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1. INTRODUCTION This paper sets out to study affine geometry, projective
geometry, and the relationship between them. The study is undertaken from an
algebraic standpoint subject to requirements of invariance and directness.
"Invariance" means following Klein's Erlanger Programm for geometry [K1l,p.7]
[Kn,p.463]:

Suppose given a geometry and a group of transformations of the

geometry; one should investigate features belonging to the

geometry with regard to properties that are invariant under

the transformations of the group.
The usual coordinatization of an affine geometry by a module over a commutative
ring is not invariant under the affine group in this sense, since the zero
element of the module is disturbed by affine translations. The algebraic
descriptions of affine geometries to be used here are required to have affine
groups as groups of automorphisms. The advantage of satisfying this requirement
is that one may then identify the algebraic structure with the affine geometry,
rather than having to maintain a duality between a description (the
coordinatizing module) and the thing described (the affine. geometry).

"Directness” is a requirement motivated by recent developments in applied

mathematics [RS,p.103], [$1,pp.388-9]. It means avoiding "secondary constructs"
- features of a mathematical model introduced merely for pure mathematical
convenience, and not corresponding to any phenomenon being modelled. In the
present context, secondary constructs might take the form of ideal elements or
points at infinity. Thus the aim of the paper is to describe affine geometry,
projective geometry, and the passage between them purely algebraically, in an

invariant way avoiding the setting up of auxiliary constructions.
2. THE ALGEBRAIC FRAMEWORK The algebraic approach to affine geometry here is

that of [0S], [RS,2.5]. Let K be a field, and E a vector space over K,

For each element k of K, define a binary operation

(2.1) kK:Ex E 2 E; (x,t)P xyk: = x(1-k) + yk
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on E, so that (E,K) becomes an algebra with the set K of binary
operations. "Algebra" is meant in the sense of universal algebra: see [Co] or
[RS,Chapter 1] for explanations of universal algebraic notions. On E, define

the parallelogram—completion operation
(2.2) P:Ex Ex E=+ E; (x,7,2)P x -y + z.

Then the algebra (E,K,P) with the ternary operation P and set K of binary
operations has as its derived operations (those obtained from successive
compositions of the basic operations P and k for k in K) precisely the
affine combinations x k., +...+ err (with k1 +ooot kr = 1) of elements

11
KyseeesX of E. It follows that the algebra (E,K,P) has the affine group as

its grou; of automorphisms, and may thus be identified as the affine geometry.
The corresponding projective geometry consists of the set L(E) of linear
or vector subspaces of the vector space E, ordered by inclusion. This may be
described algebraically as (L(E),+), where for subspaces U and V of E,
U+ V is the sum of U and V. The incidence or inclusion structure is
recovered from (L(E),+) via U< V iff U+ V = V. Algebraically,
(L(E),+) is a semilattice - the binary operation + 1is commutative,
associative, and idempotent.
Both the algebras (L(E),+) describing the projective geometries and the
algebras (E,K,P) describing the affine geometries have two special
properties. They are idempotent, in the sense that each singleton is a
subalgebra, and they are entropic, i.e. each operation, as a mapping from a
direct power of the algebra into the algebra, is actually a homomorphism.
Algebras with these two properties are called modes. They are studied in detail
in [RS]. Given a mode (A,Q), as a set A with a set § of operations
w:A"T > A on it, one may form the set (A,Q)S or AS of non-empty subalgebras
of (A,2). This set AS carries an Q-algebra structure under the complex

products

wT

¢ : e €& X
w:AS" " + AS; (Xl,...,XwT)lé {x1 wamlxl l}

and it turns out that the algebra (AS,Q) is again a mode, preserving many of
the algebraic properties of (A,Q) [RS,146]. The key idea of the current paper
is to examine the algebras (E,K,P)S arising in this way from an affine space
(E,K,P). The method is to obtain varieties nicely containing such (E,K,P)S,
and to describe the structure of the (E,K,P)S within the varieties - see (3.7),
(4.9), (5.13). 1t is the structure of the (E,K,P)S which yields the direct,

invariant passage from the affine to the projective geometry.
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The internal structure of the (E,K,P)S is described using a construction
known as the Ptonka sum [P%], [RS,236]. Let Q be a non-empty domain of
operations with an arity mapping t:0 + {n € N]n > 1}. A semilattice (H,+)
may be considered as an Q-algebra (H,2), a so-called Q-semilattice, on
defining hl...thw = h1 +o ot th for hi in H. The semilattice operation
+ 1is then recovered as h + k = hk...kw - for any «w from Q. The semilattice
(H,+) may also be considered as a (small) category (H) with set H of
objects, and with a unique morphism h + k precisely when h + k = k, i.e.

h < k. The notion of Ptonka sum depends on viewing the semilattice (H,+) in

this way both as a category and as an Q-algebra. Let (R) denote the

(concrete) category of Q-algebras and homomorphisms between them. Let

F:(H) » (2) be a functor. Then the Ptonka sum of the Q—algebras (hF,Q)

(for h in H) over the semilattice (H,+) by the functor F 1is the disjoint

union HF = U hF of the underlying sets hF (h in H), equipped with the
hed

Qi—algebra structure given for an h-ary operation ® in § and

h,eeesh ki =h) 4ot b in H by

1

(2.3) w:h Fx...xh F > kF;
1 n
(xl,...,xn)b> xl(hl*k)F...xn(hn+k)Fm.

The projection of the PZonka sum HF is the homomorphism nF:(HF,Q) + (H,Q)
with restrictions wF:hF + {h}. The subalgebras (hF,Q) = (nglh,n) of (HF,Q)
are referred to as the PXonka fibres.

The union {P} U K forms a set of operations on (E,K,P)S, namely the set
of corresponding complex products. For each of the three cases for K to be
studied - namely characteristic 0, odd characteristic, and characteristic 2 -
considerations of convexity suggest taking a certain subset QK of {P} U K.

The set QK may be viewed as an algebraic analogue of the open unit interval in
the field of rationals, and will actually be this interval in the characteristic
zero case. The algebra ((E,K,P)S,QK) will then be shown to be a P*onka sum
over the QK—semilattice (L(E),QK). The main result of this paper, the direct

invariant passage from an affine to a projective geometry, follows:

THEOREM 2.4. Let K be a field, and let (E,K,P) be an affine space over K.

AR

of the algebra ((E,K,P)S,Q.) of affine subspaces of (E,K,P).
oS =20E 3.gepra x! S5 210 Subspaces of

Then the Eroigctive geometry (L(E),+) iﬁ the largest QK—semilattice quotient

The three subsequent sections give the proof of the various cases of
Theorem 2.4 in turn: Section 3 deals with K of characteristic 0, Section 4

with K of odd characteristic, and Section 5 with K of characteristic 2. 1In




the course of describing the algebra ((E,K,P)S,QK) for the characteristic 2
case in Section 5, attention is drawn to some general results of PXonka
theory. A method of determining a basis for the identities of the
regularisation of a strongly irregular variety from a basis for the irregular
variety is given. This method preserves finiteness of the basis. It is also
observed that the automorphism group of a free algebra on a set in a regular

variety is the permutation group of the set.

3. CHARACTERISTIC ZERO This section considers the case that the field K is of
characteristic zero. Since 2 has the inverse 1/2 in K, the parallelogram

operation P of (2.2) may be written as
(3s1) xyzP = yxz 1/2 2,

the latter term being y(1-2) + (x(l—%) + z%)Z = -y +x + z. This means that
the algebraic structure (E,K,P) describing an affine geometry over K may be
replaced by the structure (E,K). The class K consisting of these algebras
(E,K) and the empty space (¢,K) forms a variety in the sense of universal

algebra - the class of all algebras satisfying a given set of identities.

THEOREM 3.2 [0S,Satz 7] [RS,256]. The class K of affine K-spaces is the

Frriety of modes (B.K) of Lype Tk &+ {2} satisfying fhe ldeptifics:

(a) xy0 = x;
(b) xyl = y;
(c) xyp xyqr = xy(pqr).

Given such an algebra (E,K), one may consider its reduct (E,Io)
obtained by admitting only those binary operations k as in (2.1) for which
k lies in the open unit interval 1° = {x € QIO < x <1} of the rationals
Q, the prime field of K. 1In the notation of Section 2, 1° = QK. The
subalgebras (X,IO) of (E,IO) are precisely the Q-convex subsets X of E.
The class of all Q-convex sets,i.e. the class of all such (X,Io) for all such
(E,Io), does not itself form a variety, but the smallest variety containing the

class, the variety of so-called rational barycentric algebras, is described as

follows, where p denotes 1 - p.

THEOREM 3.3 [RS,214]. The variety of rational barycentric algebras is the

class of algebras of type 1% + {2} satisfying the identities:
(a) XXp = X
(b) xyp = yxp'
(c) xypzq = xyz(q/(p'q")")(p'q")’.

(The reference [RS,214] actually treated the case of real barycentric algebras,
with operations from the open unit interval in the reals, but the statement and
proof for the rational case are completely analogous.) The identity (a) is just
idempotence; (b) is a skew form of commutativity, while (c) is a skew form of
associativity. Examples of rational barycentric algebras that are not convex
sets are furnished by Io—semilattices. For these, all the operations p
with p in 12 coincide, so (b) becomes genuine commutativity and (c) becomes
genuine associativity.

The choice of the set I° of binary operations here is made for two
reasons. Firstly, it leads to the readily available variety of rational
barycentric algebras. Secondly, 1° avoids the elements 0 and 1 of K.

The significance of this resides in the following general proposition.

PROPOSITION 3.4. Let K be a field other than GF(2), and let k be an
element of K distinct £rom 0 and 1. Let E be a vector space over K,

and (L(E),+) the corresponding projective geometry.

(1 Thete 1o 2 homoporphien
w: ((E,K,P)S,k) > (L(E),+); x + UP U.
(ii)  For the functor F:L(E)»> ({k}) with UF = 5 '(U) and
-1 -1 .
(U>VF;m (U) > 7 (V); x+UP x+V,

the algebra ((E,K,P)S,k) is the Ptonka sum over (L(E),+) by the functor F.

Proof. For x,y in E and U,V in L(E),

(x+0) (y+V)k = {(x+u)(y+v)k|u € U,v € V} = xyk + UVk = xyk + U(1-k) + Vk =
xyk + (U+V). This shows that « is a homomorphism. Further, xyk + (U+V) =
(x + (U+)) (v + (U+V))k = ((x+0) (UrU+V)F) ((y+V) (V+U+V)F)k, so this latter term
is equal to (x+U)(y+V)k, showing that ((E,K,P)S,k) is a P%*onka sum as
claimed.

In the case that K has characteristic zero, this proposition leads to the
following theorem describing the structure of the I°—algebra of affine

subspaces of an affine K-space.

THEOREM 3.5. For am affime K-space (E,K) in K, the I°-algebra

o
((B,K)S;I ) of affine subspaces of (E,K) is a PXonka sum of Q-convex sets
guer the projective geometry (L(E),+) by the functor F:(L(E)) » (I°) with

UF = {x + Ulx € E} and (UsV)F:UF > VF; x + UP x + V.




Proof. That ((E,K)S,IO) is the P*onka sum over (L(E),+) by the functor F
follows directly from Proposition 3.4. The P*onka fibres are the Io—algebras
{x + le € E} for fixed subspaces U, with (x+U)(y+U)p = xyp + U. Since
these are the reducts (E/U,Io) of the affine geometries (E/U,K) coming from

the quotient vector spaces E/U, they are Q-convex sets.

COROLLARY 3.6. The I°-algebra ((E,K)S,I°) of affine subspaces of an affine

K-space (E,K) is a rational barycentric algebra.

Proof. The Ptonka fibres (E/U,Io), being Q-convex sets, satisfy the
identities (a)-(c) of Theorem 3.3. These identities are regular: in any of the
identities, the same set of variables appears on each side of the identity. By
a result of P*onka [P%,Theorem I] [RS,238], it follows that the P*onka sum
((E,K)S,IO) of Q-convex sets also satisfies the identities, and is thus a

rational barycentric algebra.

Theorem 3.5 and Corollary 3.6 may be summarized as follows:

The rational barycentric algebra of affine subspaces of
(3.7) affine K-space is a P*onka sum of Q-convex sets over a

projective geometry.

By Theorem 3.5, the projective geometry (L(E),+) is an 1% semilattice

quotient of ((E,K)S,Io) by the projection w_,. To complete the proof of

Theorem 2.4 for the characteristic zero case,Fit must be shown that the
projective geometry is the largest semilattice quotient of ((E,K)S,IO). Since
there is such a largest quotient, the so-called Io—semilattice replica of
((E,K)S,Io) [Ma,11.3] [RS,1.5], and since projection onto this replica
factorises the projection of ((E,K)S,Io) onto any semilattice quotient, it
suffices to show that the P*onka fibres UF of Theorem 3.5 have no non-trivial
Io—semilattice quotient. Now these fibres are the Io—reducts (E/U,IO) of
affine K-spaces (E/U,K), so the proof of Theorem 2.4 in the characteristic

zero case is concluded by the following result.

THEOREM 3.8. For an affine K-space (E,K), the reduct (E,Io) has no

o ; c :
I'-semilattice quotient.

Proof. 1If (E,Io) has a non-trivial semilattice quotient, it has the two-
element semilattice {0,1} with 0 < 1 as quotient, say by a surjective
homomorphism f:(E,Io) > ({0,1},10). Then E is the disjoint union of non-
empty subsets f_l(O) and f—l(l). Take x' in f-l(O) and y' in f_l(l).

Consider the Q-affine span of x' and y' in (E,K). This is a rational

affine line (Q,Q). The homomorphism f:(E,Io) > ({O,l},IO) restricts to a
surjective homomorphism g:(Q,IO) > ({0,1},10), decomposing the rational affine
line as a disjoint union of non-empty fibres g—l(O) and g_l(l). These fibres
are subalgebras of (Q,IO), and so are convex subsets of Q. Without loss of
generality, assume that elements of g_l(O) are less than elements of g—l(l)
in the order (Q,<). Then there are elements x,y of g_l(O) and z,t of
g_l(l) such that x <y <z < t. Take p = (y—x)/(t-x) and q = (z-x)/(t-x),
so that =xtp =y and =xtq = z. Then 0 = yg = xtpg = xgtgp and 1 = zg = xtqg
= xgtgqg. But xgtgp = xgtgq in an Io—semilattice, a contradiction. It

o . . . .
follows that (E,I ) has no non-trivial Io—semllattlce quotient.

4, ODD CHARACTERISTIC In this section, the case that K has odd
characteristic is considered. As for the characteristic zero case, 2 is
invertible here, so the parallelogram operation P may be written in terms of
the binary operations 1/2 and 2 wusing (3.1). It follows that the algebraic
structures (E,K,P) describing affine K-spaces may be replaced by the
structures (E,K). Then the set (E,K)S of non-empty subalgebras of (E,K) is
the set of affine K-subspaces of (E,K).

Let J denote the prime subfield of K. This subset J of K plays a
role analogous to that of the unit interval I in the rationals. The reduct
(E,J) of (E,K) has as its subalgebras the affine J-subspaces of (E,K).
These may be viewed as analogues of the convex subsets of a rational affine
space. Consider the binary operation 1/2. Under this operation, (E,1/2) is

a commutative binary mode, a reduct of (E,J).

PROPOSITION 4.1. The binary derived operations of the algebra (E,1/2) are

the operations p with p from J.

Proof. The binary derived operations of the algebra (E,J) are all of the

form p for p in J. Let X be the subset of J consisting of those p
for which p is a binary derived operation of (E,1/2). Certainly X

contains 1/2. Now for p,q in K,

(4.2) xxypq = xy(pq).

Thus X is a subsemigroup of the multiplicative group of J - {0}. In

particular, 1 and 2 1lie in X, and 2X is a subset of X. Since

(4.3) xy 2p xy 2q 1/2 = xy(p+q)




for p,q in K, it follows that X is a subring of J. But X contains

1, and so is all of J.

In view of Proposition 4.1, QK for K of odd characteristic will be
taken to be the single binary operation 1123 often written as a multiplication
* or juxtaposition. Since (E,e) is a commutative binary mode, it follows
[RS,146] that the set of affine subspaces of (E,K) forms a commutative binary
mode ((E,K)S,¢). The choice of QK here is again made for two reasons similar
to those involved in the choice of § for K of characteristic zero: firstly,

RK avoids O and 1, and secondly ghere is a readily available theory of
commutative binary modes, due primarily to Je¥ek and Kepka [JK], [RS,Chapter
4].

The theory of commutative binary modes is based on the observation that the
free commutative binary mode on the two-element set {0,1} may be realised as
the unit interval Dl in the set D = {m2_n\m,n € Z} of dyadic rationals under
the operation 1/2 [RS,424]. For an odd natural number m, let 1(m) denote
2—l(m) and
, as elements of (Dl,llg), represent words wm(O,l) and w;(O,l)
in {0,1} respectively. For example, 3/4 = 110 1/2 1/2 and 3/8 = 0110 1/2

1/200/2, =0 w3(0,1) =110 1/2 1/2 and wé(O,l) = 0110 1/2 1/2 1/2. Let m

the least integer greater than logzm, e.g. 1(3) = 2. Then me
m.z—l(m)—l

denote the variety of commutative binary modes satisfying the identity
X = wm(x,y), and é the variety of those satisfying the identity
wm(x,y) = w&(x,y). There is then the following classification theorem
[JK,Theorem 4.9] [RS,454].

THEOREM 4.4. Apart from the variety of all commutative binary modes, the

varieties of commutative binarz modes are the varieties m and m for odd
NN N AN oot raraniro s e Sohees, B and m Tor odd

natural numbers m. For each such m, m is the variety of algebras satisfying
NI o) R S5 S = NN Sem Ans o RSl

the regular identities of m.
Recall that a binary algebra (A,¢) is said to be a quasigroup if there
are derived binary operations / (called right division) and \ (called left

division) on A such that the identities

(xey)/y = x, (x/y)-y

X,

(4.5)

]
»

y\(y+x) = x, ¥ (y\x)

are satisfied. The commutative binary modes (E,») = (E,1/2) coming from

affine K-spaces (E,K) may then be described as follows.

Proof For m=2" - 1, 1(m) = u. Then m+2

PROPOSITION 4.6. Let u be Ehg mul;ip%igggixs gsder 2£ 2 ig the £ielg K.
Then the reduct (E,1/2) of an affine K-space

= 1l

= oY

(E,K) is a guasigroup in the

variety m for

B

Ty L o2% = 10a/2%) =

leeel 0 1/2...1/2 with u applications of 1/2, the latter equality coming
from (4.2). Thus wm(x,y) = Yeeoyx 1/2...1/2. In (E,1/2), wm(x,y) =
Yeooyx 1/2...1/2 = yx(llzg) =yx 1 = x, the second equality coming from
(4.2). Thus the commutative binary mode (E,1/2) 1lies in the variety m.

Consider the binary operations A and p on E with yxA = yx(1/2u-1)
and xyp = yxA. Using (4.2) and the commutativity of 1/2, the word

wm(x,y) = Yeooyx 1/2...1/2 in (E,1/2) may be written variously as

w (%,y) = y(yx1/2)x = y(yx\)1/2 = (xy1/2)yp = (xyp)yl/2. The identity
wm(x,y) =x in (E,1/2) then gives the quasigroup identities (4.5). Since
A and p are derived operations of (E,1/2), it follows that (E,1/2) is a
quasigroup.

Propositions 3.4 and 4.6 may then be combined to give the following
structural description of the commutative binary mode ((E,K)S,e) of affine

subspaces of the affine K-space (E,K).

THEOREM 4.7. Let K be a field of odd characteristic p. Let m be the
least integer multiple of p of the form 2" - 1 for a matural number u.
Ihem for ap affime K-gpace (E,K), the commutative binary mode ((E,K)S,=)
is 3 Plomka sum of guasigroups in the variety m over the projective geometry
(L(E),+) or F:(L(E)) » ({-}) with UF = {x + U|x € E} and

(U > V)F:UF » VFyx + U x + V.

Proof. That ((E,K)S,e) is a Ptonka sum over (L(E),+) by the functor F
follows directly from Proposition 3.4 with k = 1/2. The Ptonka fibres are the
algebras ({x + U|x € E},1/2) for fixed subspaces U, with (x40) (y+U)1/2 =
xyl/2 + U. Since these are the reducts (E/U,1/2) of the affine geometries
(E/U,K) coming from the quotient vector subspaces E/U, they are quasigroups
in the variety m by Proposition 4.6,

COROLLARY 4.8. The commutative bi ((E,K)S,+) Llies in the variety I.

Proof. By Theorem 4.7 and Pfonka's result [P%,Theorem I] [RS,238], the algebra
((E,K)S,») satisfies the regular identities of m - the regular identities
satisfied by each of the PXonka fibres of ((E,K)S,«). Theorem 4.4 then shows
that ((E,K)S,«) 1lies in the variety é.




In analogy with (3.7), Theorem 4.7 and Corollary 4.8 may be summarized as:

The E—algebra of affine subspaces of an affine K-space
(4.9)

is a Ptonka sum of m-quasigroups over a projective geometry.

Just as for the characteristic zero case, the proof of Theorem 2.4 for the
case that K has odd characteristic is completed by showing that the PXonka
fibres UF of Theorem 4.7 have no non-trivial semilattice quotient. Now these
Ptonka fibres, lying in m, satisfy the identity wm(x,y) =X, In a
semilattice quotient (H,+) of such a fibre, this identity becomes x +y = x
or y € X. Thus for two elements h,k of H, one has h € k and k € h,

whence h = k and the triviality of H.

5. CHARACTERISTIC TWO This section considers the case that the field K has
characteristic 2. Since 2 =0 1is no longer invertible, the ternary
parallelogram operation P can no longer be made redundant by (3.1), and the
full algebra structure (E,K,P) is needed to give the affine geometry. As in
Section 4, J will denote the prime subfield GF(2) of K. Note that every
subset of E is a subalgebra of the reduct (E,J) of (E,K,P), since the
binary operations J are just the projections xy0 = x and xyl =y. Let RK
in this case denote the singleton {P} consisting of the ternary parallelogram
operation (2.2). Thus the "convex subsets” of E will be taken to be the
subalgebras of (E,P), the J-affine subspaces of (E,K,P). By [0S], [RS,255],
the class of all J-affine spaces, together with the empty set, is the variety
of all minority modes (A,P), algebras with a ternary operation P satisfying

the entropic law

R 1% 125135521 %2503 %91 %3759 T
(5.1)
1 %91 %31 %1 2%00 %39 %1 3%03%a3FE

and the identities
(5:2) yxyP = x, xyyP = x, yyxP = x.

The name comes from the observation that the value of the operation P in the
identities (5.2) reduces to that one of its arguments, if any, that is in the
minority. Note that idempotence is a comsequence of (5.2), so minority modes
really are modes.

By [RS,146], the set of affine subspaces of the affine K-space forms a

ternary mode ((E,K,P)S,P). The structure of this algebra is given by the
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following theorem.

THEOREM 5.3. Let K be a field of characteristic 2. Then for an affine K-space
(E,K,P), the termary mede ((E,K,P)S,P) of affine subspaces is a Pionka sum of
minority modes over the projective geometry (L(E),+) by the functor

F:(L(E)) + ({P}) with UF = {x + U|x € E} and (U>V)F:UF » VF:x + U x + V.

Proof. Since K is of characteristic 2, the operation P on E as in (2:42)
becomes xyzP = x + y + z. For vector subspaces U,V,W, and X =U+V + W of
E, and for corresponding affine subspaces x + U, y + V, and z + W, one has
(xHU)(y4V)(zHW)P = x + U+ y + V + z + W = xyzP + X = (x+X) (y+X) (z+X)P

= x(U>X)Fy(V+X)Fz(W»X)FP. Thus ((E,K,P)S,P) is a Ptonka sum as claimed. The
Pxonka fibres UF = (E/U,P), as J-affine spaces, are minority modes.

In the characteristic zero case, Corollary 3.6 to the Structure Theorem 3.5 for
the algebra of affine subspaces specified this algebra as lying in the variety of
rational barycentric algebras, with identities given by Theorem 3.3. In the case
that K had odd characteristic, Corollary 4.8 to the Structure Theorem 4.7 for the
algebra of affine subspaces specified this algebra as lying in the variety é of
commutative binary modes satisfying the identity wm(x,y) = w&(x,y). It is thus of
interest in the current case to find a variety nicely containing the algebra of
affine subspaces, so that this algebra is described well as lying in the variety.
By Theorem 5.3 and the result of Pfonka quoted earlier [P%*,Theorem I] [RS,238], the
algebra ((E,K,P)S,P) may be described as satisfying each regular identity
satisfied by its P*onka fibres, i.e. each regular identity satisfied by each
minority mode. Unfortunately, there are infinitely many such identities involving
the single operation P, so that this description seriously lacks conciseness. The
problem is to find a finite set of identities, a so-called finite basis, of which
the set of all regular identities satisfied by all minority modes is the
consequence.

A little universal algebra, essentially implicit in the work of Pionka, serves

to solve the problem. A variety V of algebras (A,Q) is called strongly

irregular if there is a binary derived operation #* such that V-algebras may be

characterised as the Q-algebras satisfying some set of regular identities and the
single irregular identity =x * y = x. For example, the variety m of commutative
binary modes is strongly irregular. Taking the binary derived operation

x *y-= wm(x,y), the variety m is specified by the regular commutative,
idempotent, and entropic identities, together with the single irregular identity

wm(x,y) =x, i.e. x * y = x. In the present context, the variety of minority

modes is strongly irregular. Define

(5:4) x * y = yxyP.
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Then the variety of minority modes is the variety of algebras (A,P) satisfying the
regular identities of idempotence and entropicity (5.1), together with the three
identities (5.2). The first of these is just =x * y = x.  When this obtains, the
second and third of them, which appear to be irregular, may in fact be rewritten as

the regular identities

xyyP = x * y and yyxP =x *y,

(5.5) xyyP = yxyP and yyxP = yxyP.

In other words, minority modes are the ternary algebras (A,P) satisfying
idempotence, entropicity (5.1), (5.5), and the irregular identity x * y = x with
* as in (5.4).

A variety V of algebras (A,Q2) is called irregular if there is an irregular

identity satisfied by each V-algebra. The regularised variety or regularisation

V of such a variety V is the variety of algebras satisfying all the regular

identities satisfied by all V-algebras. The current task is to specify the
regularisation of a strongly irregular variety. Now a binary operation * on an

algebra (A,Q) is said to be a partition operation on A if (A,Q) satisfies the

following identities: (A,*) is a left normal band, i.e.

X * x = X,
(5.6) (x *y) ¥z =x *(y * z), and

x*y*z=x%z*y;

* distributes from the right over w in Q, i.e.

(5+7) KjeeeX 0 *y = (x1 * y)...(xn * y)w;

and * breaks ®w from the left, i.e.

* =y % "
(5.8) y (xl...xnw) yoRxr Kook ox oo

(Note that no bracketing is necessary in the right hand side of (5.8) once (5.6)

holds.) The significance of partition operations comes from the following result of
PXonka.

PROPOSITION 5.9. [P%x] [RS,237]. An algebra (A,Q) is a Pronka sum iff there is a
partition operation * on A. If these conditions obtain, the identity

X *y=x is gssisfied Ez each fibre.

orara rom I
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Using this result, the following characterisation of the regularisation of a

strongly irregular variety may be given.

THEOREM 5.10. Let V be a strongly irregular variety, specified by x *y = x

and a set R of regular identities. Then the re ularisatign V 1is specified
s e o tliB o oot ol e o o aach e reguiarisation S s

Ky B znd fhe leatizies (6], (5.7), (S-8)

Proof. Let W be the variety of algebras, of the same type as V, satisfying R
and (5.6), (5.7), (5.8). Let (A,R) be an algebra in W. By (5.6), (5.7), 5.8),
the derived binary operation * is a partition operation on (A,). Proposition
5.9 then shows that (A,Q) is a Ptonka sum of algebras satisfying the identity
X * y = x. Since the Ptonka fibres, as subalgebras of (A,), also satisfy the
identities in R, it follows that the fibres lie in V. Consequently [P%] [RS238]
(A,) satisfies the regular identities of v, and so is in the regularisation
z. This shows that i contains E.

Conversely, consider a V-algebra (B,®#). Since x* y =x on B, the
identities (5.6), (5.7), (5.8) are all satisfied by (B,1). As a V-algebra,
(B,1) also satisfies the identities R. Thus (B,Q) 1lies in W, and W contains
V. But since the identities specifying W are all regular, W also contains z.

The equality of z with W, and the theorem, follow.
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COROLLARY 5.11. If a strongly irregular variety V has a finite basis for its

idemtities, them so does its regularisation V.

Define an algebra (A,P) with a single ternary operation P to be a

regularised minority mode if it satisfies the identities of idempotence, entropicity

(5.1), (5.5), the associative law zyxyPzP = zyzPxzyzPP, the'left normal law
zyxyPzP = yzxzPyP, and the left breaking law =xyzPtxyzPP = zyxtxPyPzP. Writing the

derived operation * as in (5.4), the idempotence, associative, and left normal
laws show that (5.6) hold for regularised minority modes. The distributive law
(5.7) follows from the idempotence and entropicity, while (5.8) follows from the
left breaking law. Theorem 5.10 then shows that the regularisation of the variety
of minority modes may thus be concisely described as the finitely based variety of
regularised minority modes.

Regularised minority modes appear to have some interesting properties worthy of
further investigation. There is a result of PZonka stating that the free algebra
over a set X in the regularisation of a strongly irregular variety is a P%onka sum
over the join semilattice of non-empty subsets of X, by the free algebra functor
for the strongly irregular variety [Po] [RS,273]. As a consequence of this, it
turns out that the free regularised minority mode on n + 1 elements has the

cardinality of n-dimensional projective space over GF(3). As the following




general result implies, the two structures have different automorphism groups, but
it would nevertheless be useful to set up some correspondence between them in order

to facilitate manipulation of the identities for regularised minority modes.

THEOREM 5.12. Let W be a variety SR?EEE%SQ by regular identities. For a set

e

X, let XW demote the free W-algebra on X. Then the automorphism group of XW

Proof. Since the identities of W are regular, an element x of X can only lie
in the subalgebra of XW generated'by a subset Y of XW if =x actually appears
as an element of Y. If f is an automorphism of XW, this forces Xf to be
equal to X. Conversely, knowledge of the restriction of f to the generating

set X determines f wuniquely. Thus restriction to. X provides an isomorphism

from the automorphism group of XW to the permutation group of X.

Returning to the algebra of affine subspaces of an affine K-space, it is now

possible to formulate the following corollary to Theorem 5.3.

FUEULLARY 513« INE £Stogty flachrs K(EJGE)S,P)Y of sffipe gubspuces of =n

~os

gffine K-gpace (E,K,P) 1is a regularised minority mode.

Proof. By Theorem 5.3, ((E,K,P)S,P) is a Ptonka sum of minority modes. Thus
[PX,Theorem I] [RS,238] it satisfies the regular identities satisfied by minority

modes. Theorem 5.9 then shows that it is a regularised minority mode.
Theorem 5.3 and Corollary 5.12 summarize as: J

The regularised minority mode of affine subspaces
(5.13) of an affine K-space is a Plonka sum of

minority modes over a projective geometry.

To complete the proof of Theorem 2.4 for the case that K has characteristic
2, mnote that the Ptonka fibres UF of Theorem 5.3 satisfy the irregular identity
X ¥ y = x. An argument identical to that given in the odd characteristic case then
shows that these fibres have no non-trivial semilattice quotient, so the projective

geometry (L(E),+) is the largest such quotient of ((E,K,P)S,P).
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