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Abstract. Quasilattices are algebraic structures that comprise a
semilattice-ordered system of lattices. In this paper, certain quasi-
lattices (that are characterized abstractly by a local completeness
property) provide an extension of Wille’s concept analysis to the
study of complex systems that function on a number of distinct
levels. In an important special case, a chain semilattice serves to
represent a time series governing the evolution of a single system.

Natural set representations of locally complete quasilattices have
opposed set inclusions describing order relations within a complete
lattice, and parallel set inclusions tracking homomorphisms that
connect distinct lattice fibers. In the time series model, the sets
that appear within the set representation accumulate successive
layers at each time point, establishing a mathematical model for
historical phenomena.

1. Introduction

The algebras (X,×,+) now known as quasilattices comprise two
semilattice structures, namely a meet semilattice (X,×) and a join
semilattice (X,+), satisfying the identities

[(x + y) × z] + [y × z] = (x + y) × z and

[(x× y) + z] × [y + z] = (x× y) + z

(Definition 2.7). They were first introduced by P lonka [12], under the
additional assumption that each semilattice operation distributes over
the other, and then studied in full generality by Padmanabhan [11].
Their structure (summarized in §2.6) is such that they decompose into
a semilattice-ordered system of lattices, which are mutually connected
by lattice homomorphisms. Furthermore, quasilattices are completely
determined by the features of their semilattice decomposition.
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A polarity is a relation between two sets, for example the fixed-
point relation between a well-behaved extension field and its Galois
group (§3.1). The polarity induces a Galois connection (essentially,
an adjointness relation) between the respective power sets, and then a
bijective Galois correspondence between the respective subsets of closed
sets, which form complete lattices (§3.2). In particular, this process
underlies the MacNeille completion of a poset, the general version of
the completion by Dedekind cuts of the ordered set of rational numbers
to the ordered set of extended reals (§3.4).

Under the title of concept analysis, Wille introduced a data-science
interpretation of the passage from a polarity to a complete lattice
(§3.3). The polarity is described as a context. In our slightly modified
English version of the terminology, the context attributes properties to
objects. Pairs of object sets and property sets related by the Galois
correspondence are known as concepts. The object set is the extent of
the concept, and the property set is its intent. The complete lattice
formed by the concepts is the concept lattice. Its order relation is given
both by direct inclusion of extents, and by reversed inclusion of intents.
Concept analysis is static — the context is fixed a priori, and flat —
there is no hierarchical structure partitioning the objects or properties
into distinct levels.

The fundamental goal of the current paper is to demonstrate how
concept analysis may be extended to complex systems that function
at various different levels indexed by a semilattice. Systems of this
type pervade mathematical biology. In [15, Example 9.11.2], a simple
but informative toy model was presented, where a stage-structured
species competes for limited resources with an unstructured species.
The interaction between the stages of the stage-structured species lies
at a lower, demographic level, while the competition between the two
species occurs at a higher, ecological level.

In a different interpretation of the same mathematical content, one
may consider a single flat system evolving over a series of discrete time
points. The arrow of time furnishes the time series with a semilattice
structure, namely a chain. In this fashion, we will obtain a dynamic
version of concept analysis. Going further, one might consider complex
systems that are evolving over time, possibly even with a varying semi-
lattice of complex levels at different time points. We will not discuss
all these diverse possibilities within the present paper. Indeed, because
of the space limitations that constrain our desire to exhibit explicitly
detailed illustrations such as Figure 1, our examples will all be taken
over the two-element semilattice (2.5) encoding a basic time step.
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In concept analysis, a single context gave rise to a complete lattice,
the concept lattice. In particular, the MacNeille completion allowed
each complete lattice to be represented as a concept lattice (§3.4). The
complex systems we study carry the data structure of a quasicontext or
complex polarity (Definition 5.1). The analogue of the concept lattice
for these data structures is the concept quasilattice (Definition 5.3).
Concept quasilattices have the abstract property of local completeness
(Definition 2.16). Theorem 5.4 then shows that each locally complete
quasilattice is the concept quasilattice of a complex polarity.

The single order relation on a concept lattice was given equally by
two different set representations: the direct inclusion of extents, or the
reversed inclusion of intents. In a concept quasilattice, there are two
separate order relations, a meet relation and a join relation. We thus
consider set representations of concept quasilattices in which the meet
relation is given by the direct inclusion of extents, and the join relation
is given by the reversed inclusion of intents. These representations are
illustrated by Figure 1 and (5.3).

In order to realize these set representations, the extents and intents
at successively higher levels of the hierarchy have to be constructed as
accumulations of so-called layers of history. The layers are the extents
and intents of the concepts appearing in the context at each lower (or
“earlier”) location within the hierarchy. The accumulation, illustrated
using slightly different conventions in Figure 1 and in (5.3), provides a
mathematical model for the cumulative effect of history that is observed
quite explicitly in fields such as geology or paleontology, and to a more
subtle but nonetheless pervasive degree in biology.

The plan of the paper is as follows. The abstract theory of quasi-
lattices is summarized in Section 2. The discussion of completeness,
local completeness, and fiber finiteness in §§2.8–2.10 appears to be
new. Section 3 reviews classical concept analysis. With the exception
of notational features that were specifically chosen for the purposes
of the present work, nothing here is original. Section 4 then covers
categorical aspects of classical concept analysis, introducing notions
briefly previewed in [10], and casting fresh light on aspects of concept
analysis that were considered previously for different purposes (such as
subdirect product constructions). Here, our treatment is similar to the
approach that is summarized and attributed to an unpublished preprint
of Moshier in [7], although we do stay closer to the terminology of [3,
Def’n. 69].

Complex concepts and their concept quasilattices are then treated
in Section 5. Since one of our primary goals is to examine concrete
set representations such as those illustrated in Figure 1 and (5.3), with
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their juxtaposition of parallel and reversed set inclusions, we restrict
our examples to the case where the underlying time or level ordering is
the two-element semilattice. Thus, we are deferring the analysis of more
elaborate, naturally occuring examples to subsequent consideration.
Another direction for future research raised by the current paper would
be to replace our use of concepts and complete lattices by approximable
concepts, Chu spaces, and complete, algebraic lattices, as discussed in
[5, 20].

While algebraic notation (arguments followed by functions) is taken
as the basic default option, we do occasionally use Eulerian notation
with functions on the left of their arguments. Readers are referred
to [18] for definitions and conventions that are not otherwise given
explicitly in the paper.

2. Quasilattices

2.1. Semilattices.

2.1.1. Semilattices as algebras and posets. As an algebra, a semilattice
is a commutative, idempotent semigroup. (In [6], these algebras were
described as “protosemilattices”.) Semigroup homomorphisms between
semilattices are described as semilattice homomorphisms.

Consider a semilattice (H,×). It is a meet semilattice (H,≤×) when
equipped with the order relation

(2.1) x ≤× y ⇔ x = x× y .

This relationship may be summarized by the slogan “common is lower”:
The element x, which is common to both sides of the equation in (2.1),
is the lower of the two arguments x, y in the order relationship of (2.1).

A semilattice (H,+) is a join semilattice (H,≤+) when equipped
with the order relation

x ≤+ y ⇔ x + y = y .

This relationship may be summarized as “common is upper.”
Order-theoretically, a meet semilattice is a poset in which each subset

{x, y} has a greatest lower bound x × y, while a join semilattice is a
poset in which each subset {x, y} has a least upper bound x+ y. Thus
in each of these cases, the semigroup operation is specified by the order
structure.

2.1.2. Semilattices as categories. A small category P is said to be a
poset category if for each pair x, y of objects of P, one has

|P(x, y) ∪P(y, x)| ∈ {0, 1} .
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The relation
x ≤ y ⇔ |P(x, y)| = 1

then creates a poset (P0,≤) on the object set P0 of P. Note that in
a poset category P, the only isomorphisms are the identity morphisms
at objects of P.

Remark 2.1. A meet semilattice (H,≤×) may be construed as a poset
category, where x×y is the product of x and y. Dually, a join semilattice
(H,≤+) may be construed as a poset category where x + y is the
coproduct of x and y.

2.1.3. Representations of semilattices.

Definition 2.2. Suppose that (H,≤×) is a meet semilattice and C is
a category.

(a) A C-representation of (H,≤×), or a representation of (H,≤×)
in the category C (or “C-valued presheaf”), is a contravariant
functor

(2.2) R : H → C

from H (considered as a poset category in accordance with
§2.1.2) to the category C.

(b) A morphism of C-representations of (H,≤×) is defined to be a
natural transformation between functors of the form (2.2).

(c) The functor category

(2.3) Ĥ = CHop

is the category of C-representations of (H,≤×).

2.2. Bisemilattices.

Definition 2.3. A bisemilattice (Q,×,+) is an algebra equipped with
binary operations × of meet and + of join, such that (Q,×) and (Q,+)
are semilattices. Then a function (Q,×,+) → (Q′,×,+) between
bisemilattices is a bisemilattice homomorphism if it entails semilattice
homomorphisms (Q,×) → (Q′,×) and (Q,+) → (Q′,+).

Definition 2.4. A bisemilattice (Q,×,+) is (globally) complete if for
each subset S of Q, the meets

∏
x∈S x and joins

∑
x∈S x exist in Q. Then

a function (Q,×,+) → (Q′,×,+) between complete bisemilattices is a
complete bisemilattice homomorphism if it preserves all the meets and
joins.

Remark 2.5. Our choice of notation for the two binary operations of
a bisemilattice in Definition 2.3, and thus for a quasilattice, is governed
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by Remark 2.1. This choice then allows us to use the general product
and sum notations, as in Definition 2.4, for a complete bisemilattice.

Lemma 2.6. Each finite bisemilattice is complete.

We will be considering three particular kinds of bisemilattice, namely
lattices (§2.3), quasilattices (§2.4), and (duplicated) semilattices (§2.5).
The concepts of completeness that are introduced in Definition 2.4 for
bisemilattices and homomorphisms restrict to the usual completeness
definitions for lattices [18, p. 221]. Indeed, a lattice homomorphism
between complete lattices is a complete (lattice) homomorphism if it
preserves arbitrary meets and joins. On the other hand, for the case
of semilattices, Definition 2.4 does not restrict to [2, Defn. O.2.11],
although finite semilattices are complete in that sense as well.

2.3. Lattices. For current purposes, it proves convenient to define
a lattice (L,×,+) as a bisemilattice consisting of a meet semilattice
(L,≤×) and a join semilattice (L,≤+), where ≤× and ≤+ are equal,
say to ≤ as a neutral notation. The agreement of ≤× and ≤+ is then
expressed algebraically by either of the two identities

x + (x× y) = x or x× (x + y) = x

known as absorption. A lattice homomorphism (L,×,+) → (L′,×,+)
is a bisemilattice homomorphism between lattices.

A lattice (L,×,+) is:

• bounded above if the semigroup (L,×) forms a monoid (L,×,⊤);
• bounded below if the semigroup (L,+) forms a monoid (L,+,⊥);
• bounded if it is bounded both above and below.

Here, the unit ⊤ is the upper bound, while the unit ⊥ is the lower
bound.

The category BLat of bounded lattices has the class of bounded
lattices as its object class, while the morphisms, the so-called bounded
lattice homomorphisms, are lattice homomorphisms preserving upper
and lower bounds. Write CLat for the category of complete lattice
homomorphisms between complete lattices [8, §I.4.3].

2.4. Quasilattices.

Definition 2.7. [11, Lemma 1] A bisemilattice (Q,×,+) is said to be
a quasilattice if the identities

[(x + y) × z] + [y × z] = (x + y) × z and

[(x× y) + z] × [y + z] = (x× y) + z

are satisfied.
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For the following, see [11, p.184, Footnote (3)].

Proposition 2.8. The class of lattices coincides with the class of quasi-
lattices in which the identity

x + (x× y) = x

is satisfied.

2.5. Duplicated semilattices. A duplicated semilattice (Q, ·, ·) is a
bisemilattice, each of whose operations is the multiplication of a given
semilattice (Q, ·) [14, 327].

Lemma 2.9. The class of (duplicated) semilattices coincides with the
class of quasilattices in which the identity

x + y = x× y

is satisfied.

The following characterization of duplicated semilattices may be
compared with the description of lattices given in §2.3.

Corollary 2.10. Duplicated semilattices are equivalent to quasilattices
(Q,×,+) in which the meet semilattice order ≤× and join semilattice
order ≤+ are dual.

2.6. The structure of quasilattices. Consider the categories SLat
and QLat of bisemilattice homomorphisms, whose respective object
classes consist of semilattices and quasilattices. Then the nameless
inclusion functor SLat ↪→ QLat has a left adjoint P : QLat → SLat,
the reflection or replica functor. The image QP of a quasilattice Q is
its semilattice replica. Write π : Q → QP for the unit of the adjunction,
interpreted as an analogue of a fiber bundle over a base space QP , with
Q as the total space of the bundle. (This analogy is made more explicit
in [16, §5.1.3].) Then for each point h in H = QP , the P lonka fiber
hR = π−1{h}, as a subquasilattice of Q, is actually a lattice. If h ≤× k
in QP , there is a uniquely defined lattice homomorphism

(h ≤× k)R : π−1{k} → π−1{h};x 7→ x + (x× y) = φhk(x)

that is independent of the choice of an arbitrary element y of π−1{h}.
These lattice homomorphisms are called the P lonka homomorphisms
of the quasilattice (Q,×,+). Altogether, the quasilattice Q specifies
a contravariant functor R : (H,≤×) → Lat from the poset category
(H,≤×), the semilattice replica of Q, to the category Lat of lattices.
In the terminology of §2.1.3, we have a Lat-representation of (H,≤×).
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Conversely, consider a Lat-representation R : (H,≤×) → Lat of
(H,≤×). A quasilattice structure is defined on the disjoint union⊎

h∈H hR by

x× y = x(h× k ≤× h)R × y(h× k ≤× k)R

and

x + y = x(h× k ≤× h)R + y(h× k ≤× k)R

for h, k ∈ H, along with x ∈ hR and y ∈ kR. These two constructions
provide an equivalence between the categories QLat and LatH

op

[11,
13], [15, Th. 4.3.2], [16, §6.1]. In the literature, contravariant functors
from (H,≤×) are sometimes taken in the form of covariant functors
from the dual join semilattice (H,≤+).

Example 2.11. Consider the lattice homomorphism φ : 3 → 2 × 2
from the three-element chain {0 < 1

2
< 1} to the direct square of the

two-element lattice 2 = {0 ≤ 1}, displayed as

(2.4) 1 �
φ

// 11

1
2

OO

+
φ

55kkkkkkkkkkkkkkkkkkkkk 01

??~~~~~~~~
10

__@@@@@@@@

0

OO

� φ // 00

__@@@@@@@@

??~~~~~~~~

using a convention where the elements of the direct square are written
simply as binary strings of length two. Note that the lattice structures
are presented by their Hasse diagrams, the directed graphs recording
the covering relations in the lattices. Thus the full order relations on
the lattices are the reflexive, transitive closures of the covering relations
displayed in the Hasse diagram.

Now consider the two-element meet semilattice

(2.5) H = {early → late}

which will often be interpreted as an encoding of a time interval. Take
the representation R : H → Lat with earlyR = 2×2, lateR = 3, and
(early → late)R = φ. The construction of this section then yields a
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quasilattice (Q,×,+) with

(2.6) 1 11oo

uukkkk
kkkk

kkkk
kkkk

kkkk
k

1
2

OO

01

??~~~~~~~~
10

__@@@@@@@@

0

OO

00oo

__@@@@@@@@

??~~~~~~~~

as the Hasse diagram of (Q,≤×) and

(2.7) 1 // 11

1
2

OO 55kkkkkkkkkkkkkkkkkkkkk 01

??~~~~~~~~
10

__@@@@@@@@

0 //

OO

00

__@@@@@@@@

??~~~~~~~~

as the Hasse diagram of (Q,≤+). These diagrams illustrate features
common to all quasilattices. For example, two elements lie in the same
lattice fiber if and only if they have the same order relationship in each
diagram. On the other hand, an order relationship under ≤+ records
the action of a lattice homomorphism if the dual relationship holds
under ≤×.

2.7. Small quasilattices. Here, we will consider the three 3-element
quasilattices which are neither lattices nor (duplicated) semilattices,
and one 4-element quasilattice. Their P lonka representations are given
below. Each has the two-element semilattice replica (2.5). Each of
the quasilattices is specified by its non-trivial P lonka homomorphism,
which is respectively:

• a complete lattice homomorphism,
• a complete meet semilattice homomorphism (thus preserving

arbitrary meets),
• a complete join semilattice homomorphism (namely: preserving

arbitrary joins), or
• a lattice homomorphism which preserves neither the upper nor

the lower bounds.
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2.7.1. The complete lattice homomorphism. Here, consider the P lonka
representation

(2.8) 10

wwppp
ppp

ppp
ppp

p

∞

0

OO

�

ggNNNNNNNNNNNNN

with the singleton {∞} as the early fiber, and the two-element lattice
{0 → 1} as the late fiber.

2.7.2. The complete meet semilattice homomorphism. Here, the P lonka
representation is

1 ∞�oo

0

OO

with the two-element lattice {0 → 1} as the early fiber; the singleton
{∞} is the late fiber. Recall that the empty meet in a complete semi-
lattice is the upper bound, preserved by the P lonka homomorphism in
this case.

2.7.3. The complete join semilattice homomorphism. Here, the P lonka
representation is

1

0

OO

∞�oo

with the two-element lattice {0 → 1} as the early fiber; the singleton
{∞} is the late fiber. Recall that the empty join in a complete semi-
lattice is the lower bound, preserved by the P lonka homomorphism in
this case.

2.7.4. No bounds preserved. Here, the P lonka representation is

1

1
2

OO

∞�oo

0

OO
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with the three-element lattice {0 → 1
2
→ 1} as the early fiber; the

singleton {∞} is the late fiber. Neither upper nor lower bounds are
preserved by the P lonka homomorphism in this case.

2.8. Complete quasilattices. The quasilattices that we will be using
as the analogues of concept lattices for complex systems will have a
property of local completeness, as introduced in §2.9 below. To put
that property into context, we begin by examining certain properties of
globally complete quasilattices. The first example shows that a P lonka
fiber of a complete quasilattice may not necessarily form a complete
lattice.

Example 2.12. Consider the following Lat-representation of the two-
element meet semilattice {early → late}:

• The image of the object early is the complete closed-interval
sublattice B = [0, 1] of (R,≤);

• The image of the object late is the open-interval sublattice
A = ]0, 1[ of (R,≤);

• The image of the morphism early → late is the embedding
j : A ↪→ B of the open unit interval A into the closed unit
interval B.

The quasilattice Q represented in this way is complete. Consider, for
instance, the subset S = {1/n | 1 < n ∈ Z} of A. Then

∑
x∈S x = 1/2

in A, while
∏

x∈S x = 0 in B, since 0 ×
∏

x∈S x = 0 ×
∏

x∈S j(x) = 0.
On the other hand, the P lonka fiber A is not a complete lattice.

The remainder of this section focusses on quasilattices where each
P lonka fiber is a complete lattice.

Lemma 2.13. Let (Q,×,+) be a quasilattice where each P lonka fiber
is a complete lattice. Let π : Q → H be the projection from Q onto its
semilattice replica. For each element h of H, set sh =

∏
q∈π−1{h} q.

(a) The equivalent relationships

r × sh = sh or sh ≤× r

hold for each element r of π−1{h}.
(b) One has

k ≤× h in (H,≤×) ⇔ sk ≤× sh in Q

for elements h, k of H.

Proof. (a) Note

r × sh = r ×
∏

q∈π−1{h}

q =
∏

q∈π−1{h}

q = sh
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for r ∈ π−1{h}.

(b) Suppose k ≤× h in (H,≤×). Consider the P lonka homomorphism

φkh : π−1{h} → π−1{k}; q 7→ φkh(q) .

Then sh× sk = φkh(sh)× sk = sk by (a), so that sk ≤× sh in (Q,×,+).
Conversely, suppose sk ≤× sh in Q, so that sh × sk = sk. Applying

the replica homomorphism π, one then has h× k = k, so that k ≤× h
in (H,≤×). □

Proposition 2.14. If (Q,×,+) is a complete quasilattice where each
P lonka fiber is a complete lattice, then the semilattice replica of Q is
complete.

Proof. Let π : Q → H be the projection onto the semilattice replica H
of Q. For each element h of H, set sh =

∏
q∈π−1{h} q, as in Lemma 2.13.

Let I be a subset of the semilattice replica H of (Q,×,+). Suppose
that

∏
j∈I sj = x in (Q,×). Then si × x = si ×

∏
j∈I sj =

∏
j∈I sj = x

for each i in I. Application of the replica homomorphism π yields
i × xπ = xπ, so that xπ ≤× i in (H,≤×). Thus xπ is a lower bound
for I in (H,≤×).

Now suppose that l is a lower bound for I in (H,≤×). Then by
Lemma 2.13, sl × si = sl for i ∈ I. Thus sl × x = sl ×

∏
j∈I sj = sl,

whence l ≤× xπ in (H,≤×). It follows that xπ is the greatest lower
bound for I in (H,≤×). □

Remark 2.15. Proposition 2.14 contrasts with the fact that a quotient
of a complete lattice need not be complete [1, Ex. V.1.9]. In other
words, a complete quasilattice may have a quotient which is not a
complete quasilattice.

2.9. Locally complete quasilattices.

Definition 2.16. A quasilattice (Q,×,+) is said to be locally complete
if its P lonka fibers are complete lattices and its P lonka homomorphisms
are complete lattice homomorphisms.

Example 2.17. The three-element quasilattice of §2.7.1 forms a locally
complete quasilattice.

Example 2.18. Each complete lattice forms a locally complete quasi-
lattice.

Since semilattices need not be complete, the following example shows
that local completeness does not imply global completeness.

Example 2.19. Each duplicated semilattice forms a locally complete
quasilattice.
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In terms of the representing functors to which they are equivalent,
locally complete quasilattices may be characterized as follows.

Proposition 2.20. Each locally complete quasilattice is represented
by a contravariant functor R : H → CLat from a semilattice to the
category of complete lattice homomorphisms. Conversely, the P lonka
sum of each such representation is a locally complete quasilattice.

Along with Examples 2.12 and 2.19, the following proposition serves
to demonstrate the independence of the two concepts of global and
local completeness.

Proposition 2.21. A globally complete quasilattice having complete
P lonka fibers need not be locally complete.

Proof. Consider the three quasilattices of the respective paragraphs
2.7.2–2.7.4. Since the quasilattices and their P lonka fibers are finite,
they are complete. On the other hand, they are not locally complete,
since their P lonka homomorphisms are not full bounded lattice homo-
morphisms. □

2.10. Fiber finite quasilattices.

Definition 2.22. A quasilattice (Q,×,+) is said to be fiber finite if
its P lonka fibers are finite lattices.

Lemma 2.23. There is a left adjoint E : Lat → BLat to the forgetful
functor V : BLat → Lat from the category of bounded lattices (and
their homomorphisms) to the category of lattices. Then the left adjoint
restricts and corestricts to a functor E : FinLat → FinBLat between
the corresponding categories of finite lattices.

Proof. The existence and nature of the left adjoint is guaranteed on
general grounds by [18, Th. IV.3.4.4]. □

For a finite lattice L, the unit L → LEW of the adjunction in
Lemma 2.23 embeds L into the disjoint union of L with {⊥,⊤}, where
⊥ is an added lower bound and ⊤ is an added upper bound. Lemma 2.23
may be contrasted with the following observation.

Proposition 2.24. The forgetful functor W : CLat → Lat, from the
category of complete lattices to the category of lattices, does not have a
left adjoint.

Proof. Suppose such a left adjoint, say D : Lat → CLat, existed. Now
the underlying set functor U : Lat → Set, from the category of lattices
to the category of sets, has the free lattice functor F : Set → Lat
as a left adjoint. Then the composite left adjoint FD : Set → CLat
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would yield a free complete lattice {x, y, z}FD on a three-element set
{x, y, z}. However, no such object exists [8, §I.4.7]. □

Theorem 2.25. Fiber finite quasilattices embed into locally complete
quasilattices.

Proof. Consider a fiber finite quasilattice (Q,×,+), represented by a
contravariant P lonka functor R : H → FinLat from a semilattice to
the category of finite lattice homomorphisms. Then Q embeds into
the quasilattice Q that is represented by the contravariant functor
RE : H → FinBLat from the semilattice H to the category of finite
bounded lattices (using the restriction E : FinLat → FinBLat of the
left adjoint functor E : Lat → BLat of Lemma 2.23). Now since the
lattice fibers of Q are still finite, the functor RE may be extended to
the composite

H
R−−→ FinLat

E−−→ FinBLat ↪→ CLat

that represents Q (according to Proposition 2.20) as a locally complete
quasilattice containing Q. □

An application of Theorem 2.25 is discussed in Section 5.3.

3. Classical concept analysis

This section recalls the basic features of classical concept analysis,
with special emphasis on those aspects that turn out to be important
for the subsequent extension to complex concept analysis.

3.1. Polarities. Suppose that Ω is a set. Its elements are described as
objects. Let Π be a set, whose elements are described as properties. Let
α be a subset of Ω×Π, considered as a relation of attribution between Ω
and Π. Thus if (x, p) ∈ α (or equivalently x α p), we say that property
p is attributed to (or is an attribute of) object x. The triple (Ω,Π, α)
is called a polarity [1, §V.7] or NK-structure [4] or context [3, 19].

Example 3.1. We collect a number of standard instances of polarities.

(1) For a set X, take (X,X, ̸=) [19].
(2) For a poset H, take (H,H,≤).
(3) For a field extension F ↪→ E, suppose that [F,E] is the set of all

intermediate fields. Let G be the Galois group of the extension,
the group of automorphisms of E that fix F . For K ∈ [F,E]
and g ∈ G, write K α g if g fixes each element of K. Then
([F,E], G, α) is a polarity.
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3.2. The Galois connection. For a set X of objects, define

(3.1) Xr = {p ∈ Π | ∀ x ∈ X , x α p}

as the set of properties common to all objects in X. Dually, for a set P
of properties, define

(3.2) P s = {x ∈ Ω | ∀ p ∈ P , x α p}

as the set of objects attributed to all properties in P. The specifications
(3.1) and (3.2) yield a pair

(3.3)
(
2Ω,⊆

) r -- (
2Π,⊇

)
s

mm

of order-preserving functions, an adjoint pair of functors between poset
categories [18, III §3.3]. Following Example 3.1(3), the pair (3.3) is
known as a Galois connection. It restricts to a pair

(3.4)
(
2Πs,⊆

) r -- (
2Ωr,⊇

)
s
mm

of mutually inverse order-preserving functions, a Galois correspondence,
between the respective images 2Ωr and 2Πs of the functions r and s from
(3.3).

3.3. Classical concept lattices. We will now recall and augment the
terminology of formal concept analysis [3, 19], using a notation that
reflects our English nomenclature.

Definition 3.2. Consider a polarity or context (Ω,Π, α), with Galois
correspondence (3.4).

(a) Elements of 2Ωr and 2Πs are described as closed.
(b) A concept of the context is an ordered pair

(3.5) (A|B)

in 2Πs × 2Ωr (written using a vertical line as the separator),
with Ar = B and Bs = A.

(c) The closed set A is the extent of the concept (3.5).
(d) The closed set B is the intent of the concept (3.5).
(e) The conceptualization of an object x ∈ Ω is the concept xε =

({x}rs|{x}r).
(f) The conceptualization of a property p ∈ Π is the concept pη =

({p}s|{p}sr).
(g) As a set, the concept lattice L(Ω,Π, α) is the set of all concepts

of the context (Ω,Π, α).
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While the following lemma is standard, it deserves special emphasis,
since it will assume an extra significance in the extension from classical
to complex concept analysis.

Lemma 3.3. Given concepts (A1|B1), (A2|B2) of a context (Ω,Π, α),
one has A1 ⊆ A2 if and only if B1 ⊇ B2.

Proof. If A1 ⊆ A2, the order-preserving property of r from (3.3) implies
B1 = Ar

1 ⊇ Ar
2 = B2. The “if” claim is dual. □

Definition 3.4. As a bisemilattice, the concept lattice

(3.6)
(
L(Ω,Π, α),×,+

)
of the context (Ω,Π, α) is specified by the order relations

(3.7) (A1|B1) ≤× (A2|B2) ⇔ A1 ⊆ A2

and

(3.8) (A1|B1) ≤+ (A2|B2) ⇔ B1 ⊇ B2

for (A1|B1), (A2|B2) ∈ L(Ω,Π, α). These order relations correspond
respectively to

(3.9) (A1|B1) × (A2|B2) =
(
A1 ∩ A2

∣∣(A1 ∩ A2)
r
)

and

(3.10) (A1|B1) + (A2|B2) =
(
(B1 ∩B2)

s
∣∣B1 ∩B2

)
as semilattice operations. Write ≤ for the equal relations ≤× and ≤+

in a concept lattice.

The following lemma shows how a polarity may be recovered from
its concept lattice (compare the proof of [3, Satz/Th. 3]).

Lemma 3.5. Let (Ω,Π, α) be a context. Then for x ∈ Ω and p ∈ Π,
the following are equivalent:

(a) (x, p) ∈ α ;
(b) {x}rs ⊆ {p}s ;
(c) {x}r ⊇ {p}sr ;
(d) ({x}rs|{x}r) ≤ ({p}s|{p}sr) ;
(e) xε ≤ pη.

Theorem 3.6. [1, V Th.19][3, Satz/Th. 3] The concept lattice (3.6) is
a complete lattice.
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Proof. By Lemma 3.3, the two orders (3.7) and (3.8) agree, so that
(3.6) is a lattice. Then for a subset {(Ai|Bi) | i ∈ I} of L(Ω,Π, α), one
has

(3.11)
∏
i∈I

(Ai, Bi) =
(⋂

i∈I

Ai

∣∣∣(⋂
i∈I

Ai

)r)
and

(3.12)
∑
i∈I

(Ai, Bi) =
((⋂

i∈I

Bi

)s∣∣∣⋂
i∈I

Bi

)
in L(Ω,Π, α). □

Remark 3.7. In the concept lattice meet operations (3.9), (3.11) and
join operations (3.10), (3.12), one side is “natural” in the sense of only
involving intersections, while the other side is “unnatural” in that it
also involves one of the two functions r, s from (3.4). A similar split
may be observed in various applications of lattices, where one of the
two lattice operations has a lower complexity than the other [17].

3.4. Concept lattices and MacNeille completions. The following
result provides a converse to Theorem 3.6.

Theorem 3.8. [3, Satz/Th. 3] Let L be a complete lattice. Then L is
isomorphic to the concept lattice L(L,L,≤) of the polarity (L,L,≤).

In this context, it is instructive to recall the original definition of the
(Dedekind-)MacNeille completion [9].

Definition 3.9. Let (P,≤) be a partially ordered set. The MacNeille
completion of (P,≤) is the complete lattice L(P, P,≤),

Example 3.10. Let (Ω,Π, α) be a context. Define a partial order
(P,≤) on the disjoint union P of Ω and Π by setting x < p, for x in
(the embedded version of) Ω and p in (the embedded version of) Π, if
and only if (x, p) ∈ α. Then L(P, P,≤) = L(Ω,Π, α).

Proposition 3.11. [9, §11] Let (P,≤) be a partially ordered set. Then
the conceptualization

(3.13) η : P → L(P, P,≤); p 7→ ({p}s|{p}sr)

of Definition 3.2(f) is an order-preserving embedding of the partially
ordered set (P,≤) into

(
L(P, P,≤),≤

)
.

Remark 3.12. In the context of Proposition 3.11, one should note
that pη = (p≥|p≤) = pε for p ∈ P .
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Example 3.13. Consider the two-element antichain {a, b}, described
by the following poset context:

(3.14)
≤ a b
a ×
b ×

.

Abstractly, its MacNeille completion is isomorphic to the lattice 2×2,
the direct square of a two-element chain. Here,

(3.15) (ab|Ø)
mM

||yy
yy
yy
yy

� q

""E
EE

EE
EE

E

(a|a)

- 

<<yyyyyyyy

� q

""E
EE

EE
EE

E (b|b)Q1

bbEEEEEEEE

mM

||yy
yy
yy
yy

(Ø|ab)Q1

bbEEEEEEEE - 

<<yyyyyyyy

gives a set-theoretical representation of the respective order relations
(3.7) and (3.8) on the concept lattice. For compactness, subsets are
written as concatenations of their elements.

Corollary 3.14. [9, Th. 11.9] If (P,≤) is a (bounded) lattice, then
(3.13) is a (bounded) lattice homomorphism.

Example 3.15. Consider the three-element chain 3 = {0 < 1
2
< 1},

which corresponds to the following poset context:

(3.16)

≤ 0 1
2

1

0 × × ×
1
2

× ×
1 ×

.

Its MacNeille completion is abstractly isomorphic to 3, by means of
the bounded lattice isomorphism (3.13). Then

(3.17) (01
2
1|1)
� _

��

(01
2
|1
2
1)

?�

OO

� _

��

(0|01
2
1)

?�

OO
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gives a set-theoretical representation of the respective order relations
(3.7) and (3.8), where subsets are again written as concatenations of
their elements.

Remark 3.16. The lattice set representations (3.15) and (3.17) will
reappear later as lattice fibers in a quasilattice set representation.

3.5. Bonds.

Definition 3.17. [3, §5.1] Consider a domain context (Ωd,Πd, αd) and
a codomain context (Ωc,Πc, αc). Then a bond from the domain to the
codomain is a relation βdc ⊆ Ωd × Πc such that:

(a) For each domain object x, the set

(3.18) xβdc = {q ∈ Πc | x βdc q}
is an intent in the codomain, and dually

(b) For each codomain property q, the set

(3.19) βdcq = {x ∈ Ωd | x βdc q}
is an extent in the domain.

Example 3.18. For any domain context (Ωd,Πd, αd) and any codomain
context (Ωc,Πc, αc), the relation Ωd×Πc forms a bond from (Ωd,Πd, αd)
to (Ωc,Πc, αc), since Πc = Øs in (Ωc,Πc, αc) and Ωd = Ør in (Ωd,Πd, αd).

Example 3.19. For any context (Ω,Π, α), the polarity α is a bond
from (Ω,Π, α) to (Ω,Π, α). Indeed, comparing (3.18) with (3.1) and
(3.19) with (3.2) shows that

(3.20) xα = {x}r and αp = {p}s

for x ∈ Ω and p ∈ Π.

The notation of (3.18) and (3.19) is extended to subsets X of Ωd and
P of Πc, so that

(3.21) Xβdc = {p ∈ Πc | ∀ x ∈ X , x βdc p} =
⋂
x∈X

xβdc

and

(3.22) βdcP = {x ∈ Ωd | ∀ p ∈ P , x βdc p} =
⋂
p∈P

βdcp

[3, Defn. 17]. Thus in the situation of Example 3.19, one has

Xr = Xα = {p ∈ Π | ∀ x ∈ X , x α p}
and

P s = αP = {x ∈ Ωd | ∀ p ∈ P , x α p}
for X ⊆ Ω and P ⊆ Π.
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Lemma 3.20. Let βdc be a bond from (Ωd,Πd, αd) to (Ωc,Πc, αc).

(a) For each subset X of Ωd, the set Xβdc is the intent of∑
x∈X

(
(xβdc)s

∣∣xβdc
)

in L(Ωc,Πc, αc).
(b) For each subset P of Πd, the set βdcP is the extent of∏

p∈P

(
βdcp

∣∣(βdcp)r
)

in L(Ωc,Πc, αc).

Proof. (a) Use Definition 3.17(a), (3.21), and (3.12).

(b) Use Definition 3.17(b), (3.22), and (3.11). □

4. Categorical aspects of classical concept analysis

4.1. The category of bonds.

Proposition 4.1. [3, §5.1] Let βdc be a bond from (Ωd,Πd, αd) to
(Ωc,Πc, αc). Let βcb be a bond from (Ωc,Πc, αc) to (Ωb,Πb, αb).

(a) The relation

βdcβcb =
⋃

(A|B)∈L(Ωc,Πc,αc)

βdcB × Aβcb

= {(x, n) ∈ Ωd × Πb | (xβdc)s ⊆ βcbn}(4.1)

is a bond from (Ωd,Πd, αd) to (Ωb,Πb, αb).
(b) Suppose that βdb is a bond from (Ωd,Πd, αd) to (Ωb,Πb, αb).

Then βdb ⊆ βdcβcb if and only if

(4.2) xβdb ⊆
((
xβdc

)s)βcb

for all x ∈ Ωd, or

(4.3) βdbn ⊆ βdc
((

βcbn
)r)

for all n ∈ Πb.
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Remark 4.2. The condition (4.1) on a pair (x, n) from Ωd × Πb to be
in βdcβcb may be summarized by the following diagram:

x

&&MM
MMM

MMM
MMM

MM

βdc

&&
y

βcb &&MM
MMM

MMM
MMM

MMM
αc m m′

n

Here, the object y from Ωc is αc-related to all of the elements m, . . . ,m′

that are βdc-related to x. Thus y represents a typical element of (xβdc)s.
The diagram then expresses the defining requirement (4.1) for such an
element to lie in βcbn; namely, that it should be βcb-related to n. This
diagrammatic representation of the bond product may be contrasted
with the representations used in [3, §5.1].

Proposition 4.3. Let βdc be a bond from (Ωd,Πd, αd) to (Ωc,Πc, αc).
Then αdβdc = βdc and βdcαc = βdc.

Proof. Suppose that an element (x, q) of Ωd × Πc lies in αdβdc, so that

{x}rs = (xαd)s ⊆ βdcq = {y ∈ Ωd | y βdc q} .

Then since {x} ⊆ {x}rs, it follows that x βdc q. Hence αdβdc ⊆ βdc.
Conversely, consider an arbitrary element q of Πc. Then

βdcq ⊆
(
βdcq

)rs
= αd

((
βdcq

)r)
,

so βdc ⊆ αdβdc by (4.3).
Dually, suppose that an element (x, q) of Ωd × Πc lies in βdcαc, so

that

(4.4) (xβdc)s ⊆ αcq = {q}s .

Since βdc is a bond, the set xβdc is closed. Applying the order-reversing
map r to (4.4) then yields

xβdc =
(
xβdc

)sr ⊇ {q}sr ⊇ {q}

or x βdc q. Hence βdcαc ⊆ βdc. Conversely, consider an arbitrary
element x of Ωd. Then

xβdc ⊆
(
xβdc

)sr
=

((
xβdc

)s)αc
,

so βdc ⊆ βdcαc by (4.2). □
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Proposition 4.4. Let βdc be a bond from (Ωd,Πd, αd) to (Ωc,Πc, αc).
Let βcb be a bond from (Ωc,Πc, αc) to (Ωb,Πb, αb). Let βba be a bond
from (Ωb,Πb, αb) to (Ωa,Πa, αa). Then(

βdcβdc

)
βdc = βdc

(
βdcβdc

)
,

so the product (4.1) of bonds is associative.

Proof. Using the conventions of Remark 4.2, consider the following
diagram:

x

&&MM
MMM

MMM
MMM

MM

βdc

&&
y

&&LL
LLL

LLL
LLL

LLL

βcb

&&

αc m m′

z

βba
&&MM

MMM
MMM

MMM
MMM

αb n n′

p

The (indirect) connections from x to the elements n, . . . , n′ represent
that x is βdcβcb-related to the elements n, . . . , n′ of xβdcβcb . Thus the
diagram represents an element (x, p) of

(
βdcβdc

)
βdc. On the other hand,

the indirect connection from y to p represents that y is βcbβba-related
to the element p of Πa, so the diagram as a whole represents that (x, p)
is also an element of βdc

(
βdcβdc

)
. In other words, an element (x, p) of

Ωd × Πa lies in
(
βdcβdc

)
βdc if and only if it lies in βdc

(
βdcβdc

)
. □

Definition 4.5. The category Bond of bonds has the class of contexts
as its object class, and the class of bonds as its morphism class. The
product of morphisms is given by (4.1). The identity morphism at a
context (Ω,Π, α) is the bond α.

4.2. The category of bond pairs.

Definition 4.6. Let (Ωd,Πd, αd) be a domain context. Let (Ωc,Πc, αc)
be a codomain context. Then a bond pair (βdc, βcd) from (Ωd,Πd, αd)
to (Ωc,Πc, αc) consists of a bond βdc from (Ωd,Πd, αd) to (Ωc,Πc, αc)
and a bond βcd from (Ωc,Πc, αc) to (Ωd,Πd, αd).

Lemma 4.7. (a) If (Ω,Π, α) is a context, then (α, α) is a bond pair
from (Ω,Π, α) to (Ω,Π, α).

(b) If (βdc, βcd) is a bond pair from (Ωd,Πd, αd) to (Ωc,Πc, αc), then
(βcd, βdc) is a bond pair from (Ωc,Πc, αc) to (Ωd,Πd, αd).
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Lemma 4.8. Suppose that (βdc, βcd) is a bond pair from (Ωd,Πd, αd)
to (Ωc,Πc, αc), and that (βcb, βbc) is a bond pair from (Ωc,Πc, αc) to
(Ωb,Πb, αb). Then

(4.5) (βdc, βcd)(βcb, βbc) := (βdcβcb, βbcβcd)

is a bond pair from (Ωd,Πd, αd) to (Ωb,Πb, αb).

Lemma 4.9. Suppose that (βdc, βcd) is a bond pair from (Ωd,Πd, αd)
to (Ωc,Πc, αc). Then the equations (αd, αd)(βdc, βcd) = (βdc, βcd) and
(βdc, βcd)(αc, αc) = (βdc, βcd) hold.

Proof. Apply Proposition 4.3. Thus

(αd, αd)(βdc, βcd) = (αdβdc, βcdαd) = (βdc, βcd) ,

and similarly for the other equation. □

Definition 4.10. The category BdPr of bond pairs comprises the class
of contexts as its object class. The class of bond pairs is its morphism
class. The product of morphisms is given by (4.5). Then the identity
morphism at a context (Ω,Π, α) is the bond pair (α, α).

4.3. Concept lattice homomorphisms and bond pairs. In this
paragraph, we consider the correspondence connecting certain bond
pairs with complete lattice homomorphisms between concept lattices.
To understand these results better, it is convenient to consider the
category CtLt of concept lattices and complete lattice homomorphisms
between them. Note that there is an inclusion functor

(4.6) A : CtLt ↪→ CLat

known as abstraction.

Definition 4.11. Consider a given bond pair (βdc, βcd) from a domain
context (Ωd,Πd, αd) to a codomain context (Ωc,Πc, αc). The bond pair
is a bonding if the condition

(4.7) ∀ (A|B) ∈ L(Ωd,Πd, αd) ,
(
Aβdc

)r
= βcdB and

(
βcdB

)s
= Aβdc

is satisfied.

Proposition 4.12. [3, §7.2] For a domain context (Ωd,Πd, αd) and a
codomain context (Ωc,Πc, αc), suppose that

φ : L(Ωd,Πd, αd) → L(Ωc,Πc, αc)

is a complete lattice homomorphism. Define

(4.8) βdc = {(x, q) ∈ Ωd × Πc | xεφ ≤ qη}
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and

(4.9) βcd = {(y, p) ∈ Ωc × Πd | yε ≤ pηφ} .

Then (βdc, βcd) is a bonding from (Ωc,Πc, αc) to (Ωd,Πd, αd).

Proposition 4.13. [3, §7.2] For a domain context (Ωd,Πd, αd) and a
codomain context (Ωc,Πc, αc), suppose that there is a bonding (βdc, βcd)
from the domain to the codomain. Then

L(Ωd,Πd, αd) → L(Ωc,Πc, αc) : (A|B) 7→
(
βcdB

∣∣Aβdc
)

defines a complete lattice homomorphism.

The construction of Proposition 4.12 gives a functor CtLt → BdPr.
(Functoriality follows along the lines of [3, Hilfs./Prop. 113].) Then
the image of this functor enables one to consider a category Bdg of
bondings as a subcategory of BdPr. Thus Propositions 4.12 and 4.13
provide an isomorphism

(4.10) L : Bdg → CtLt

from Bdg to CtLt.

Example 4.14. Suppose that φ : 3 → 2 × 2 is the complete lattice
homomorphism from the three-element chain to the direct square of
the two-element chain taking the intermediate element 1

2
of 3 to the

upper bound of 2× 2. Interpreting the domain and codomain of φ as
the respective concept lattices presented in Examples 3.13 and 3.15, we
have φ : (01

2
1|1), (01

2
|1
2
1) 7→ (ab|Ø) , (0|01

2
1) 7→ (Ø|ab) as the action of

the complete lattice homomorphism. The preimage bonding (βdc, βcd)
under (4.10) is given by βdc = {(0, a), (0, b)} in record of the fact that
the image of 0ε is below aη and bη, according to (4.8), and βcd =
{(a, 1

2
), (b, 1

2
), (a, 1), (b, 1)} recording that aε and bε are below the image

of 1η, according to (4.9). The bonding may be displayed as

(4.11)

0 1
2

1 a b

0 × × × × ×
1
2

× ×
1 ×
a × × ×
b × × ×

in conjunction with the contexts from Examples 3.13 and 3.15.
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5. Concept quasilattices

We are now in a position to extend the ideas of concept analysis
to complex systems with a number of distinct levels that are indexed
by a semilattice. The semilattice may be representing a hierarchical
arrangement of levels in a complex system. As an alternative, in the
case in which the underlying semilattice is a chain, it may be interpreted
as presenting a series of time points. A quasilattice with a semilattice
replica of this type may be describing the history of a context, with
its concomitant concept lattice, that is evolving over the time series.
These quasilattices may be considered as dynamic versions of concept
lattices. In general, regardless of whether the underlying semilattice
is a chain or not, it turns out to be convenient to use a temporal
terminology (“earlier,” “later,” etc.), as was done in (2.5). In fact,
as complex structures evolve, the higher levels in their hierarchy tend
to arise later in the evolution, emerging on the basis of lower, earlier
levels.

5.1. Complex polarities. We begin by extending the ideas of §3.1
to complex systems with a hierarchy of distinct levels, indexed by a
semilattice.

Definition 5.1. A complex polarity or quasicontext is a contravariant
functor P : H → Bdg from a semilattice to the category of bondings.

Example 5.2. The polarities and bonding displayed in (4.11) may be
interpreted as a complex polarity P : H → Bdg from the time interval
semilattice H of (2.5):

• The image of the object early is the poset context (3.14) from
Example 3.13;

• The image of the object late is the poset context (3.16) from
Example 3.15;

• The image of the morphism early → late is the bonding
(4.11).

Note that polarities or contexts in the traditional sense are complex
polarities or quasicontexts for which the indexing semilattice H is a
singleton.

5.2. The concept quasilattice of a complex polarity. As recorded
in Theorem 3.6, concept lattices are complete. The quasilattices that
we will be using as the analogues of concept lattices for complex systems
will have the property of local completeness, as introduced in §2.9.
Recall the isomorphism functor L of (4.10) and the abstraction functor
A of (4.6).
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Definition 5.3. Suppose that P : H → Bdg is a complex polarity.
Then the concept quasilattice of P is the locally complete quasilattice
that is given, according to Proposition 2.20, by the P lonka sum of the
representation

H
P−−→ Bdg

L−−→ CtLt
A−−→ CLat

of the semilattice H in the category CLat of complete lattices.

Consider the complex polarity that was presented in Example 5.2.
The concept quasilattice of this complex polarity is given abstractly
by the representation R : {early → late} → Lat that was exhibited
in Example 2.11. The representation may actually be taken to be a
contravariant functor R : {early → late} → CLat, in view of the
fact that φ : 3 → 2 × 2 is indeed a complete lattice homomorphism.
The respective meet semilattice and join semilattice structures of the
abstract quasilattice are given by the Hasse diagrams (2.6) and (2.7).
These Hasse diagrams then appear within the set representation of the
concept quasilattice that is displayed in Fig. 1. Here, the separate meet-
semilattice and join-semilattice order relationships between concepts
correspond to containments of extents and intents, exactly as in the
classical concept lattice specifications (3.7) and (3.8).

The containments are opposed within the lattice fibres, as is usual
for concept lattices. On the other hand, the containments actually
coincide along the edges in the Hasse diagrams that give the actions
of the lattice homomorphism displayed by barred arrows in (2.4). In
order to implement these containments, the extents and intents of the
domain concepts are augmented by the respective extents and intents
of their images in the codomain concept lattice. In the figure, the
augmented domain concepts are separated by a slash, suggesting that
the later concepts appear on top of the corresponding earlier concepts
in so-called layers of history.

In the time-series interpretation of quasicontexts, these layers may
be understood as analogues of geological strata, or the successive layers
of an archaeological site. In the complex system interpretation of quasi-
contexts, the upper layers represent advanced or high-level phenomena
that have emerged from more primitive, low-level phenomena.

Looking at Fig. 1, it may be seen that the singleton extents and
intents a, b are lost over the time period, corresponding to the fact that
they are not part of the image of the complete lattice homomorphism
in the structural representation of the concept quasilattice. On the
other hand, the early full and empty intents and extents ab and Ø are
preserved over the time period, and reappear as lower layers of history
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Figure 1. Set representation of a concept quasilattice
as a record of history.

in the late period. In particular, the early concept (ab|Ø) evolves into
two distinct late concepts, (01

2
/ab|1

2
1/Ø) and (01

2
1/ab|1/Ø).

5.3. Quasilattices as concept quasilattices. The following result
extends Theorem 3.8 to locally complete quasilattices. In particular,
Theorem 5.4(b) provides a set representation of locally complete quasi-
lattices, as illustrated in Example 5.5 below.

To obtain a set representation for a quasilattice which is fiber finite
but not locally complete (such as the quasilattices exhibited in §§ 2.7.2–
2.7.4), one may first embed the fiber finite quasilattice into a locally
complete lattice using Theorem 2.25, and then apply Theorem 5.4(b).

Theorem 5.4. Let Q be a locally complete quasilattice, constructed as
the P lonka sum of the contravariant functor R : H → CLat. For each
element h of H, consider the concept lattice hP := L(hR, hR,≤) . If
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k → h in H, consider the bonding (k → h)P from hP to kP that is
determined by the complete lattice homomorphism

(k → h)R : L(hR, hR,≤) → L(kR, kR,≤) .

(a) The assignment P : H → Bdg is a complex polarity.
(b) The quasilattice Q is isomorphic to the concept quasilattice of

the complex polarity P .

Example 5.5. Consider the locally complete quasilattice of §2.7.1.
The concept lattices of its lattice fibers are ({∞}|{∞}) and

({0}|{0, 1})
� � //

({0, 1}|{1})
_?

oo ,

with 0ε = 0η = ({0}|{0, 1}) and 1ε = 1η = ({0, 1}|{1}). Then the
concept lattice version of (2.8) is

(5.1) ({0, 1}|{1})

� _

��

=

~~

({∞}|{∞})

({0}|{0, 1})

?�

OO

�

``

The complex polarity, including the bonding

({(0,∞), (1,∞)}, {(∞, 0), (∞, 1)})

that is specified from the P lonka complete lattice homomorphism (2.8)
by Proposition 4.12, is

(5.2)

0 1 ∞
0 × × ×
1 × ×
∞ × × ×
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We then obtain

(5.3) ({0, 1} ∪ {∞}|{1} ∪ {∞})

� _

��

({∞}|{∞})

, �

::uuuuuuuuuuuuuuuuuuuu
, �

::uuuuuuuuuuuuuuuuuuuu

� r

$$I
II

II
II

II
II

II
II

II
I
� r

$$I
II

II
II

II
II

II
II

II
I

({0} ∪ {∞}|{0, 1} ∪ {∞})

?�

OO

as a set representation for the concept quasilattice of the quasicontext
(5.2). The union operator appearing in the extents and intents on the
right-hand side of the diagram may be replaced by slashes denoting
layers of history, as in Figure 1.
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