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Abstract

The greedy loop transversal algorithm is used to construct linear codes in a binary channel
for the correction of error bursts. The dimensions of the codes constructed are compared with
the dimensions of the corresponding white noise greedy loop transversal codes, and with the
dimensions of the few previously best-known codes for the burst-error patterns. The dimensions
of the greedy loop transversal codes for burst-error correction match or exceed the dimensions
of these previously known codes.
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1. Introduction

Loop transversal codes were introduced in [5]. They are also described in [6,7].
In the loop transversal approach to the construction of linear error-correcting codes,
attention focusses on the set of errors to be corrected. This set of errors does not
have to correspond to “white noise”. The idea is to specify a loop structure (abstractly
an abelian group) on the set of errors as a loop transversal to the linear code as a
subgroup of the channel. A greedy algorithm for specifying this loop structure, and
thus for the construction of loop transversal codes, was discussed in [3,4]. In [4], it is
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shown that for binary channels, the codes constructed by the greedy loop transversal
algorithm coincide with the “lexicodes” of Conway and Sloane [2]. However, for good
channels, the set of errors to be corrected is much smaller than the set of codewords,
so the greedy loop transversal algorithm is more efficient than the lexicode algorithm.
For non-binary channels, the lexicodes become non-linear, while the loop transversal
codes remain linear. In [3], the greedy loop transversal algorithm was used to construct
linear codes in binary and ternary channels for the correction of “white noise” errors.
The codes obtained, including the binary and ternary Golay codes, were always within
a dimension or two of the best known linear codes. The current paper may be seen
as a counterpart of [3], but dealing with burst-errors rather than “white noise”. The
greedy loop transversal algorithm is used to construct linear codes in a binary channel
for the correction of single errors and bursts of length 2, alone, or in conjunction with
a single error or another burst of length 2. The dimensions of the codes constructed are
compared with the dimensions of the corresponding white noise greedy loop transversal
codes from [3], and with the dimensions of the few previously best known codes for
these error patterns from [9]. The dimensions of the greedy loop transversal codes
for burst-error correction match or exceed the dimensions of these previously known
codes.

2. Loop transversal codes

A transversal T to a subgroup C of a group (V,+,0) is a subset of V' with
V= U(ZGT)(C + t). Thus each element v can be expressed uniquely as v=wvd + ve
with vo € C and ve € T. A received word v is decoded to a codeword vd with the error
ve. A binary operation x is defined on T by

txu=(+u)e. (1)

For any t,u in 7, the equation x*¢=u has a unique solution x. If the equation ¢y =u
also has a unique solution, then T is called a loop transversal. Equivalently, the algebra
(T, *,0¢) is a loop. If V' is abelian, then each transversal is a loop transversal, and the
loop (T,*,0¢) is an abelian group. For u; in T, it is convenient to use the notation
H?:1 u;=0¢ and []7_ u;= [H:-:ll u;]*u, for »>0. In compound expressions, * and []
will bind more strongly than + and .

Now specialize to the usual coding theory case that 7 is a finite-dimensional vector
space over a field . Define 4 x t=(At)e for / in F' and ¢ in T. This makes (7, *,F’)
a vector space over F'. Induction on r extends Eq. (1) to

(i i,—t,-) £= ]f[(i,— X t;) (2)
i=1 i=1

for ¢ in T. Assume that 7 contains a basis {ej,...,e,} for V, e.g. ¥V =F" and each
e; has 1 in the ith place as its only non-zero coordinate. Then the knowledge of the
vector space (T,x*,F) is sufficient to determine the code C. Indeed, by Eq. (2), if
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v=200 e,
r r
C={vd|veVy={v—velveV}= {Z Jiei — | [ xe,-)u,-eF}.

i=1 i=1

As an abstract vector space, the transversal (7, , F) is isomorphic to the dual of the
code C. Knowing small parts of the transversal (7, %, F') is sufficient to identify specific
codewords; conversely knowing specific codewords determines part of the structure of
(T, *,F). In particular, for ¢; in 7,

Zti—HtiEC. (3)

Duality (3) between C and T is such that small parts of C determine small parts of
T, and vice versa. The relationship is described as local duality.

Here is another way of passing between the code and the transversal. By the fact
that (x + y)e=xe* ye and (Ax)e=21x (x¢) for A€ F and x,y€V, the parity map
(V,+,F)—(T,+,F) is a linear transformation. The parity-check matrices can be given
by matrices of ¢ with respect to appropriate bases. Any complete set of coset leaders
for a given code C yields the underlying set 7 of a loop transversal.

3. The greedy loop transversal algorithm

Each natural number n (including 0) has a unique expansion n=1 ., n(i)2' with
n(i) € GF(2) for each i, where GF(2) is the Galois field of order 2. Moreover, n(i)=0
for i>[log, n|. The set N of natural numbers is the nested union (J,. ¢, ¥ of vector

spaces J;, where ¥ :GF(Z)d is the d-dimensional vector space over the Galois field
GF(2). The set {2/ |0<i<d — 1} is a basis for ;. The operation +, or Y is the nim
sum of [1, p. 51], which corresponds to the exclusive-or operation.

The set N of natural numbers is ordered by the lexicographic ordering C, on the
binary expansions of its members. A subset X of a poset (¥,C) is said to be self-
subordinate if y CxeX implies y€X. A self-subordinate subset £ of (N, C,) is called
an error pattern if it contains the set 2V ={27|i € N}. Error patterns model sets of
possible errors to be corrected in the various channels Jj;. For example,

By={a2" +, b2’ |a,b € GF(2);i,j €N, |i — j| <1}
is the error pattern describing burst errors of length at most 2 [5, (3.5)]. Also,
ByS = {a2' 4, b2/ +, 2" |a,b,c € GF(2);i,j,k eN,i<j <k,
either |i — j|<1 or |j — k| <1 with |i — k| =3}

is one describing burst errors of length at most 2 together with at most one single
error. The error pattern for two burst errors of length at most 2 [8] is described by

2By = {a2' 4+, b2/ 45 2" 42 d2" |a,b,c,d EN,i<j<k </,
li —jI<1|k—¢|<1,|j — k| >2}.
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Error patterns form partial algebras under the operations of the vector space (N, 4+,
GF(2)).

Suppose that an error pattern £ is given. Then an E-syndrome, or just syndrome, is
a partial function s: £ — N which

(a) injects;

(b) is a partial vector space homomorphism;

(¢) has domain self-subordinate in (E, <),and

(d) satisfies: VneN, FreN -2V Ns(V,NE) spans V.

4)

The syndrome is said to be proper if s is a properly partial function. In view of (c),
this is equivalent to finiteness of the domain of s. For a proper syndrome, the length
is defined to be

n= max{l + |log, m| | m € doms}.
The redundancy is defined to be
r=max{l + [log,(ms)| | m € doms}.
A proper syndrome s defines a parity map
e Vi—=V,

by linearity and 2¢, = 2's for i <n. By (c), these values 2's are defined. Condition (b)
guarantees that s agrees with & on ¥, NE. Condition (d) yields that ¢ is surjective.
Condition (a) guarantees that dom s embeds into ¥, under &. A code C, in the channel
V, correcting the set 7, NE of errors, and having dimension n —r, is then given as the
kernel of &.

The greedy loop transversal algorithm determines an E-syndrome s by the partial
linearity (b) in (4) and the greedy choice of 2"s given that s: (¥, NE)— N has already
been defined. The greedy algorithm picks 2"s to be the least integer not in anathema,
the set (cf. [3, (2.7)]):

{es+2 fs|e, f€V,NE;2" e €E}.

4. Binary burst-error-correcting syndrome functions

When E is some burst-error pattern, the improper syndrome function sz : 2N — N
with Osz; =0 can be constructed by the greedy algorithm. To compare the syndrome
functions sg: £ — N for each error pattern £, they may be graphed with log, x on the
ordinate and y on the abscissa. We define a nodal point of the syndrome function sg
to be a point on its graph of the form (2"~!,2¥) for n—1, k € N. The proper syndrome
given by the restriction of sz to the channel ¥}, then yields this burst-error-correcting
code C, with redundancy » =k + 1 satisfying

Je(n) - 27" <27,
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Table 1

Efficiencies

V\E Bz BzS 232
2 100[2] 100[2] 100[2]
3 86[3] 93[3] 93[3]
4 90[6] 92[4] 92[4]
5 86[10] 89(5] 90[5]
6 94[25] 93[7] 87[6]
7 91[41] 92[9] 90[8]
8 97[108] 88[11] 88[10]
9 93[165] 87[14] 88[13]

10 95[372] 85[17] 86[16]

11 96[771] 85[23] 86[21]

12 84[29] 85[27]

13 83[37] 84[33]

14 82[47] 84[43]

Note: The numbers inside [] give the lengths of the channel achieving the corresponding efficiency.

since the channel must contain a disjoint union of 2"~" “stars”, each with fz(n) points
(cf. [5, (5.2)]). When the burst-error pattern £ has the form B, (B,S,2B,), the error-
correcting code for that error pattern £ will also be denoted by B, (resp. B»S, 2B;).
The functions fz(n) for these burst-error patterns are given as follows.

Error pattern £ fe(n)

Bz 2n

B,S (3/2)n* —(9/2)n +17
2B, 2n2 —Tn+8

The efficiency of the code C, of redundancy r is the ratio of log, fg(n) to r, usually
expressed as a percentage. Table 1 lists the highest efficiencies for 1 <r<15 in each
burst-error pattern. The numbers inside [ ] are the length of the channel which has the
highest efficiency for the given redundancy. Tables 2 and 3 give the dimensions of the
binary greedy loop transversal codes for each burst-error pattern considered. Table 2
gives the dimensions of the codes for the error pattern B,. For comparison, the table
also gives the dimensions, in (), for the white noise double error-correcting greedy loop
transversal codes from [3], i.e. corresponding to minimum Hamming distance d =S5.
Table 3 gives the dimensions of the codes for the error patterns B,S and 2B,. Again for
comparison, the table also gives the dimensions, in (), for the white noise triple and
quadruple error correcting greedy loop transversal codes from [3], i.e. corresponding
to minimum Hamming distances d =7,9. The comparisons enable one to observe the
quantitative gain in information rate resulting from restriction of the higher-weight
errors to burst patterns.
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Table 2
Dimensions of codes for the error pattern B,

n BZ n Bz

7-10 n—>5 109-120 n—9(n—15)
11 5 121-156 n—9(n—16)
12-17 n—6(n—8) 157-165 n—9(n—17)
18-21 n—6(n—9) 166203 n—10(n — 17)
22-25 n— 6(n — 10) 204-266 n—10(n — 18)
26-29 n—"7(n—10) 267-342 n—10(n—19)
30-38 n—T(n—11) 343-360 n—10(n — 20)
39-41 n—"7(n—12) 361-372 n—10
42-53 n—_8(n—12) 373-771 n—11
54-69 n—8(n—13)
70-92 n— 8(n— 14)
93-108 n—8(n—15)

Note: The numbers inside () give dimensions of codes from [3] for d =5.

Table 3

Dimensions of codes for error patterns B,S and 2B,

n BzS 232 n B2S 2Bz n BzS ZBZ
10 2 2[2] 27 15(13) 15(9) 44 30 30
11 3 2 28 16(13) 15(10) 45 31 30
12 3(2) 3(1) 29 17(14) 16(11) 46 32

13 4(3) 4(1) 30 17(15) 17(12) 47 33

14 5(4) 4(2) 31 18(16) 18(12) 48 33

15 5(5) 5(2)[5] 32 19(16) 19(13) 49 34

16 6(5) 6(2) 33 20(17) 20(14) 50 35

17 7(6) 6(3) 34 21(18) 20 51 36

18 7(7) 7(3) 35 22(19) 21 52 37

19 8(8) 8(4) 36 23(20) 22 53 38

20 9(9) 9(5) 37 24(21) 23 54 39

21 10(10) 10(5)[8] 38 24(22) 24 55 40

22 11(11) 10(6) 39 25(23) 25 56 41

23 12(12) 11(6)[11] 40 26 26 57 42

24 12(12) 12(7) 41 27 27 58 43

25 13(12) 13(8) 42 28 28 59 44

26 14(12) 14(9) 43 29 29

Note: Numbers inside () are data from [3] when d =7 and d =9 and numbers inside [] from [9].
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