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Faithful novel machine learning for
predicting quantum properties
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Machine learning (ML) has accelerated the process of materials classification, particularly with crystal
graph neural network (CGNN) architectures. However, advanced deep networks have hitherto proved
challenging to build and train for quantum materials classification and property prediction. We show
that faithful representations, which directly represent crystal structure and symmetry, both refine
current ML and effectively implement advanced deep networks to accurately predict these materials
and optimize their properties. Our new models reveal the previously hidden power of novel
convolutional and pure attentional approaches to represent atomic connectivity and achieve strong
performance in predicting topological properties, magnetic properties, and formation energies. With
faithful representations, the state-of-the-art CGNN accurately predicts quantum chemistry materials
and properties, accelerating the design and discovery and improving the implicit understanding of
complex crystal structures and symmetries. On two separate benchmarks, our non-graphical neural

networks achieve near parity with the CGNN architecture, making them viable alternatives.

Quantum materials classification and regression occupy a crucial space
in the identification of new materials and the optimization of their
properties to facilitate novel energy and quantum technology solu-
tions. The primary tools for modern materials exploration, for example
density functional theory (DFT), often require days, weeks, or even
months to compute properties of complex materials such as topolo-
gical indices, micromagnetic inputs, and electronic structure
parameters'. The techniques of machine learning (ML) are becoming
the predominant tool for materials research, given the availability of
the Materials Project and other online datasets, with an influx of
publications on ML designs and applications*™*. Many of these meth-
ods are highly dependent on the materials properties being examined.
They may be difficult to implement and bring to convergence. Thus,
there is a clear need for the development of a reliable, fast approach to
model and correlate diverse materials properties.

As most foundational ML models require fixed tensor dimensions for
input, early uses of ML algorithms for materials research typically hashed
properties of the atoms in the primitive cell to produce predictions with
random forests, simple multilayer perceptrons, and other techniques’.
Recent developments build on this with CGNN and convolutional networks
to achieve better results®’. ML algorithms are even capable of predicting
non-trivial topological indices®. Combined approaches with attentional
graph layers’"?, as well as more advanced augmentations to represent the
symmetry properties of the material implicitly, have shown great promise”.
In this paper, basic architectural innovations on ML are compared with the

classic graphical architecture given by Xie et al. to demonstrate the validity of
alternative architectures, implicitly capturing atomic locality rather than
explicitly specifying connectivity with an adjacency matrix".

Here we develop four fully general ML algorithms which can predict
and categorize arbitrary material properties. The key feature of our
approach is the use of faithful representations of the underlying materials,
representing the crystal structure and symmetry directly. Each model is fully
capable of distinguishing any pair of unique materials, side-stepping the
representational reduction employed by current models. Our models are
tested primarily on the topological data enabled by topological quantum
chemistry (topological quantum chemistry (TQC))". Further, all models
achieve exemplary performance with purely structural information about
the materials involved, without recourse to additional experimental data.
Formation energy and magnetic ordering are tested to demonstrate the
ability of the models to adapt to arbitrary settings. State-of-the-art is
achieved for TQC classification. The crystal convolution neural network
(CCNN) acheives state-of-the-art on the important ML benchmark of point
and space group classification. The crystal attention neural network
(CANN) achieves near state-of-the-art performance on multiple bench-
marks, demonstrating an unexpectedly high capability to capture atomic
connectivity'®. The CANN operates without a graphical layer, thereby
avoiding input of an adjacency matrix. Large-scale architectures, such as
CEGAN and graph attention layers, have achieved state-of-the-art (SOTA)
on a number of benchmarks’™”, Implementations and pre-trained models
are provided in GitHub. As the majority of time in ML is spent on dataset
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verification, further tools are provided to automatically extract and purify
new materials datasets.

Model performance is sufficiently strong to augment DFT application,
acting as an initial filter for further investigation. An additional test of
physically interpretable model knowledge is introduced, using the atomic
limit concept of TQC to determine the impact of scaling factors on material
topology. This development transforms ML from a demonstrative tech-
nology in materials science to a tool that is readily available for experimental
and theoretical materials researchers. Specifically, our CGNN model gen-
erates state-of-the-art predictions for TQC materials and their properties,
impacting quantum materials science by enabling accurate and inter-
pretable prediction of properties, accelerating the design and discovery of
new materials, and improving our understanding of complex crystal
structures and symmetries.

Gadolinium (III) sesquioxide (Gd,O3) with space group 164 is taken as
the basic example to illustrate both the physics and the algorithmic processes
in the paper. This is a lower symmetry phase than the cubic phase of Gd,O;,
and is referenced as material 20470 in the provided GitHub dataset. The
trigonal symmetry and smaller number of distinct atoms in the primitive cell
are pedagogically and representationally more useful. The relevant for-
mulaic aspects of Gd,05 for ML are the space group, the formation energy,
the magnetic classification, and the topological designation, which are 164,
-3.723 eV/atom, ferromagnetic, and a split elementary band represented
topological insulator, respectively.

Crystalline materials defined by a real space primitive cell were taken as
inputs to the ML models. Four characteristics are considered for each
crystal: the formation energy per atom, the space group (219 labels), mag-
netic (non-magnetic, ferromagnetic, ferrimagnetic, and antiferromagnetic),
and topological classifications. Topological indices are non-local over the
Brillioun zone and are defined in TQC by the following categories and
subcategories:

* trivial material (tM), which is a linear combination of elementary band
representations (LCEBR);
* topological insulator (TT), labeled as having no linear combination

(NLC), or as a split elementary band representation (SEBR), and

* topological semimetal (TSM), labeled as an enforced semimetal (ES),
or as an enforced semimetal with Fermi degeneracy (ESED).

Relative to formation energy and magnetic classification, topological
state classification is more complex in terms of mathematical and physical
origins"’, involving symmetry-enforced electronic states.

A general program for classification of TT’s by symmetry introduced by
Zak'”"® relied on band representations. This program culminated in the
enumeration of all possible trivial band representations, resulting in a pre-
dicted 2D and 3D 26, 938 topological materials (TM)s via TQC'>'"**°. The
resulting dataset was curated to train an ML model achieving an accuracy of
86% (as compared to the baseline accuracy of 50% by simply marking every
material as non-topological)'”*'~**. To understand the issues underlying ML
predictions of these materials, a brief overview of the theory is provided: first
formally defining topological insulators, and then providing a framework
for understanding TQC.

Three primary categories of the TI concept are distinguished:

TI, — determined by a topological index directly on a gapped electronic
band structure;

TI, — necessarily possessing a conductive boundary bordering a trivially
insulating material such as the vacuum;

TL, — an insulating material C for which an expansion rC is conductive™.

An expansion is defined within the third category, for a real scalarr > 1,
as a modified crystal 7C, where for each atom at position p in the original
crystal C, the modified crystal rC has a corresponding atom at rp. Thus,
expansion increases the inter-atomic distances in the material. For r>> 1, an
expansion rC is regarded as forming an approximate vacuum.

The relationships between the categories of TI are displayed in Fig. 1.
Under certain circumstances, a TI lying in one category may by implication

TQC

Fig. 1 | Logical relationships between different notions of topological insulators.
The dotted arrows represent relationships between different notions of topological
insulators that may require additional assumptions to establish, reflecting the fact
that, while bulk definitions of crystals have relatively simple translational symmetry,
boundaries can be extremely complex.

(=) also lie in a second category. For example, the implication TI, = TI,
forms a class of results known as bulk-boundary theorems for specific
topological indices™. Further, TI, = TL, and T, = TI, (Fig. 2). Finally, TI,
= TI, is a trivial consequence of the fact that materials are specified by their
electronic structure. This gives a simple test of the interpretability of the
requisite models. In the atomic limit, all models are expected to predict
materials as trivial.

The prerequisites for the TQC theory are group theory™, representa-
tion theory”**, electronic structure”, and graph theory™. Comprehensive
reviews exist’ . We generally follow the notation of the latter. TQC utilizes
the notion of an atomic limit with r > 1 to establish a class of non-
topological materials. If a given band structure has symmetry indicators
respecting the non-topological band representations, it is trivial. Otherwise,
it is topological. The TQC algorithm may be extended to distinguish
semimetals as well. However, it distinguishes topology for separated groups

34,35

of bands, and is not exhaustive ™.

Results

Materials embeddings, machine learning architectures, and
theoretical implementations

Previous research has demonstrated success with partial data models such as
gradient boosted trees (GBT), random forests, k-nearest neighbor classifiers,
support vector classifiers, and neural networks®. Earlier GBTs were suc-
cessfully trained by data from™>”.

Following training of the GBT algorithm for topological data, a sub-
sequent analysis demonstrated that electron counts and space groups were
the primary distinguishing decision factors to determine material
topology””. Model performance was excellent, peaking at 90% for the full
GBT model. When the GBT was coupled with ab initio calculations that
neglected spin-orbit coupling, accuracy peaked at 92% on the materials with
strong confidence in the predicted topological state. As full spin-orbit ab
initio calculations enable the direct prediction of material topology, these
calculations were not used to supplement the ML models. The primary
benefit of using purely structure-based predictions is the encompassing
generality, granting an easy method of retraining the models to new situa-
tions. Since the original dataset was not accessible, the GBT algorithm
without DFT was exactly reconstructed, and applied to the current dataset.
On the advanced TQC dataset, it achieved an accuracy of 76% as in Table 3.
All algorithms considered are compared to the 76% benchmark, as no
additional ab initio calculations were included. In ref. 22, the CGNN was
tested, but failed to converge to a reasonable accuracy for topological pre-
diction. Now, it will be seen to have excellent predictive capability.

Four faithful embeddings of the underlying materials are tested. For
each embedding, the data format is standardized as follows. Take A to be the
set of atoms in the primitive cell. Each atom a € A is associated with two
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Fig. 2 | Illustration of the atomic limit. For three different value ranges of the scalar
r, crystal samples Cand rC share a common interface. Above each respective physical
picture (T1, conductor, and insulator), a schematic of the corresponding band
structure for the rC crystal is presented (valence bands below, conduction bands
above). For r = 1, where rC = C, the conductive boundary surrounds both samples.
For r approaching infinity, the expansion rC forms an approximate vacuum, so the
conductive border is around C. We locate a scalar ' midway between the supremum
of the set of r such that 7C is a TI and the infimum of the set of r such that rC is an
approximate vacuum, marking this point with a notch in the diagram. If Cis a TI,,

|
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Mathematical Insulator (r — o0)

consider the boundary states of the material 7’ C. Suppose that ' C was insulating, i.e.,
the density of states falling within a certain energy range [E,, E,] is 0. Then, since
expansions of insulating materials are insulating, the border of ' C with both C and
the vacuum would be insulating. However, as the bordering Cis a T1,, at least one of
the borders must be conductive, and so ' C itself is conductive. Note the informality
of this general argument, due to the difficulty of defining a T1, directly. Nevertheless,
for a TI,, the topological insulator status varies according to a continuous function of
the electronic states, and therefore of r. In this case, ' C is necessarily conductive.
Thus, an ML approach to TQC classification must be sensitive to .

types of information: the atomic identifierv, and the atomic positionp,,.
Finally, the global vectorg is a vector containing primitive cell dimensions
and symmetries. Different embeddings are considered for each of the input
vectors, and tested over all ML frameworks to determine the best
representation.

For a classification with # categories, recall that the one-hot encoding of
the i-th category is 0%¢"" @ 1 @ 0%"?. To enhance generalization over
merely using a one-hot embedding of atomic number, the embedding was
chosen as h(r) @ h(c(mod 2)) & |c/2], using the left-step periodic table in
Fig. 3 to supply r and c¢*. This allows generalization over the rows and
columns of the periodic table with 7 (rows) + 16 (spinless columns) + 1
(spin slot) = 24 positions per atom. Embedding additional atomic properties
was tested, but no additional performance gains were found.

The position embedding p, is network-dependent, but is stored using
fractional units relative to the primitive cell basis. There are two major
components of the global data vector g. The first gives the primitive cell
dimensions using a sinusoidal encoding”, while the second records the
space group with a one-hot embedding. Hyperparameter tuning was used
solely for the TQC dataset to demonstrate maximal network performance,
and neglected for the remaining tests to demonstrate the ability to imme-
diately generalize.

The full models as described in the methodology are capable of
overfitting on any coherent set of training data to an arbitrary extent.
Thus, training accuracy is not emphasized. For some tables, previous
papers are used as approximate benchmarks for comparison. Since
these papers may not use the same dataset, the comparisons are at best
indicative.

One implication of the faithfulness of the models is that limits had to be
introduced to speed training time. To compare a model to the GBT algo-
rithm, a penalty was assigned to the primitive cells unable to fit in the
representation as follows: without knowledge of the underlying input
variables, the best predictor of an element in the validation set Vis a single
label, p, for each element of V.. So, this optimal element was used as a default
prediction for when materials were too large to use with the ML models.
Note that p is extracted from the training set to prevent data contamination.
For classification, p is the most common label. For regression, if the loss is
root mean squared error (RMSE) or mean absolute error (MAE), then the p
which optimizes each of these measures of model error is the mean and
median, respectively. This gives a well-defined methodology to compare
dissimilar models over an underlying dataset. It also gives a simple baseline
model for comparisons, as represented in Tables 1-3.

General quantum materials property predictions
The material representations are sufficient to determine the symmetry
group. Thus, as a first test of the global power of the ML algorithms, 151,000
materials were taken from the Materials Project and ICSD datasets**'. The
POSCAR file format' was used as input to supply the ML with atomic types
and positions, and the primitive cell basis. The target variable for each
material was the space group classification. The symmetry of a material is
derived easily from the POSCAR description using structural geometry.
Thus, symmetry group classification is perfectly accurate, enabling a ver-
ification of the models’ practical implementation.

Two primary implementations for the symmetry groups were tested:
the one-hot encodings of the space and point groups. The space groups

npj Computational Materials | (2025)11:244



https://doi.org/10.1038/s41524-025-01655-w

Article

Left Step Periodic Table of Elements
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(17,3) (163) (153) (14.3) (13,3) (12,3) (11,3) (103) (9.3) (83) (7.3) (63) (53) (43) (33) (23) (L3) (0.3)
K
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(31,5) (305) (29,5) (285) (27.5) (26.5) (255) (24,5 (23.5) (225) (21,5) (20,5) (195) (18,5) (17.5) (16,5 (155) (145) (13,5 (125) (115) (105) (95) (85 (7.5) (65) (55 (45) (35 (25) (L5) (05)
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Ta w Re Os Ir Pt Au Hg Ba Tl Pb Bi Po At Cs Rn

Fig. 3 | The left-step periodic table of elements. Each atom in the periodic table is labeled with the column and row annotations used for ML.

Table 1 | Comparison of ML models for space group and point
group one-hot classification problems

Model Point Group Accuracy  Space Group Accuracy
Baseline 0.15 0.10

naive Neural 0.14 0.14

Network (NNN)

CGNN 0.78 0.78

CCNN 0.81 0.79

CANN 0.73 0.62

CCNN achieved the highest performance, indicating an alternative way forward for structural
classification.

Table 2 | Comparison of ML models for the categorization
problem

Model Formation energy MAE Magnetic classification
Baseline comparison 1.0 0.54
NNN 0.26 0.75
CGNN 0.10 0.84
CCNN 0.19 0.79
CANN 0.11 0.81

For MAE, a smaller number is better.

Table 3 | Comparison of ML models for TQC

Model Basic accuracy Advanced accuracy
baseline 0.49 0.49
GBT baseline® 0.81 0.76
NNN 0.72 0.65
CGNN 0.83 0.80
CCNN 0.76 0.71
CANN 0.80 0.75

Importantly, the CANN and CCNN architectures perform well in comparison to an optimized CGNN
architecture. In tests without internal skip connections, these alternative architectures exceeded
CGNN performance.

comprise 230 labels, and the point groups comprise 32 labels. As can be seen
from Table 1, ML performance was low compared to analytic techniques.
Indeed, this is a known weakness of ML, and is an ongoing area of research
in the ML community. The CCNN algorithm did manage to capture the
majority of the space symmetries, indicating that spatial relationships are
handled best with this direct approach, by comparison with the other three
methods.

Formation energy per atom and the magnetic classification were both
indexed from ref. 40 for 151,000 materials. Natural errors were expected,

due to temperature dependence for experimental results and limited DFT
accuracy. Performance on the magnetic dataset was strong, compared to the
81% accuracy on a smaller dataset”. This illustrates the universality of model
design as implemented for formation energy (Table 2). However, as
expected, classification model performance for regression tasks without
modification was weak, which will be improved in the subsequent
development.

Topological classification

Three primary sources were used to train the model. The first dataset”
contains a comprehensive list of topological indices for materials. The
material information was extracted in the form of POSCAR files from the
two largest materials datasets available’"". For each material, two sets of
topological labels were extracted: T, a simplified labeling, and T, a refine-
ment of T,. Here, T, consists of three labels: LCEBR, TI, and SM, while T,
consists of five augmented labels: LCEBR, NLC, SEBR, ES, and ESFD. There
are 75, 000 materials with this labeling.

Two requirements were placed on the data. As a first criterion, pri-
mitive cells were required to have fewer than 60 atoms. The second criterion
arose from the issue that materials are often duplicated by stoichiometric
label and symmetry group with minor variations in the POSCAR file. Thus,
in cases where the topological labels agreed, the entries were condensed. In
cases where there was a discrepancy in the topological data, the material was
simply eliminated from the dataset, due to the high probability of a mistaken
calculation, or of unusual ambient factors such as temperature and pressure.
As an example of this type of situation, 39 tuples of materials were merely
minor distortions of each other, distinguished in the ICSD database, but
identified in the Materials Project. After the filtration process, 36, 580
materials remained, with 455 datapoints removed. The original dataset
evidently contained thousands of duplicate materials. It is worth noting that
an ML process based on the original dataset would score artificially higher
due to cross-contamination between the training and testing datasets. The
topological composition of the dataset is ES, TI, SM, NLC, ESED with 0.10,
0.27, 0.07, 0.07, and 0.49 as fractions of the whole dataset, respectively.

The majority of model experiments were performed on the TQC
dataset. This enabled the diagnosis of specific model issues based on accu-
racy. Unless otherwise stated, all comments specifically pertain to the full 5
TQC dlassifications. At the 49% threshold, the model does not necessarily
have information transfer between the input and the output, since the most
common material type, non-topological, comprises 49% of the dataset. An
additional apparent plateau occurs near the 75% accuracy range, after which
training is diminished. The CGNN model notably exceeds this threshold.
Models were trained on the whole available dataset 20-60 times (epochs) to
achieve maximal accuracy on the testing set. All four tested models exhibited
an initial fast growth, then an apparent plateau that lasted for approximately
one epoch before a more subtle long-term increase in accuracy became
apparent. To account for dataset differences, an alternative GBT algorithm
was trained for Table 2, based exactly on the specification provided in ref. 22
to compare approaches directly. All the models are either comparable to the
GBT baseline, or exceed it, as seen from Table 3.

The optimized implementation for each network is provided in
GitHub with notes on optimization. Additional correlation effects were
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Fig. 4 | Ilustration of the CANN model. Global data is simply appended to each token atom, and successive layers of attention and simply 3-layer feed-forward networks are

applied in succession.

examined, showing weak correspondences between formation energy,
magnetic classification, and topological effects in the supplementary
material. Ensembles were created to test systemic model errors. Material
misclassification was found to happen most frequently for less common
elements, especially Pt. Materials with multiple symmetries corresponding
to the same stoichiometric formula were more frequently misclassified,
unless the topological label was identical for all symmetry phases.

Due to the vast differences in model architecture, ensemble approaches
offer a method of enhancing model predictions. As none of the models
achieved perfect performance on the testing set, cases where all the models
failed to categorize a material’s topological classification properly may be
taken as an indication of two potential situations:

* The material is accurately represented by DFT, but is misclassified by
the neural network (NN)’s due to violating their internal heuristics;

¢ The material itself is miscatalogued due to a deficiency in the DFT
computation of the band structure.

As an extension of the model classification, a filtration process is
performed. Since the four model archetypes (NNN, CANN, CCNN,
CGNN) are capable of achieving greater than 95% accuracy on the training
dataset, all four models are trained over several epochs to 95% accuracy on
the entire dataset. If the mistakes among the models are uncorrelated, the
misclassifications will be uncorrelated, as 36, 580(0.05)* ~ 0. Any deviation
from this scenario demonstrates an interdependence between the models,
and allows a model-agnostic method of diagnosing similarities between
sources. There were 54 such misclassified materials. Of those materials,
Celn,Niy, Fe,SnU,, B4Fe (space group 58), and InNiyTm are positively
identified as being topological and likely misclassified due to an insufficient
DFT calculations. Additionally, 1:3 and 1:5 compounds are frequent in the
misclassifications, corresponding to compounds PtNi;, MoPt;, PdFes,
HfPd;, CrNiz, AlCus;, HgTi; and HoCus, GdZns, EuAgs, CePts,
ThNis, CeNiis.

Discussion

This work presents significant advances in the application of ML to predict,
classify, and optimize the properties of quantum crystalline materials,
including topological properties, magnetic properties, formation energies,
and symmetry groups. By adopting faithful representations, with their direct
connection to crystal structure and symmetry, we have enhanced both
current graphical ML networks and advanced deep networks. The strong
performance of the CANN and CCNN networks in parallel with the CGNN
network on a variety of crucial quantum materials prediction problems
demonstrates the predictive power of novel convolutional and pure atten-
tional approaches with intrinsically mapped atomic connectivity. In these
models, the full representation of the crystal diagnoses difficult-to-predict
materials with potentially novel quantum properties and physics. Addi-
tionally, the relative strengths and weaknesses of each model are cataloged
for practical use and impact. Specifically, our enhanced CGNN generates
state-of-the-art predictions for TQC materials and their properties, while
the CCNN surpasses the CGNN on the task of crystalline symmetry
reconstruction, improving our understanding of complex crystal structures
and symmetries.

The tools and models developed here are indexed online for public
use and the simple development of new avenues for quantum materials
prediction. All models presented were trained within hours and are
capable of extremely rapid prediction relative to both DFT and com-
posite model designs, such as CEGAN" and GATGNN'® for initial

materials exploration. The automated methods for data preprocessing,
along with the full implementations and pretrained models provided on
GitHub, can be efficiently applied both to novel and pre-existing
datasets. This enables the rapid classification and correlation of all
crystalline materials, including quantum, magnetic, semiconducting,
and topological properties.

Methods

Contemporary naive neural network

This approach employs a fully-connected feedforward neural network. To
classify materials, the NN maps a material’s properties to a one-hot
encoding of its classification. Common to all materials in the datasets
explored, there were fewer than 6 of each type of atom in A. Thus, the atoms
were partitioned by type into at most 6 subsets and ordered from most
common to least common as A;, A, -+-, Ag C A, respectively. Each subset A;
has a corresponding maximum size #;, and, as all a € A; share the same v,,,
the common atomic vector may be designated v;. To account for when |A;] <
n;, the empty position py; is set to 0®/%a!, the 0-vector in the same vector space
as p, Then, inj)ut to the NN is organized into bins as
b, =v;® @ueAip,?l il @pga("“fm“'), ensuring a fixed-size bin b; € RI"*"
and therefore a constant-size input tensor for the NN. Finally, all bins are
concatenated as g& @°_, b;.

Current crystal graph neural networks

CGNNe s are instances of convolutional graph neural networks applied to
solid state materials'*. Information is embedded in each part of the graph.
Here the global vector g is considered as a vector separate from the graph.
Each node is associated to v,, and each edge e = (g, b) has the information
v, = (P, — Py, IPa — Pp|)- During the graphical passes, the shape of each
vector associated with the edges, vertices, and global data is maintained,
allowing skip connections. In order to increase the descriptive capacity of the
network, v,, v, and g are first embedded into the graph using networks
NN%, NN¢, NN¥ to larger embedded vectors v?, v¢, v5. The final categor-
ization is read from the last components of v5. Thus, v is at least the sum of
the sizes of gand the label vector. This follows the work of Xie et al."* with the
use of deep skip layers internal to each of the NN%, NN¢, NN¢ layers.
Additionally, connectivity is determined by including atoms within a spe-
cified distance, not taking the nearest 4 atoms, resulting in increased training
accuracy with a variable number of edges.

Novel crystal attention neural network

While graphical attention layers incorporate an adjacency matrix, we now
demonstrate the effectiveness of pure attentional layers for materials
property prediction. This eliminates the hyperparameter choices that would
have been incurred by the adjacency matrix. A CANN is attention applied to
encoded atoms. This generalizes deep set networks, which were previously
found to exhibit extremely poor inference on materials datasets. Attention
layers (notated as MultiHead(Q, K, V) for query, key, and value matrices,
respectively) frequently operate on ordered structures”. However, attention
naturally treats inputs as elements of a set. The equational status of the
network is described by the input Z = @,eca(p, @ v, @ g) supplied to
alternating layers of feed-forward networks and attentional layers, with skip
connections past each attentional layer. An additional architectural mod-
ification based on the commonly known set transformer framework was
tested to increase training speed with similar results": (rFF) as
rFF(SAB(rFF(SAB(rFF(SAB(Z)))))) with skip connections between every
layer except the last, as illustrated in Fig. 4.
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Fig. 5 | The CCNN architecture design flow. A small cubic region surrounding one
molecule of the crystal (Gd,O; as an example) is converted into an antialiased voxel
lattice. Each voxel encodes a user-configurable representation of an atom whose
center is less than one voxel unit away from the voxel’s center. Classification is
performed by augmenting a fully connected network (red) with a series of con-
volution layers (blue) that process per-voxel atomic embeddings.

This architecture allows for modeling pairwise and higher-order
interactions among elements in the input set, while maintaining permuta-
tion invariance. If the set transformer architecture is used, the computa-
tional complexity of the attention layers reduces from O(#’) to O(nm),
where m is the number of inducing points, allowing the model to scale to
large input sets while maintaining full connectivity. For non-topological
classification, this method performed on par with full attention. However,
full attention was necessary for the topological dataset. This demonstrates
stronger performance for a non-graphical network design than previously
expected®.

Innovative crystal convolutional neural network

The final network examined is the CCNN. This network uses a spatial
representation of the atoms”. CCNNG are instances of convolutional neural
networks (CNN’s) applied to solid state materjals. Convolutional networks
have been used extensively in both voxel and video domains, exploiting
spatial and spatio-temporal uniformity by applying a kernel to a 2-, 3- or
4-dimensional representation.

As visualized in Fig. 5, the tensorial embedding for the network is N’ x
(IVatoml + 1+ v¢) dimensional. The first three indices of the tensor are spatial
indices, with the N’ cube corresponding to the [0, 1)? space consisting of the
atoms’ positions relative to the primitive cell spanning vectors. Note that this
explicitly violates spatial isotropy. However, network performance was
improved compared to isotropy-respecting models. We note that the iso-
tropic expansion and compression were in fact considered early on, and it
was found that breaking the symmetry on the input representation level,
while maintaining the faithful material representation in the global sym-
metry, gave the strongest performance. We therefore speculate that this
improved performance is due to the easier correlation of symmetry with the
voxelization in our approach. The addition of v, corresponds to generating
an N’ x v, tensor directly from the global features via a multiperceptron
network as v, = NN'(g). Tests demonstrated that concatenating N’xgto
the voxel crystal cell was both computationally expensive, and failed to
perform. To embed the atoms in the first |v,4,,| + 1 spots in the tensor, the
atoms from the crystal are represented relative to the bounds of the 3D
tensor using the relative coordinates in the crystal cell. Anti-aliasing is used
to encode the atomic representations v, with a filling term directly into the
voxel mesh®.

Data availability

All research data is available with instructions at the GitHub repository at
https://github.com/gnnop/Faithful-novel-machine-learning-for-
predicting-quantum-properties.
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