkin diagram of type D4 (compare [9]).
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paper is to establish comparable connections between hyperquasigroups and groups.
Following some background on universal multiplication groups (Section 2) and lin-
ear quasigroups (Section 3), hyperquasigroups themselves are defined in Section 4,
along with the auxiliary concept of a reflexion-inversion space. Section 5 presents
a new class of examples, showing how torsors (principal homogeneous spaces) may
be recognized as hyperquasigroups. The key concept of the Cayley graph of a
hyperquasigroup is introduced in Section 6. Within the Cayley graph, (6.5) pro-
vides a striking geometrical characterization of hyperquasigroups. Sections 7 – 9
describe various groups associated with a hyperquasigroup, modeled on the com-
binatorial and universal multiplication groups of a quasigroup. In Section 10, it is
shown how hyperquasigroups are encoded within these groups by a certain system
of transversals.

The final two sections focus on the role of triality in hyperquasigroups, taking
advantage of an orthant structure within the reflexion-inversion space to recover
“classical” quasigroup information from a hyperquasigroup. Section 11 introduces
the class of linear hyperquasigroups, indicating how their orthant structure leads
to an equivalence with group representations. From this point of view, hyper-
quasigroups emerge as a broad extension of group representations. Section 12 uses
orthant structure to recover the combinatorial multiplication group of a quasigroup,
and the family of orthogonal Latin squares in a desarguean projective plane, from
corresponding hyperquasigroups. Although it has been possible to identify and
apply the orthant structure in these examples, it should be noted that no univer-
sal definition of the concept is currently available. Indeed, the search for such a
definition is one of the open problems of the subject.

Readers seeking further background in quasigroup theory are referred to [23].
Generally speaking, notational and other conventions used in the paper follow [27].
In particular, algebraic notation (with functions following their arguments as in the
usages x2 and n!) is taken as the default option in primal situations.

2. Multiplication groups

The (combinatorial) multiplication group Mlt(Q, ·) or MltQ of a quasigroup
(Q, ·) is defined to be the subgroup

(2.1) ⟨L(q), R(q) | q ∈ Q⟩Q!

of the symmetric group Q! of all bijections of the set Q that is generated by all the
left and right multiplications. For example, if Q is a group with center Z(Q), then
the multiplication group G of Q is specified by the exact sequence

1 → Z(Q)
∆−→ Q×Q

T−→ G → 1

with ∆: z 7→ (z, z) and T : (q1, q2) 7→ L(q1)
−1R(q2). Note that the image of a

diagonal pair (q, q) in Q × Q under T is the inner automorphism of Q given by
conjugation with q.

If f : (Q1, ·, /, \) → (Q2, ·, /, \) is a surjective (equational) quasigroup homo-
morphism, then a group homomorphism Mlt f : MltQ1 → MltQ2 is defined by
L(q) 7→ L(qf) and R(q) 7→ R(qf) for q in Q1. This definition may break down if f
is not surjective. Consider the symmetric group embedding f : {0, 1}! ↪→ {0, 1, 2}!
as an example. The right and left multiplications by the transposition (0 1) coincide
in Mlt{0, 1}!, but in Mlt{0, 1, 2}! they become distinct.
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In order to overcome the ill-definition problem for Mlt f : MltQ1 → MltQ2 when
f : Q1 → Q2 is not surjective, one considers the so-called “universal multiplication
groups.” If Q is a subquasigroup of a quasigroup P , then the relative multiplication
group MltPQ of Q in P is the subgroup

⟨LP (q), RP (q) | q ∈ Q⟩P !

of P ! generated by all the left multiplications LP (q) : P → P ;x 7→ qx and right
multiplications RP (q) : P → P ;x 7→ xq on P by elements q of Q. Suppose that Q is
a member of a variety or equationally-defined class V of (equational) quasigroups,
for example the class G of associative quasigroups (the class comprising groups and

the empty quasigroup). Let Q̃ or QV[X] be the coproduct (or “free product”) in
V of Q and the free V-quasigroup on a single generator X [23, §2.7][27, IV.2.2].
In other words, QV[X] contains an element X such that for each element x of
a V-quasigroup Q′, and for each homomorphism f : Q → Q′, there is a unique

homomorphism f̃ : Q̃ → Q′ extending f , and taking the “indeterminate” X to x.
Then the universal multiplication group U(Q;V) of Q in V is defined to be the
relative multiplication group of Q in QV[X]. For each homomorphism f : Q1 → Q2

of V-quasigroups, a group homomorphism U(f ;V) : U(Q1;V) → U(Q2;V) is well-
defined by sending LQ̃(q) to LQ̃(qf) and RQ̃(q) to RQ̃(qf) for each element q of

Q. If Q is the class of all quasigroups, then U(Q;Q) is free on the disjoint union
L(Q)+R(Q). If Q is a group, then U(Q;G) is Q×Q, realized as the product of the
(regular permutation) group of left multiplications with the (regular permutation)
group of right multiplications. The group U(Q;G) is sometimes called the diagonal
group [7].

3. Linear quasigroups

Linear quasigroups constitute one of the most important classes of quasigroups.
Let A be a group of automorphisms of an abelian group (or right A-module) M .
Suppose that A is generated by elements R and S. (Recall, for instance, that all
finite simple groups are known to be 2-generated.) Then a combinatorial quasigroup
structure (M, ◦) or equational quasigroup structure (M, ◦, //, \\) is defined by

(3.1) x ◦ y = xR+ yS

for x, y in M . Such a quasigroup (M, ◦) is known as a linear quasigroup3. It may
be pointed by the zero element 0 of the module M . Given such a pointed linear
quasigroup (M, ◦, 0), the abelian group (M,+) and group A may be recovered.
Indeed x+y = (x//0)◦ (y\\0) for x, y in M , while R = R(0) and S = L(0) in (M, ◦).

Example 3.1 (Dihedral groups). Given 1 < d ∈ Z, let M be the additive group
Z/d of integers modulo d. Suppose that R is the trivial automorphism, and that S is
negation. Then the corresponding linear quasigroup (3.1) is the quasigroup (Z/d,−)
of integers modulo d under subtraction. The multiplication group Mlt(Z/d,−) is
the dihedral group Dd of degree d. In this particular case, the generated subgroup
(2.1) is just the generating set {L(q), R(q) | q ∈ Q} itself.

Example 3.2 (Nonassociative integers). [23, Th. 11.1] Let A = ⟨R,S⟩ be the
free (nonabelian) group on two generators R and S. Let M = Z⟨R,S⟩ be the
integral group algebra of A. Then the submagma ⟨1⟩◦ of (M, ◦) generated by 1 is

3Compare [28], where the group M is not required to be abelian.
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the free magma on that generator. The elements of ⟨1⟩◦, index θ-polynomials in
the terminology of Minc [19], may be regarded as nonassociative analogues of the
positive integers, since they serve to index nonassociative powers. (Compare [13],
which even includes a proof of Fermat’s Last Theorem for nonassociative integers.)

Example 3.3 (Skein polynomials). [22] Let A be the free abelian group on distinct
generators R and S. Let M = Z[l±1,m±1] be the ring of Laurent polynomials in
commuting variables l and m. If R is multiplication by −m−1l, and S is multi-
plication by −m−1l−1, then A acts faithfully on M . Recall that in knot theory, a
surgery triple is an ordered triple (KR,Kl,K0) of oriented links having presenta-
tions (planar diagrams) that coincide outside a ball, within which the representative
presentations are as displayed in Figure 1. Associated with each oriented link is a
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Figure 1. A surgery triple

homotopy-invariant element of M , the skein polynomial (otherwise known as the
“oriented polynomial,” “P -polynomial,” “HOMFLY polynomial,” etc.). Identify-
ing oriented links with their skein polynomials, the surgery triple satisfies the very
simple relation

KR ◦KL = K0

in the linear quasigroup (M, ◦, //, \\). For a positive integer c, write U c for (the skein
polynomial of) c copies of an unlink (oriented circle). Let S be the subalgebra of
(M,//, \\) generated by {U c | 0 < c ∈ Z}. Then the skein polynomials of arbitrary
oriented links all lie in S.

Despite their evident usefulness, linear quasigroups are inherently limited by the
requirement that the automorphism group A of the module M be 2-generated. In
Section 11 it will be shown how a hyperquasigroup construction, linear hyperquasi-
groups, may be used to circumvent this limitation.

4. Hyperquasigroups

Hyperquasigroups involve the auxiliary concept of a reflexion-inversion space:

Definition 4.1. A reflexion-inversion space (Ω, σ, τ) is a set Ω equipped with two
involutive actions, a reflexion

(4.1) σ : Ω → Ω;ω 7→ σω

and an inversion

(4.2) τ : Ω → Ω;ω 7→ τω .
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Example 4.2. The most basic reflexion-inversion space is the symmetric group
S3 = {1, 2, 3}!, with reflexion and inversion implemented as left multiplications by
the respective transpositions (1 2) and (2 3). In this context, it is convenient to
identify each element of S3 as the image of the identity permutation under the left
action of a series of reflexions and inversions.

Remark 4.3. Although many natural reflexion-inversion spaces may be equipped
with a topology (say in Example 4.6 below), the considerations of the current paper
will remain discrete. At this level, the only relations among the points of Ω are those
given by the orbit structure of the action of the infinite dihedral group generated
by the reflexion and inversion.

Definition 4.4. A hyperquasigroup (Q,Ω) is a pair consisting of a set Q and a
reflexion-inversion space Ω, together with a binary action

(4.3) Q2 × Ω → Q; (x, y, ω) 7→ xy ω

of Ω on Q, such that the hypercommutative law

(4.4) xy σω = yxω

and the hypercancellation law

(4.5) x (xy ω ) τω = y

are satisfied for all x, y in Q and ω in Ω.

Remark 4.5. Readers with concerns about an algebra (Q,Ω) where the operation
set Ω itself has some algebra structure may wish to contemplate the example of a
vector space (V,+, F ), where the set F of scalar multiplications carries the structure
of a field that features in axioms such as the mixed associative law (vf)f ′ = v(ff ′)
for elements v of V and f, f ′ of F .

The following new example of hyperquasigroups has a role to play later in the
paper. For further examples, see [24, 26] and the final sections of this paper.

Example 4.6. Suppose that A is a group of automorphisms of an abelian group
(or right A-module) M . The set Ω = A × A becomes a reflexion-inversion space,
with reflexion

σ : Ω → Ω; (a, b) 7→ (b, a)

and inversion
τ : Ω → Ω; (a, b) 7→ (ab−1, b−1) .

Define
xy (a, b) = −xa− yb

for (a, b) in Ω and x, y in M . Then (M,Ω) is a hyperquasigroup.

Remark 4.7. Hyperquasigroups are heterogeneous algebras, with operations (4.1),
(4.2) and (4.3) — compare [16, 17]. The theory of heterogeneous algebras provides
a homomorphism concept for hyperquasigroups [17, p. 146]. Nevertheless, a full
treatment of hyperquasigroups, including a further development of the ideas of
Section 10 below, somewhat along the lines of [1], would also require an analysis of
the corresponding homotopies. This topic is deferred to a later paper.

The most immediate connections between hyperquasigroups and quasigroups are
obtained as follows.
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Proposition 4.8. [24, Prop. 5.2] Let (Q, ·, /, \) be an equational quasigroup. Let
Ω be the symmetric group S3, interpreted as a reflexion-inversion space according
to Example 4.2. Setting

xy (1) = x · y , xy (13) = x/y , xy (23) = x\y ,
xy (12) = y · x , xy (123) = y/x , xy (132) = y\x ,

the pair (Q,Ω) becomes a hyperquasigroup.

Theorem 4.9. [24, Th. 6.1] Let (Q,Ω) be a hyperquasigroup. Then for each
element ω of the reflexion-inversion space Ω, there is an equational quasigroup
(Q, σω , στω , τσω ).

Corollary 4.10. [24, Cor. 6.2] Let (Q,Ω) be a hyperquasigroup. Then for each
element ω of the reflexion-inversion space Ω, there is a combinatorial quasigroup
(Q,ω).

5. Torsor hyperquasigroups

This section shows how torsors (principal homogeneous spaces) may be construed
as hyperquasigroups. Compare [2] for an elementary discussion of torsors and
their application in physics, or [3], [10, §4.5], [15] for their role in cohomology.
Proposition 7.7 will make use of the construction presented in this section.

For a set Q, let Ω = Q×S3 be the free left S3-set on the underlying set Q. Thus
ϖ(q, π) = (q,ϖπ) for ϖ, π in S3 and q in Q. The component at Q of the unit of
the free left S3-set adjunction is

η : Q → Ω; q 7→ (q, 1) .

As in Example 4.2, set σ = (1 2) and τ = (2 3). Then the reflexion σ(q, π) = (q, σπ)
and inversion τ(q, π) = (q, τπ) for q in Q and π in S3 make the free left S3-set Ω
a reflexion-inversion space. Now suppose that (Q, ·, e) is a group. Define a binary
action of Ω on Q by

(5.1) x2πx1π (x3π, π) = x2x
−1
3 x1

for x1, x2, x3 in Q and π in S3. Then (Q,Ω) is a hyperquasigroup, known as a
torsor hyperquasigroup for reasons that will become apparent below. Note that
(5.1) is a Mal’tsev operation (x2, x3, x1)P in the sense of [21]. Also note that (e, 1)
recovers the original group multiplication. Indeed, if π is an element of S3, then
the operations π of Proposition 4.8 correspond to the operations (e, π) in (5.1).

The torsor hyperquasigroup construction offers an interpretation of torsors or
principal homogeneous spaces construed as ternary algebras — Prüfer’s flocks or
Baer’s abstract cosets — within the language of hyperquasigroups (compare [6,
§II.6]).

Theorem 5.1. Let (Q,Ω) be a hyperquasigroup, in which Q is nonempty. Then
(Q,Ω) is a torsor hyperquasigroup if and only if the following conditions are satis-
fied:

(a) The reflexion-inversion space Ω is the free left S3-set on Q, with

σω = (1 2)ω and τω = (2 3)ω

for ω in Ω;
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(b) For all x, y in Q, the hyperidentity

yx yη = x = xyyη

holds;
(c) For all u, v, w, x, y in Q, the hyperidentity

(uw vη ) yxη = u (wy xη ) vη

holds.

Proof. First, suppose that (Q,Ω) is a torsor hyperquasigroup. Condition (a) then
holds directly by definition. By (5.1), condition (b) reduces to yy−1x = x = xy−1y
in the group Q. Similarly, condition (c) reduces to

(
uv−1w

)
x−1y = uv−1

(
wx−1y

)
in the group Q.

Conversely, suppose that a hyperquasigroup (Q,Ω), with Q nonempty, satsfies
the conditions (a)–(c) of the theorem. Using (a), a ternary operation may be defined
on Q by

(x, y, z)P = xz yη .

The conditions (b) and (c) then translate to

(5.2) (y, y, x)P = x = (x, y, y)P

and

((u, v, w)P, x, y)P = (u, v, (w, x, y)P )P

respectively, the identities [6, (6.10)] and [6, (6.9)] for flocks or abstract cosets. In
particular, (5.2) shows that P is a Mal’tsev operation on Q. Choosing an element e
of Q, it follows that xy = (x, e, y)P defines a group multiplication on Q with e as the
identity element, with inversion given by x−1 = (e, x, e)P , and more generally with
xy−1z = (x, y, z)P [6, (6.11)]. Thus x2x

−1
3 x1 = x2x1 (x3, 1). The remaining cases

of (5.1) are then recovered using hypercommutativity and hypercancellation. �

6. The Cayley graph

Let (Q,Ω) be a hyperquasigroup. For elements x of Q and ω of Ω, define the
(left) translation

(6.1) Lω(x) : Q → Q; y 7→ xyω

and right translation

(6.2) Rω(x) : Q → Q; y 7→ yxω

by analogy with (1.1) and (1.2). Note that

(6.3) Rω(x) = Lσω(x)

by hypercommutativity, and

(6.4) Lω(x)
−1 = Lτω(x)

by hypercancellativity. (The latter relation may be viewed as justification for the
use of the term “inversion” to describe τ .) The relation

Rω(x)
−1 = Rστσω(x)

follows from (6.3) and (6.4).
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The defining requirements of hypercommutativity and hypercancellativity may
be summarized by the diagram

(6.5)

x -
Rω(y)











�

Rτω(z)

y

J
J
J
J
JĴ

Rσω(x)

z

in terms of the right translations, or by the diagram

(6.6)

x -
Lω(y)











�

Lστσω(z)

y

J
J
J
J
JĴ

Lσω(x)

z

using left translations, with ω in Ω and x, y, z in Q. For example, the bottom line
of (6.5) gives z = xyω. The right leg then yields the hypercommutativity (4.4),
while the left leg yields the hypercancellativity (4.5). The equivalence of (6.5) with
(6.6) follows by replacement of ω with σω, and use of (6.3).

The (left) Cayley graph of the hyperquasigroup (Q,Ω) is defined as the directed
graph with vertex set Q, such that for each ordered pair (x, y) of elements of Q,
and for each element ω of Ω, there is a unique directed edge from x to y labeled
by Lω or Lω

(
xy τσω

)
. Note that (6.6) may be viewed as a fragment of the Cayley

graph of (Q,Ω). The right Cayley graph is defined similarly, using edges labeled Rω

or Rω

(
xy τω

)
from x to y instead. Thus (6.5) represents a fragment of the right

Cayley graph.

7. Translation groups

Let (Q,Ω) be a hyperquasigroup. For x in Q and ω in Ω, the translations Rω(x)
and Lω(x) are permutations (bijective self-maps) of Q — compare (6.3) and (6.4).

Definition 7.1. For a hyperquasigroup (Q,Ω), the translation group or mapping
group T (Q,Ω) is the subgroup

(7.1) ⟨Rω(x), Lω(x) | x ∈ Q , ω ∈ Ω⟩Q!

of the group Q! of permutations of Q generated by all the right and left translations
of the hyperquasigroup (Q,Ω).

Proposition 7.2. Suppose that (Q,Ω) is a hyperquasigroup in which the reflexion-
inversion space Ω is nonempty. Then:
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(a) The translation group acts transitively on Q;
(b) For each element ω of Ω, the combinatorial multiplication group Mlt(Q,ω)

of the quasigroup (Q,ω) is a subgroup of T (Q,Ω).

Proof. (a): For elements x and y of Q, consider z = xyω for some element ω of Ω.
Then

xRτω(z) = x
(
xyω

)
τω = y

by hypercancellativity.
(b): The generating set {Rω(x), Lω(x) | x ∈ Q} for Mlt(Q,ω) in Q! is a subset of
the generating set for T (Q,Ω) from (7.1). �

Remark 7.3. Given a quasigroup Q, one may use Proposition 4.8 to build a
hyperquasigroup (Q,S3). By Proposition 7.2(b), the combinatorial multiplication
group MltQ of Q is a subgroup of the translation group T (Q,S3). In general, MltQ
may be a proper subgroup of T (Q,S3). Recovery of MltQ from the hyperquasigroup
(Q,S3) requires use of the orthant structure discussed in Example 12.1 below.

Definition 7.4. The inner mapping group I(Q,Ω) of a hyperquasigroup (Q,Ω) is
defined as an abstract group isomorphic to a point stabilizer in the permutation
action of T (Q,Ω) on Q.

Proposition 7.2(a) shows that the inner mapping group of a hyperquasigroup
(Q,Ω) is well-defined. Note that I(Q,Ω) is trivial if either of Q or Ω is empty. If
Q and Ω are nonempty, it is convenient to identify I(Q,Ω) with any one of the
conjugate point stabilizers T (Q,Ω)x of an element x of Q in the permutation group
T (Q,Ω).

Example 7.5. Let Q be a group, construed as a hyperquasigroup (Q,S3) using
Proposition 4.8. Then the inner mapping group I(Q,S3) is the direct product
InnQ×⟨J⟩ of the inner automorphism group InnQ of Q with the group generated
by the inversion mapping J : Q → Q;x 7→ x−1.

The following result gives a simple illustration of the way that mapping groups
may sometimes be used to determine the structure of a hyperquasigroup.

Theorem 7.6. Let (Q,Ω) be a hyperquasigroup, for which the inner mapping group
is a normal subgroup of the translation group. Then precisely one of the following
holds:

(a) At least one of Q and Ω is empty;
(b) For each element ω of Ω, the quasigroup (Q,ω ) is an elementary abelian

group of exponent 2, coinciding with (Q, σω ) and (Q, τω ).

Proof. If (a) holds, then I(Q,Ω) is trivial. Suppose that Q and Ω are nonempty,
with respective elements e and ω. By Proposition 7.2(a), the translation group
T (Q,Ω) acts transitively on Q, so the stabilizers T (Q,Ω)x of points x of Q are
conjugate in T (Q,Ω). Since T (Q,Ω) acts faithfully on Q, the normal generic point
stabilizer I(Q,Ω) is trivial. By Proposition 7.2(b), the point stabilizer Mlt(Q,ω)e,
as a subgroup of the trivial stabilizer T (Q,Ω)e, is also trivial. It follows that the
quasigroup (Q,ω ) is (an) abelian (group) [23, Prop. 3.16]. As noted in Example 7.5,
the inversion mapping in this group yields an element of the inner mapping group
I(Q,Ω). Since that group is trivial, the group (Q,ω ) has exponent 2, thereby
coinciding with (Q, σω ) and (Q, τω ). �
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It is quite common for distinct (nonisomorphic, or even nonisotopic) quasigroups
to share the same combinatorial multiplication group. As a comparison between
quasigroup and hyperquasigroup behaviors, the following result illustrates a differ-
ent kind of phenomenon in which distinct hyperquasigroups may share the same
translation group. The group Z/2 is realized multiplicatively as ({±1}, ·).

Proposition 7.7. Let Q be a group. Let Z/2 act on Q×Q by

−1 : (q1, q2) 7→ (q2, q1) .

Consider the hyperquasigroup (Q,Q× S3) given by (5.1), and the hyperquasigroup
(Q,S3) given by Proposition 4.8. Then the translation group of each is the group
G appearing in the exact sequence

1 −→ Z(Q)
∆−→ (Q×Q)o Z/2

t−→ G −→ 1

with ∆ : z 7→ (z, z, 1) and t : (q1, q2, ε) 7→
(
x 7→ (q−1

1 xq2)
ε
)
.

8. Universal groups

Universal multiplication groups of quasigroups (in the variety of all quasigroups)
were described briefly in Section 2. This section introduces corresponding groups
associated with hyperquasigroups.

Definition 8.1. Let (Q,Ω) be a hyperquasigroup.

(a) The fully universal group or fully universal mapping group V (Q,Ω) is the
group with generating set Q× Ω and relations

(x, τω) = (x, ω)−1

for x in Q and ω in Ω.
(b) The universal group or universal mapping group U(Q,Ω) is the group with

generating set Q× Ω and relations

(x, τω) = (x, ω)−1 and (x, στσω) = (x, τστω)

for x in Q and ω in Ω.

There are two useful ways to consider the fully universal group.

Proposition 8.2. Let (Q,Ω) be a hyperquasigroup.

(a) Let τ\Ω denote the set of orbits of the group {1, τ} on the reflexion-inversion
space Ω. Then V (Q,Ω) is the free group on Q× (τ\Ω).

(b) The monoid reduct
(
V (Q,Ω), ·, 1

)
of the group

(
V (Q,Ω), ·, −1, 1

)
is gener-

ated by the set Q × Ω subject to the relations (x, τω)(x, ω) = 1 for x in Q
and ω in Ω.

Proof. Part (a) just moves between pairs of words {(x, τω), (x, ω)} under the rela-
tion (x, τω) = (x, ω)−1 and a single word indexed by the pair. The monoid relation
(x, τω)(x, ω) = 1 in Part (b) just restates the group relation (x, τω) = (x, ω)−1. �

Proposition 8.2(b) means that V (Q,Ω) is the set of those words in the alphabet
Q× Ω for which no letter (x, ω) is immediately followed by the letter (x, τω).

Proposition 8.3. Let (Q,Ω) be a hyperquasigroup.
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(a) There is a surjective group homomorphism

(8.1) V (Q,Ω) → T (Q,Ω); (x, ω) 7→ Lω(x)

providing a permutation representation of V (Q,Ω) on Q.
(b) The homomorphism (8.1) factors through a surjective group homomorphism

(8.2) U(Q,Ω) → T (Q,Ω); (x, ω) 7→ Lω(x)

providing a permutation representation of U(Q,Ω) on Q.

Proof. Part (a) follows directly from (6.3) and (6.4), while part (b) is a consequence
of the fact that

xy στσω = xy τστω

for x, y in Q and ω in Ω [24, Prop. 6.6]. �

The following result describes the universal property of U(Q,Ω).

Proposition 8.4. Let (Q,Ω) and (Q′,Ω) be hyperquasigroups. Suppose that for
each element ω of Ω, the quasigroup (Q,ω ) is a subquasigroup of (Q′, ω ). Then the
subgroup T ′(Q,Ω) of T (Q′,Ω) generated by

{Lω(q) : Q
′ → Q′ | q ∈ Q}

is a homomorphic image of the universal group U(Q,Ω).

Proof. There is a well-defined group monomorphism given by

j : U(Q,Ω) → U(Q′,Ω); (q, ω) 7→ (q, ω) .

The group T ′(Q,Ω) then appears as the image of U(Q,Ω) under the composite of
j with the permutation representation

U(Q′,Ω) → T (Q′,Ω); (x, ω) 7→ Lω(x)

given by (8.2) for (Q′,Ω). �

9. Universal stabilizers

For nonempty Ω, Proposition 7.2(a) shows that the permutation representations
of Proposition 8.3 are transitive. To describe the fully universal stabilizers V (Q,Ω)x
and universal stabilizers U(Q,Ω)x for x inQ, the respective point stabilizers of these
representations, it is helpful to define certain elements of the (fully) universal group.
When considering words in the (fully) universal groups V (Q,Ω) and U(Q,Ω) of a
hyperquasigroup (Q,Ω), it is generally convenient to write Lω(x) in place of (x, ω)
for x in Q and ω in Ω.

For α, β in Ω and x, a in Q, define

Γx(α, a, β) = Lα(a)Lβ(b)

with

b = axαx τσβ .
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Then Γx(α, a, β) represents the following circuit in the left Cayley graph of (Q,Ω):

(9.1)

x

Lα(a)

�
�
� Q

Q
Qs

axα

�
�

�
Q

Q
Qk

Lβ(b)

Example 9.1 (Group conjugations). Let (Q, ·, 1) be a group, construed as a hyper-
quasigroup (Q,S3) by Proposition 4.8. Under the permutation representations of
Proposition 8.3, the circuit Γ1(q, σ, τ) yields conjugation by an element q of Q.

For α, β, γ in Ω and x, a, b in Q, define

Γx(α, a, β, b, γ) = Lα(a)Lβ(b)Lγ(c)

with

c = b axαβ x τσγ .

Thus Γx(α, a, β, b, γ) represents the following circuit in the left Cayley graph of
(Q,Ω):

(9.2)

x �
Lγ(c)











�

Lα(a)

axα

J
J
J
J
JĴ

Lβ(b)

b
(
axα

)
β

Example 9.2. Let x and y be elements of a loop (Q, ·, 1), construed as a hyper-
quasigroup (Q,S3) by Proposition 4.8. Under the permutation representations of
Proposition 8.3, the circuit Γ1(1, x, 1, y, τ) yields the mapping L(x, y) introduced
by Bruck [6, IV, (1.5)].

Theorem 9.3. Let (Q,Ω) be a hyperquasigroup. For each element x of Q, the
(fully) universal stabilizer of x is generated by the set

(9.3) {Γx(α, a, β, b, γ),Γx(α, a, β) | a, b ∈ Q , α, β, γ ∈ Ω}

as a subgroup of U(Q,Ω).

Proof. First note that the elements of the set (9.3) fix x, by definition. Conversely,
suppose that an element w of V (Q,Ω) or U(Q,Ω) fixes x. By Proposition 8.2(b),
the element w is represented by a word w = Lα1(a1) . . . Lαn(an) in the alphabet
{Lα(a) | a ∈ Q , α ∈ Ω}. Induction on the length n of w will be used to show that
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w lies in the subgroup Γx generated by (9.3). If n = 0, the result is immediate. If
n = 1, then w may be written as the element

Lα1(xx τσα1)Lα1(xx τσα1)
−1Lα1(xx τσα1) = Γx(α1, x, τα1, x, α1)

of (9.3). If n = 2, then w is the element

Lα1(a1)Lα2(a2) = Γx(α1, a1, α2)

of (9.3). If n = 3, then w is the element

Lα1(a1)Lα2(a2)Lα3(a3) = Γx(α1, a1, α2, a2, α3)

of (9.3). Now suppose that n > 3. Write

u = Lα1(a1) . . . Lαn−2(an−2)

and a = xu. Since aLα1(ax τσα1) = x, the word

v = Lα1(a1) . . . Lαn−2(an−2)Lα1(ax τσα1)

of length n− 1 fixes x. By the induction hypothesis, v lies in Γx. But then so does

w = vLα1(ax τσα1)
−1Lαn−1(an−1)Lαn(an)

= vLτα1(ax τσα1)Lαn−1(an−1)Lαn(an)

= vΓx(τα1, ax τσα1, αn−1, an−1, αn) ,

as required to complete the induction. �

Remark 9.4. The generating set (9.3) admits an interpretation as its image in
T (Q,Ω) under the permutation representations of Proposition 8.3. It then provides
a generating set for I(Q,Ω) as the point stabilizer of x in T (Q,Ω). Theorem 9.3
may thus be traced back to Bruck’s classical determination of inner mapping groups
of loops [5, Th. I.3B]. For an alternative approach, with the particular advantage of
avoiding redundancy in the generating sets for the respective universal stabilizers,
one might apply the Schreier Subgroup Theorem [18, Th. 2.9]. This application
would be simplified by using Proposition 8.2(a) to give free generators for V (Q,Ω).

10. Hyperquasigroup transversals

Recall that a transversal L to a subgroup H of a group G is a complete set of
representatives for the cosets of H in G, so that G is the disjoint union

∑
l∈L Hl.

Now if G = Mlt(Q, ·) for a quasigroup (Q, ·), and x is an element of Q, then

(10.1) L = {L(q) | q ∈ Q}

is a transversal in G to the stabilizer Gx of x in G. Indeed, an element g of
G lies in the coset GxL(xg/x), while GxL(y) = GxL(z) for elements y, z of Q
implies y · x = xL(y) = xL(z) = z · x, so that y = z. Conversely, a quasigroup
structure (Q, ∗x) is defined on Q by the containment L(z)L(y) ∈ GxL(y ∗x z).
In particular, for a loop (Q, ·, e), one has (Q, ·) = (Q, ∗e), so the loop is recovered
from the transversal (10.1). This section examines comparable transversals to point
stabilizers in translation or universal groups of hyperquasigroups, and the recovery
of the hyperquasigroup structure from such transversals.

Let G be the translation group or (fully) universal group of a hyperquasigroup
(Q,Ω). For each element x of Q, consider the stabilizer Gx of x in the permutation
representation ofG onQ. For the translation group, the permutation representation
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is the defining representation T (Q,Ω) ↪→ Q!, while for the (fully) universal group,
it is given by Proposition 8.3.

Proposition 10.1. For elements x of Q and ω of Ω, the set

(10.2) Lω(Q) = {Lω(q) | q ∈ Q}
is a transversal to Gx in G.

Proof. Each element g of G has an expression of the form

g =
(
gLω

(
xgLτσω(x)

)−1
)
· Lω

(
xgLτσω(x)

)
with gLω

(
xgLτσω(x)

)−1
in Gx, since

xLω

(
xgLτσω(x)

)
=

(
x(xg) τσω

)
xω = x

(
x(xg) τσω

)
σω = xg

by hypercommutativity and hypercancellativity. Then

GxLω(y) = GxLω(z)

⇒ xy σω = xLω(y) = xLω(z) = xz σω

⇒ y = x(xy σω) τσω = x(xz σω) τσω = z

by hypercommutativity and hypercancellativity, so each coset representative in
(10.2) is unique. �

Recall that a transversal to a subgroup is said to be normalized if the identity
element represents the subgroup in the transversal. For example, a nonempty
quasigroup is a loop if and only if the corresponding transversal (10.1) is normalized.

Proposition 10.2. Let x be an element of Q, and let ω be an element of Ω. Then:

(a) The sets Lτω(x)Lω(Q) and Lτσω

(
xLτω(x)

)
Lσω(Q) both form normalized

transversals to Gx in G;
(b) The transversals of (a) are Gx-connected in the sense of [20], so that

(10.3) [Lτω(x)Lω(Q), Lτσω

(
xLτω(x)

)
Lσω(Q)] ⊆ Gx .

Proof. By Corollary 4.10 and [23, Cor. 2.2], the operation

y + z =
(
yLτσω

(
xLτω(x)

))
(zLτω(x)) ω

defines a loop on Q with identity element x. The sets of (a) are the transversals
given by the respective left and right multiplications in the loop. The commutator
condition (10.3) expresses the slight associativity [23, (1.14)] holding in the loop. �
Definition 10.3. The system

LΩ(Q) = {Lω(Q) | ω ∈ Ω}
of transversals is known as the hyperquasigroup transversal to Gx in G.

The hyperquasigroup structure (Q,Ω) is recovered from the hyperquasigroup
transversal as follows.

Theorem 10.4. Let (Q,Ω) be a hyperquasigroup. Let x and y be elements of Q.
Let ω be an element of Ω. Then the result xy ω of the action (4.3) of ω on the pair
(x, y) is given as the unique element z of Q for which the equation

(10.4) GxLσω(y)Lτω(x) = GxLστω(z)

holds within G.
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Proof. Consider the fragment

(10.5)

x -
Lστω(z)











�

Lσω(y)

z

J
J
J
J
JĴ

Lτω(x)

y

of the Cayley graph of (Q,Ω), obtained by replacing ω with στω and interchanging
y with z in (6.6). The left leg of (10.5) gives z = xLσω(y) = xy ω. Since

xLσω(y)Lτω(x)Lστω(z)
−1 = x ,

the cosets on each side of (10.4) coincide. By Proposition 10.1, the equation (10.4)
uniquely specifies the element z. �

11. Linear hyperquasigroups

Let A be an arbitrary group of automorphisms of an abelian group (or right
A-module) M . Define sets

(11.1)


Ω+,+

A = A×A ,

Ω−,+
A = (−A)×A ,

Ω+,−
A = A× (−A) ,

known respectively as the positive cone or first or 20-th orthant, the second or 21-st
orthant, and the the fourth or 22-nd orthant. The notation is motivated by the case
where M is the real line, and A is the group of positive scalars (see Figure 2.) (The

6

-

Ω+,+
AΩ−,+

A

Ω+,−
A

Figure 2. Orthant structure

“missing” third orthant is reprsented by Example 4.6.) Define

(11.2) ΩA = Ω+,+
A ∪ Ω−,+

A ∪ Ω+,−
A .

Note that the unions need not be disjoint, for example if M has exponent 2, or in
the case where M is the real line and A is the group of all nonzero real scalars. The
following proposition describes such situations.
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Proposition 11.1. Let A be a group of automorphisms of an abelian group M .
Suppose that the orthants (11.1) are not disjoint. Then:

(a) The orthants (11.1) coincide;
(b) If M is not of exponent 2, the group A contains a central involution.

Proof. If the orthants are not disjoint, there are elements a and b of A such that
a = −b. Then A = aA = −bA = −A, so the orthants coincide, and A contains the
automorphism −1 = ab−1. If M is not of exponent 2, the automorphism −1 is a
central involution. �
Corollary 11.2. If M is not of exponent 2, and A is simple or of odd order, then
the orthants (11.1) are disjoint.

Remark 11.3. Consider M as the additive group C of complex numbers, and A as
the 2-element group generated by complex conjugation. Then the orthants (11.1)
are disjoint, even though M is not of exponent 2, and the group A contains a central
involution.

Now define a reflexion

(11.3) σ : ΩA → ΩA; (r, s) 7→ (s, r)

and an inversion

(11.4) τ : ΩA → ΩA; (r, s) 7→ (−rs−1, s−1)

to make ΩA a reflexion-inversion space. The actions of the reflexion and inversion
on the orthants are given by the following Cayley diagram:

(11.5)

Ω−,+
A Ω+,+

AΩ+,−
A

τ σ

τσ�
��

�
��

The inherent triality symmetry is given explicitly here by the elements σ and τ
generating S3. At the elementary level, the Cayley diagram appears as follows:

(s, r)

(r, s)

(−sr−1, r−1)

(−rs−1, s−1)

(r−1,−sr−1)

(s−1,−rs−1)

τ σ

τ σ

σ τ

For (r, s) in ΩA, define a binary action on M by

(11.6) xy (r, s) = xr + ys

for x, y in M . Note the similarity of (11.6) with (3.1).

Definition 11.4. A hyperquasigroup is said to be linear if it has the form (M,ΩA),
with structure given by (11.3)–(11.6), for a group A of automorphisms of an abelian
group M . It is pointed if A is pointed by 0 and ΩA is pointed by (1, 1).
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The main result of this section demonstrates the equivalence of pointed linear hy-
perquasigroups with group representations (as automorphisms of an abelian group),
by showing how the abelian group M , automorphism group A, and action of A on
M are all recovered from the pointed linear hyperquasigroup structure (M,ΩA).

Theorem 11.5. Let (M,ΩA) be a pointed linear hyperquasigroup. Then:

(a) The addition and subtraction in the abelian group M are given by

x+ y = xy (1, 1)

and
x− y = xy (1,−1) = xy στ(1, 1)

for x, y in M ;
(b) The zero element of M is given as

0 = xxστ(1, 1)

for any element x of M ;
(c) The set

P = {L(r,s)(x) | (r, s) ∈ Ω+,+
A , x ∈ M}

of left translations from the positive cone is a subgroup of T (M,ΩA);
(d) The group A is the stabilizer P0 of 0 in the action of P on M ;
(e) For m in M and a in A, the equation

ma = 0m (1, a)

gives the action of a on m.

Proof. For the less immediate parts (c) and (d), it is convenient to implement the
split extension M o AutM of M by the automorphism group AutM as the set of
matrices [

α 0
m 1

]
with m in M and α in AutM . The map

(11.7) µ : T (M,ΩA) → M o (±A);L(r,s)(x) 7→
[
s 0
xr 1

]
is part of a similarity between the action of T (M,ΩA) on M and the action of
M o (±A) on the set of vectors

[
m 1

]
with m in M . Indeed, note that[

yL(r,s)(x) 1
]
=

[
xr + ys 1

]
=

[
y 1

] [ s 0
xr 1

]
for x, y in M and (r, s) in ΩA. The image of P under the matrix representation µ
of (11.7) is the subgroup {[

a 0
m 1

] ∣∣∣∣ a ∈ A , m ∈ M

}
of M o (±A), so (c) holds. Finally, since[

0 1
] [ a 0

m 1

]
=

[
m 1

]
for a in A and m in M , one has

P0µ =

{[
a 0
0 1

] ∣∣∣∣ a ∈ A

}
,



GROUPS, TRIALITY, HYPERQUASIGROUPS 19

yielding (d). �

12. Orthant structure

In Theorem 11.5, the orthant structure on the reflexion-inversion space ΩA of a
linear hyperquasigroup (M,ΩA) ensured recovery of the complete module structure
from the hyperquasigroup. This section examines two further cases where it is
possible to identify an orthant structure for the retrieval of “classical” information
from a hyperquasigroup. The first case uses the positive cone, while the other uses
the second and fourth orthants.

Example 12.1. Let (Q, ·) be a quasigroup, interpreted as a hyperquasigroup
(Q,S3) according to Proposition 4.8. An orthant structure on Ω = S3 is given
by the respective left cosets 

Ω+,+ = {1, σ} ,
Ω−,+ = {τ, τσ} ,
Ω+,− = {στ, στσ}

of the positive cone Ω+,+. Standard coset enumeration [8, Ch. 2 and §3.7] provides
a triality diagram analogous to (11.5). In this case, the set P of left translations
determined by points of the positive cone is the generating set

{L(q), R(q) | q ∈ Q}

for the (combinatorial) multiplication group Mlt(Q, ·) of the quasigroup Q.

Now let F be a field, with group F ∗ of nonzero elements. Define an orthant
structure

(12.1)


Ω+,+

F = {(m,−m) | m ∈ F ∗} ,
Ω−,+

F = {(1,m) | m ∈ F ∗} ,
Ω+,−

F = {(m, 1) | m ∈ F ∗}

on the reflexion-inversion space

(12.2) ΩF = Ω+,+
F ∪ Ω−,+

F ∪ Ω+,−
F

with reflexion

(12.3) σ : ΩF → ΩF ; (r, s) 7→ (s, r)

and inversion

(12.4) τ : ΩF → ΩF ; (r, s) 7→ (−rs−1, s−1) .
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For the case F = R, the geometry of the reflexion-inversion space is illustrated as:

g
g
6

g -

ww

w

�� ��Ω+,−
F

�� ��Ω−,+
F

�� ��Ω+,+
F

@
@
@

@
@

@@

@
@

@@
@

@

One obtains a triality diagram

Ω−,+
F Ω+,+

FΩ+,−
F

τ σ

τσ�
��

�
��

analogous to (11.5). Interpreting F ∗ as the group of scalar multiplications of the
additive group (F,+, 0) of the field F , the construction of Section 11 yields a linear
hyperquasigroup (F,ΩF∗). Within this hyperquasigroup, the reflexion-inversion
space ΩF of (12.2) furnishes a subhyperquasigroup (F,ΩF ). (Compare [17, II 2.1(3)]
for the concept of substructure in a heterogeneous algebra.)

It is the second and fourth orthants which yield the classical information in
this case, maximal families of mutually orthogonal quasigroups that define the
desarguean projective plane structure coordinatized by the field F . Recall that
combinatorial quasigroups (Q, ·) and (Q, ∗) are orthogonal if the map

Q×Q → Q×Q; (x, y) 7→ (x · y, x ∗ y)
is invertible.

Theorem 12.2. Let F be a field. Consider the hyperquasigroup (F,ΩF ). Then the
sets

(12.5) {(F, ω ) | ω ∈ Ω−,+
F }

and

(12.6) {(F, ω ) | ω ∈ Ω+,−
F }

each form maximal families of mutually orthoganal quasigroups on F .

Proof. Consider distinct elements (1,m) and (1,m′) of Ω−,+
F . Then∣∣∣∣1 m

1 m′

∣∣∣∣ = m′ −m ̸= 0

implies the orthogonality of the quasigroups
(
F, (1,m)

)
and

(
F, (1,m′)

)
. The same

argument applies for Ω+,−
F .
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The elements (1,m) of Ω−,+
F and (m−1, 1) of Ω+,−

F determine combinatorial
quasigroups

(
F, (1,m)

)
and

(
F, (m−1, 1)

)
which are not orthogonal. The element

(1,−1) of Ω−,+
F determines a quasigroup

(
F, (1,−1)

)
which is orthogonal to none

of the quasigroups (Q,ω ) with ω taken from Ω+,+
F . Similarly, none of these quasi-

groups is orthogonal to the combinatorial quasigroup
(
F, (−1, 1)

)
determined by

the element (−1, 1) of Ω+,−
F . Thus the two families (12.5) and (12.6) of mutually

orthogonal quasigroups are maximal. �
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