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Finite Codes and Groupoid Words 

JONATHAN D. H. SMITH 

Correspondences between codes and groupoid words are established: between maximal suffix 
codes and groupoid words; between maximal commutatively prefix codes and cancellative 
entropic groupoid words; and between finite maximal codes and idempotent entropic groupoid 
words. Recognition criteria for the three types of groupoid word are given in terms of order 
relations involving binomial coefficients, divisibility conditions, partition functions and curves 
in simplices. 

1. INTRODUCTION 

The primary aim of this paper is to examine various correspondences between 
groupoid words and codes in a binary alphabet. Roughly speaking, the correspon
dences connect groupoid words with suffix (or prefix) codes (Section 2), cancellative 
entropic groupoid words with commutatively prefix codes (Section 3), and idempotent 
entropic groupoid words with finite maximal codes (Section 6). Codes, as bases for free 
semigroups, lie within the domain of the associative law. On the other hand, the 
groupoids of interest are non-associative. Thus the correspondences offer some curious 
connections between associative and non-associative phenomena. 

From the algebraic side, the main concern is with 'recognition criteria'. Free 
groupoids of various types appear naturally as subsets of larger sets with algebraic 
structure. The 'recognition problem' is to determine when elements of these larger sets 
actJially lie within the subsets representing the free groupoids. The standard recogni
tion criteria given in the algebraic literature are often low-level syntactical criteria, 
while coding theory offers more elegant, higher-level semantical criteria. The cor
respondences discussed enable one to translate these more amenable criteria to the 
algebraic context. In Section 2, semiterms are recognized as representing groupoid 
words precisely when their monomials form a maximal suffix code. (Suffix codes appear 
following the parenthesis-minimizing algebraic convention of. composing maps in the 
natural reading direction from left to right: the opposite convention would yield prefix 
codes.) Theorem 3.3 gives a divisibility criterion for recognizing which elements offree 
modules over bivariate polynomial rings represent cancellative entropic groupoid 
words in the free generators. This divisibility condition (3.5) emerges as equivalent to 
the rather complicated order conditions on binomial coefficients (3.4) known in the 
algebraic literature. Theorem 4.1 gives a comparable divisibility criterion in terms of 
polynomials in a single variable. Section 5 discusses recognition criteria for idempotent 
entropic groupoid words within modules over polynomial rings in a single variable. The 
criteria here come from abstract convexity theory rather than from coding theory. One 
criterion (Theorem 5.1) is syntactical, involving order relations with binomial 
coefficients, while the other (Theorem 5.2) is geometric, correlating idempotent 
en tropic groupoid words with curves from one corner of a simplex to another. 

From the coding theory point of view, the correspondences focus attention toward 
algebraic structure of binary codes that is often overlooked; for example, the free 
groupoid structure formed by finite maximal suffix codes (Proposition 2.2). Commuta
tive equivalence of codes makes especial sense in terms of the map k of (6.4), while 
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measures of finite codes, particularly finite maximal codes, are conveniently viewed 
purely algebraically in terms of the map m of (6.5) or the composite km. Hovering in 
the background is the problem of determining whether every finite maximal code is 
commutatively prefix. Section 6 approaches this problem for binary codes (how closely 
remains to be seen) in terms of lifting the recognition criteria of Section 5 for 
idempotent entropic words back along the map m to the recognition criteria of Section 
3 for cancellative en tropic words. Finally, Section 4 gives a statistical mechanical 
interpretation to Karp's univariate structure function used to recognize finite languages 
commutatively equivalent to maximal prefix codes. Under the correspondence of 
Section 3, this interpretation carries over to cancellative entropic groupoid words. 
There is much current interest in physical interpretations of knot polynomials (e.g. 
[10]). Now certain knot polynomials are naturally realized as entropic right quasigroup 
words [8]. Entropic right quasigroups have two interconnected groupoid operations. 
Part of the motivation for the present study has been the desire to clarify aspects of 
entropic groupoids as a preparation for understanding those aspects of entropic right 
quasigroups that are relevant to knot theory. In particular, the physical interpretation 
given to entropic groupoid words in Section 4 offers clues for a physical interpretation 
of knot polynomials via entropic right quasigroup words. 

2. GROUPOIDS AND MAXIMAL SUFFIX CODES 

A groupoid or magma ( G, o) is a set G equipped with a binary operation of 
multiplication denoted by infixed o or juxtaposition (with juxtaposition binding more 
strongly). Given a set A, often referred to as an alphabet with elements called letters, 
the set A o of groupoid words in A is defined inductively as follows: 

(i) each letter is a groupoid word; } 
(ii) if u and v are groupoid words, then so is u o v. 

(2.1) 

By (ii), the operation o makes Ao a groupoid, the free groupoid on A. (This 
terminology is justified by Schroter's Theorem [7, 133].) Groupoid words in A may 
be represented by rooted binary trees with labelled edges and leaves. The edges are 
labelled by elements of the set {R, L} and the leaves are labelled by elements of the 
set A. The representing tree or parsing tree Tw of a groupoid word w in A is defined 
inductively as follows: 

(i) each letter is represented by a single vertex labelled by the letter; } 
(ii) Tu•v consists of Tu, Tv, and a new root which is joined to the root of Tu by an (2.2) 
edge labelled R and to the root of T, by an edge labelled L. 

Given a vertex in such a parsing tree, the unique directed geodesic from the vertex to 
the root is described by the concatenated sequence of edge labels along the geodesic. If 
the given vertex is the root itself, the corresponding sequence is taken to be 1, the 
empty concatenation. In this way the geodesics and their initial vertices are specified by 
elements of the free monoid {R, L}* over {R, L}. 

Let N{R, L}* denote the free additive (commutative) semigroup over the set 
{R, L}*. The multiplication in the monoid {R, L}* extends by distributivity to 
N{R, L}*, making it the free semiring (with commutative addition and a multiplicative 
identity) over {R, L}. The elements of N{R, L}* may be considered as polynomials in 
non-commuting indeterminates R and L with natural number coefficients. Let 
AN{R, L}* denote the free right N{R, L}*-semimodule over the alphabet A. The 
elements of AN{R, L}* are called semiterms over A [3, p. 13]. A groupoid operation o 

may be defined on the set of semiterms by 

xoy =xR + yL. (2.3) 
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Under this groupoid operation, the subset A of Ar\l{R, L}* generates a subgroupoid, 
which is (isomorphic with) Ao [3, 1.3.1]. An immediate problem is to recognize which 
semiterms actually lie in A 0

, and so represent groupoid words in A. A semiterm over A 
may be written in the form 

(2.4) 

with (not necessarily distinct) letters a; and with each e; in {R, L}*. Jezek and Kepka 
then give the following criterion for recognizing groupoid words amongst semiterms. 

PROPOSITION 2.1 [3, 1.3.2]. The semiterm (2.4) is a groupoid word in A iff it satisfies 
the following three conditions: 
(i) r;;.1; 
(ii) V1 ,-;; i, j ,-;; r, (3f E {R, L}*. e; = fei) ::=? (i = j); 
(iii) V1 ,-;; i ,-;; r, (3f, g E {R, L}*. 3p E {R, L}. e; = fpg) ::=? 
(31:,-;;j:,-;;r. 3q E {R, L}- {p} .3h E {R, L}*. ei=hqg). D 

The complicated-looking syntactical conditions of Proposition 2.1 may be expressed 
more simply in graph-theoretical language. In the leafless binary rooted tree, label the 
two edges growing from each vertex with R and L respectively. Each vertex of the tree 
is specified by the concatenated sequence of edge labels along the unique directed 
geodesic from the vertex to the root. A semiterm (2.4) determines a multiset 
{ e; j1 ,-;; i ,-;; r} of vertices in the tree. Proposition 2.1 states that the semi term is a 
groupoid word w iff the multiset is the set of leaves of a rooted binary tree, a subrooted 
tree of the edge-labelled leafless rooted binary tree. If these conditions prevail, then 
the tree, with each leaf e; labelled by a;, is the parsing tree Tw of the groupoid word w. 

Proposition 2.1 may also be restated very cleanly in code-theoretical language; 
namely, the semi term (2.4) is a groupoid word w iff the multiset { e; 11 ,-;; i ,-;; r} is a finite 
non-empty maximal suffix code in the alphabet {R, L}. Condition (i) of Proposition 2.1 
gives the non-emptiness, condition (ii) gives the suffix property, and condition (iii) 
gives the maximality. If these conditions prevail, then the parsing tree Tw, shorn of its 
leaf labels, is the literal representation [1, p.87] of the code { e; j1 ,-;; i ,-;; r }. The 
groupoid operation (2.3) on A 0 corresponds to a familiar operation ([1, 11(4.2)] or (2.5) 
below) on maximal suffix codes. In general, parsing trees of groupoid words in an 
alphabet A carry more information than the literal representations of maximal suffix 
codes. The extra information is contained in the leaf labelling by letters from A. This 
information vanishes if A is a singleton. In this case, groupoid words correspond 
exactly to finite maximal suffix codes. To summarize: 

PROPOSITION 2.2. Under the operation 

(C, D)~CR UDL, (2.5) 

finite maximal suffix codes over a binary alphabet {R, L} form the free groupoid on one 
generator. D 

3. ENTROPIC GRouPoms AND CoMMUTATIVELY PREFIX CoDES 

Over the semiring t\l{R, L}* of polynomials in non-commuting indeterminates Rand 
L with natural number coefficients, the free semimodule Ar\l{R, L}* on an alphabet A 
forms a groupoid under (2.3) in which the subset A generates the free groupoid A 0

• 

The elements of A 0 correspond to leaf-labelled rooted binary trees and determine 
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maximal suffix codes, as seen in the previous section. This section is concerned with the 
analogous structures involved when the indeterminates Rand L commute. 

Let N[R, L] denote the free additive (commutative) semigroup over the underlying 
set of the free commutative monoid over the set {R, L}. The multiplication in the 
monoid extends by distributivity to N[R, L], making it the free commutative semiring 
over {R, L}. The semiring N[R, L] may equally be taken as the semiring of 
polynomials in Rand L with natural number coefficients. Let AN[R, L] denote the free 
N[R, L]-semimodule over the alphabet A. Equation (2.3) may be used to define a 
groupoid operation on AN[R, L], under which the subset A generates a subgroupoid 
A c. 

A groupoid (G, o) is said to be entropic if the binary operation o: G2~ G is actually a 
homomorphism o: (G2

, o)~ (G, o), i.e. if the identity 

xy o zt = xz o yt 

is satisfied. The groupoid (G, o) is said to be cancellative if the implication 

(xy = xz or yx = zx) :::;> y = z 

(3.1) 

(3.2) 

holds. The groupoids (AN[R, L], o) and Ac are cancellative and entropic. Moreover, Ac 
is the free cancellative entropic groupoid on A [3, 2.3.3], in the sense that any set map 
A~ G into the underlying set of a cancellative en tropic groupoid ( G, o) extends to a 
unique homomorphism Ac~ G. 

REMARK 3.1. Although Ac is the free cancellative entropic groupoid A, it is not the 
free en tropic groupoid on A. The identity (a o xb )(yc o d)= (a o yb )(xc o d) holds in A c, 

but fails with a= b = y = d = 1 and x = c = 2 in the entropic groupoid on {0, 1, ... , 6} 
defined by 11 = 2, 12 = 3 = 21, 13 = 4, 31 = 5, 45 = 6, and all other products 0 [2, Rem. 
5.1; 3, 2.4.1]. This fact inhibits the possibility (raised in [6, §1]) of representing general 
entropic groupoid words faithfully by polynomials in commuting indeterminates. In 
some works, such as [3], the identity (3.1) is referred to as 'mediality'. The word 
'entropic' is reserved in [3] to describe quotients of cancellative entropic groupoids. 
Such quotients are not necessarily cancellative. 

Elements of the free cancellative entropic groupoid A c on A are called cancellative 
entropic groupoid words in the letters of the alphabet A. As in the previous section, a 
recognition problem arises: Which elements 

r 

L a;Rn,Lm' 
i=l 

(3.3) 

of AN[R, L] represent cancellative entropic groupoid words? Jezek and Kepka give the 
following solution, in terms of the total degree d =max { n; + m; It :o;;;; i :o;;;; r} of (3.3). 

THEOREM 3.2 [3, 2.3.1]. A cancellative entropic groupoid word is represented by 
(3.3) iff the following three conditions are satisfied: 

(i) r;;;:,: 1; 

(ii) \fO:o;;;;m:o;;;;n<d, L ' ' :o;;;; ; 
r (n -n·- m-) ( n) 

i=l m -n; m (3.4) 

(iii) r (d-n--m·) (d) \fO :o;;;; m :o;;;; d, L ~ ' = . 
i=l m n; m 

0 
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The proof of Theorem 3.2 [3, 2.3.2-8] is long and complicated, and verification of 
the !(d + 1)(d + 2) conditions (3.4) for a given instance of (3.3) is tiresome. As in the 
previous section, however, a simpler solution to the recognition problem is offered by 
coding theory. Note that (3.3) represents a cancellative entropic groupoid word iff 
there is a groupoid word (2.4) for which each e; maps to Rn•L m, under the 
homomorphism k, from the free monoid {R, L}* on {R, L} to the free commutative 
monoid on {R, L}, induced by the identity set map on {R, L}. In terms of coding 
theory, this means that the multiset { Rn• L m, 11 ~ i ~ r} is commutatively equivalent to 
a multiset { e; 11 ~ i ~ r} that is a (finite) maximal suffix code; in other words, is 
maximal and commutatively suffix or maximal and commutatively prefix [1, §VII.6]. 
Using a well-known criterion for such multisets [4, Th. 1; 1, Th. VIII.6.1], one obtains 
the following solution to the recognition problem as an alternative to Theorem 3.2. 

THEOREM 3.3. A cancellative entropic groupoid word is represented by (3.3) iff the 
following condition is satisfied: 

r 

3Q(R, L) E N[R, L]. 2: Rn•L m, = 1 + (R + L- 1)Q(R, L). 
i=l 

(3.5) 

0 

CoROLLARY 3.4. The conditions (3.4) and (3.5) on (3.3) or the polynomial 
~~= 1 Rn•L m, are equivalent. 0 

4. STRUCfURE FUNCTIONS AND THE THERMODYNAMIC INTERPRETATION 

The polynomial 

r 

P(R, L) = 2: Rn,Lm' (4.1) 
i=l 

appearing on the left-hand side of the equation in (3.5) is called the bivariate structure 
function of the element (3.3) of AN[R, L]. Similarly, one may associate a bivariate 
structure function 

r 

P(R, L) = 2: e;k (4.2) 
i=l 

with a semiterm (2.4), where k is the homomorphism from the free monoid to the free 
commutative monoid defined in the previous section. ([4, §II] associates 'multivariate 
structure functions' with subsets of free monoids over arbitrary finite alphabets.) In 
addition to the criterion [4, Th. 1] in terms of bivariate structure functions that is 
embodied in Theorem 3.3, Karp gave a criterion in terms of functions of a single 
variable, the 'univariate structure functions' [4, Th. 2]. These functions were defined in 
terms of 'costs'. However, when reinterpreted in terms of 'energies', with the single 
variable reformulated in terms of 'temperature', the univariate structure function turns 
out to be a basic and familiar function from thermodynamics, the 'Zustandsumme', 
'sum-over-states' or partition function [9, pp. 532, 567] of Darwin and Planck. 

As a substrate for the physical interpretation, consider the first quadrant N2 of the 
lattice 71?. A particle may start at the origin (0, 0) with zero energy. Each move from 
(n, m) to (n + 1, m) increases its energy by a quantity p. Each move from (n, m) to 
(n, m + 1) increases its energy by the quantity A.. Thus a particle at position (n, m) has 
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energy np + mA. The element (3.3) of Ar\J[R, L] represents a system with r states, the 
ith state corresponding to a particle at position (n;, m;), and thus having the energy 
n;p + m;A assigned to it. The partition function associated with the system (3.3) is then 

r 

Z(T) = 2: exp{ -(n;p + m;A)/kT}, (4.3) 
i=l 

where T is the temperature and k is Boltzmann's constant. Karp's univariate structure 
function F(z) is Z( -1/ k log z ), restricted to the case of positive integral 'energies' or 
'costs' p, ).. so that F(z) becomes an element of r\J[ z ], a polynomial in z with natural 
number coefficients. Using the criterion [4, Th. 2] on univariate structure functions, the 
solution to the recognition problem for cancellative entropic groupoid words may be 
formulated as follows. 

THEOREM 4.1. Lei the energies p, ).. be positive integers. Then the element (3.3) of 
Ar\J[R, L] represents a cancellative entropic groupoid word iff its partition function (4.3) 
is of the form 

1 + (e-plkT + e-'-lkT -1)Y(T), 

for some element Y(T) of r\J[e- 11k1]. 

5. CoNVEXITY AND BINARY MoDES 

D 

A groupoid (G, o) is said to be idempotent if each singleton in G is a subgroupoid, 
i.e. if the identity 

xox =x (5.1) 

is satisfied. Algebras (of arbitrary type) that are both idempotent and entropic, i.e. 
having all singletons as subalgebras and all operations homomorphic, are referred to as 
modes [7, pp. vi, 14]. In general, the theory of modes is closely connected with the 
concept of convexity. Idempotent, entropic groupoids, with their single binary 
operation, are binary modes. 

Let Z[ M] be the integral polynomial ring in the indeterminate M. Given an 
alphabet A, let AZ[M] be the free A-module over Z[M]. Under the binary operation 

xoy =xM + y(1- M), (5.2) 

AZ[M] becomes a binary mode. Let Ab denote the submode generated by A. Then Ab 
is the free binary mode on the set A (this follows from [2], or from [3, 2.4.4] and the 
freeness of Ac as a cancellative entropic groupoid). The elements of Ab are described 
as binary mode words in the alphabet A. An arbitrary element of AZ[M] may be 
written in the form 

s 

L b;p;(M) (5.3) 
i=l 

with { bv ... , bs} as an s-element subset of A and {p;(M) 11 ,;.:;; i ,;.:;; s} as a subset of 
Z[M]. As before, a recognition problem arises: When does (5.3) represent a binary 
mode word in A? Solutions were given by van Maaren in his Utrecht dissertation [5] 
under Monna's direction. The most immediate solution is a combinatorial one, 
analogous to Theorem 3.2: 
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THEOREM 5.1. A binary word is represented by (5.3) iff the following three 
conditions are satisfied: 

(i) s~1; 

(ii) 'v'1 ~ i ~ s, 3N; EN. 'v'1 ~j ~ N;, 

N; 

p;(M) = L A;jMj(1- M)Nd; 
j=l 

s 

(iii) L p;(M) = 1. 
i=l 

30~A.-~(N;) ., j 

PROOF. See [5, Th. II.4.1] and [5, Prop. II.2.3]. D 

(5.4) 

An alternative solution to the recognition problem may be couched in geometric 
language, indicating one of the connections between modal theory and convexity. Let 
T denote the convex hull of the points (1, 0, ... , 0), (0, 1, ... , 0), ... , (0, ... , 0, 1) in 
the Euclidean space IW. 

THEOREM 5.2. A binary mode word is represented by (5.3) iff 

[0, 1]- T; t~ (p 1(t), p 2(t), ... , p.(t)) (5.5) 

parametrizes a directed curve in the geometric simplex T leading from orie extreme point 
to another. 

PROOF. See [5, Th. II.4.11] ahd [5, Th. II.4.9]. D 

6. FINITE MAXIMAL ConEs 

Let m: Z[ R, L]- Z[ M] denote the ring morphism of polynomial rings induced by 
R ~ M and L ~(1-M). For a real number q, let 17q: Z[M]- ~ denote the ring 
morphism induced by M ~ q. For q in the unit interval, the composite 

(6.1) 

is the Bernoulli distribution Jr on {R, L}* with n(R) = q and n(L) = 1- q [1, p. 54]. 
For an s-element subset ('language') 

X={e;l1~i~s} (6.2) 

of {R, L}*, one has 
s 

n(X) = 2: e;km1Jq (6.3) 
i=l 

as the measure of X relative to Jr [1, p. 55]. Since attention focuses on languages of 
measure 1, the following equivalence is worth noting. 

PROPOSITION 6.1 For a finite language X as in (6.2), the following are equivalent: 
(i) n(X) = 1 for all Bernoulli distributions n; 
(ii) n(X) = 1 for a Bernoulli distribution assigning transcendental weight q to the letter 
R; 
(iii) ~:= 1 e;km = 1 in Z[M]. 



338 J.D. H. Smith 

PROOF. (i):::} (ii) is trivial. 
(ii):::} (iii): Since q is transcendental, the ring homomorphism T/q: .Z[M]~ IR injects. 

Then 1 T/q = 1 = n(X) = I:f=t e;kmTJq implies 1 = I:f=1 e;km. 
(iii):::} (i): If Jr assigns weight q to R, then I:f=1 e;km = 1 implies n(X) = 

I:f=1 e;kmTJq = 1TJq = 1. D 

Any groupoid word may be construed as a cancellative entropic groupoid word, and 
any cancellative entropic groupoid word may be construed as a binary mode word. 
These constructions are reflected by extensions of the morphisms k and m for a given 
alphabet A, namely 

r r 

k:AN{R, L}*~AN[R, L]; L a;e;~ L a;e;k (6.4) 
i=l i=l 

and 
r r 

m:AN[R, L]~A.Z[M]; L a;Rn,Lm'~ L a;Mn'(1-M)m', (6.5) 
i=l i=l 

together with their groupoid homomorphism restrictions 

and (6.6, 6.7) 

Conversely, any cancellative entropic groupoid word may be construed as one or more 
groupoid words, e.g. abo cd may be construed as abo cd or ac o bd. Similarly, any 
binary mode word may be construed as one or more cancellative entropic groupoid 
words, e.g. a o be may be construed as aa o be or abo ac or a o be. However, it should be 
noted that the recognition criteria discussed above cannot be lifted back along the 
maps k of (6.4) and m of (6.5) in general: 

EXAMPLE 6.2. (i) Consider the semiterm aR + bLR + cL2
, which is not a groupoid 

word since {R, LR, L2
} is not a suffix code. The image of the semiterm under (6.4) is 

the cancellative entropic groupoid word (aR + bLR + cL2 )k = aR + bRL + cL2 =a o 

(b oc). Of course, {R, LR, L2
} is commutatively suffix without being suffix. 

(ii) (cf. [4, Ex. (c) to Th. 1]) Consider the element a(R 3 + L 3 + 3RL) of AN[R, L]. 
It is not a cancellative entropic groupoid word, since R 3 + L 3 + 3RL = 1 + (R + L-
1)(R2 + L2

- RL + R + L + 1). Nevertheless, its image under (6.5) is the (short) binary 
mode word a. A more illuminating version of the example is offered by the element 
aR3 + bC + cRL + dRL + eRL of AN[R, L]. Again, this is not a cancellative entropic 
groupoid word, although it maps under (6.5) to the binary mode word (acod)(eocb). 

Suppose that the language X of (6.2) is a finite maximal code. By [1, Th. 5.10], X 
satisfies condition (ii) of Proposition 6.1. Let B = { b; 11 ,;.;; i ,;.;; s} be an s-element 
alphabet. Since each e;km is a product of powers of M and (1 - M), and I:f=1 e;km = 1 
by Proposition 6.1, Theorem 5.2 shows that the semiterm 

(6.8) 

is a binary mode word in B. In this sense, finite maximal codes determine binary mode 
words. If the recognition criteria for groupoid words could be lifted back along m in 
such a case, so that I:f=1 b;e;k represented a cancellative entropic groupoid word, it 
would then follow that the finite maximal code X was commutatively prefix. Thus the 
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correspondences between codes and groupoid words discussed in this paper offer an 
approach to 'the main question left open in the theory of codes' [1, p. 423], the 
question as to whether every finite maximal code is commutatively prefix. 
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