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Abstract. A mode is an idempotent and entropic algebra. We show that cancellative modes
embed as subreducts into affine spaces. This result is then extended to certain general sums of

cancellative modes. In this case we show that such sums embed as subreducts into functorial

sums of affine spaces.

One of the main features of late 20th century algebra was the emergence of new “post-
modern” algebraic structures, as opposed to the basic structures of “modern algbebra”:
groups, rings, fields and modules. On the one hand; the traditional structures are no longer
adequate for addressing the many algebraic problems that arise in mathematics and other
disciplines. On the other hand the new structures, for example ordered sets, monoids,
monoid actions, quasigroups and loops, different types of lattices and more general or-
dered algebras (among them the BCK-algebras developed by Professor Iseki), semirings
and semimodules, not only have a interesting theory, but also play an essential role in
many applications of mathematics. These various structures are unified by techniques of
universal algebra and category theory. The topic of the present paper is one of these new
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algebraic structures. The algebras are called modes, and originated as a common gen-
eralization of affine spaces, convex sets and semilattices. They are characterized by two
basic properties: idempotence and entropicity, explained in Section 1. Other important
examples are provided by subreducts of affine spaces, by normal bands, and by certain
groupoids arising from combinatorics. See [14] for the basic definitions, properties and
general theory as developed by 1985.

An important class of subreducts of affine spaces is formed by those that are cancellative.
On the other hand general cancellative modes seem to play a special and important role
within the theory of modes. (See e.g. [14].) So it is esssential to investigate the relation-
ship between the classes of cancellative affine space subreducts and of general cancellative
modes. This problem is addressed in Section 3, where we show that each cancellative
mode embeds as a subreduct into an affine space. This theorem has several predecessors
concerning the embeddability of cancellative entropic groupoids into commutative semi-
groups equipped with commuting endomorphisms [11], [20], [21], [22], [3], or into entropic
quasigroups [17], [4, Theorem 5.3.1]. Note that in the case of an idempotent cancellative
entropic groupoid, the corresponding entropic quasigroup is also idempotent, and hence is
a mode. Since this mode has a Mal’cev operation, it is equivalent to an affine space [14].

The next step is to investigate certain “sums” of cancellative modes. The basic facts
about modes constructed as so-called Lallement sums of their submodes are recalled in
Section 4. Among such sums the so-called functorial sums are those yielding the best
structural descriptions. In Section 5, we show that any Lallement sum of cancellative
modes embeds as a subreduct into a functorial sum of affine spaces.

These two results belong to the broad realm of embeddability theorems, where one
embeds a given algebra into another, usually one with a better known and richer structure.
Such embeddings are usually a very efficient way of describing the structure of an algebra.
The prototypes of such theorems yield the embedding of integral domains into fields and
of commutative cancellative semigroups into commutative groups. On the other hand our
second result uses some new and promising techniques for representing algebras as sums
of subalgebras.

The notation and terminology of the paper is basically as in the book [14]. We refer
the reader to this book and to the surveys [12] and [18] for undefined notions and results.
The meanings of “term operation” and “derived operation” are the same. We use “reverse
Polish” notation for words (terms) and (derived) operations, e.g. x1 . . . xnω denotes a word
(term) with variables x1, . . . , xn or the corresponding derived operation in an algebra. We
make an exception for certain binary operations that are denoted by traditional infix
notation.

1. Modes, affine spaces and barycentric algebras.

Fix a type τ : Ω→ N of algebras. A τ -algebra (A,Ω) is said to be entropic if each basic
operation ω in Ω is a homomorphism ω : (Aωτ ,Ω) → (A,Ω). In other words, for each set
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{ω, ϕ} of basic operations, say with ωτ = n and ϕτ = m, the identity

(1.1) (x11 . . . x1nω) . . . (xm1 . . . xmnω)ϕ = (x11 . . . xm1ϕ) . . . (x1n . . . xmnϕ)ω

is satisfied. A τ -algebra (A,Ω) is said to be idempotent if each singleton subset of A is
actually a subalgebra. In other words, for each basic operation ω, the identity

(1.2) x . . . xω = x

is satisfied. A mode is an idempotent and entropic algebra. Modes are characterized by
the following:

Proposition 1.1 [18]. A τ -algebra (A,Ω) is a mode if and only if each polynomial opera-
tion of (A,Ω) is a homomorphism. �

A τ -mode (A,Ω) is said to be cancellative if it satisfies the quasi-identity

(1.3) (x1 . . . xi−1yxi+1 . . . xnω = x1 . . . xi−1zxi+1 . . . xnω)→ (y = z)

for each (n-ary) ω in Ω and each i = 1, . . . , n.
Initial examples of modes are provided by normal bands, idempotent semigroups satis-

fying the entropic identity
xy · zt = xz · yt.

Among them, there are semilattices and left and right zero bands. In this paper two other
important examples will play a basic role.

Example 1.2 [affine spaces]. Let R be a commutative (unital) ring. Let R-Mod be the
variety of (unital, right) R-modules, construed as algebras (E,+, 0, R) with a binary addi-
tion, nullary zero, and unary scalar multiplications. Given a module E, the corresponding
affine space may be described algebraically as the set E equipped with all the idempotent
linear or affine operations

(1.4) En → E, (a1, . . . , an) 7→
n∑
i=1

airi

for each positive n and each element (r1, . . . , rn) of Rn with r1 + · · · + rn = 1. In this
sense, affine spaces are modes. Define a set R of binary operations

(1.5) r : E2 → E; (x, y) 7→ x(1− r) + yr

for r in R. Define the ternary Mal’cev operation

(1.6) P : E3 → E; (x, y, z) 7→ x− y + z.
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As noted by Osterman and Schmidt [9], cf. [2], the affine operations (1.4) are precisely the
derived operations of the algebra (E,R, P ). Moreover, the algebra (E,R, P ) has the affine
group as its group of automorphisms, and may thus be identified with the affine geometry
(cf. [8], [9]). Let R denote the class of affine spaces over the commutative ring R. Then
R may be characterized [14, 255] as the variety of modes of type (R × {2}) ∪ {(P, 3)}
satisfying the Mal’cev identities

(1.7) xxyP = y = yxxP

together with

(1.8)


(A1) xyxP = yx2 ;

(A2) xyp xyq r = xypqr ;

(A3) xyp xyq xyr P = xy pqrP ;

(A4) xy0 = x = yx1

for p, q, r in R. If 2 is invertible in R, then one may derive the Mal’cev operation (1.6) as

xyzP = y.xz2−1 2.

In this case, R may be characterized as the variety of modes of type R × {2} satisfying
(A2) and (A4) of (1.8) [9], [14, 256].

Example 1.3 [convex sets and barycentric algebras]. Let I◦ denote the open unit interval
]0, 1[= {x|0 < x < 1} in a subfield F of the real field R. Consider reducts (E, I◦) of affine
spaces (E,F ) over F . The subalgebras of such reducts are precisely the convex sets. One
may characterize the class C of convex sets over F as the class of algebras (A, I◦) of type
I◦ × 2 satisfying idempotence

(1.9) xxp = x,

skew commutativity

(1.10) xyp = yx(1− p),
skew associativity

(1.11) xyp zq = x yzq/(p+ q − pq) p+ q − pq,
and cancellativity

(1.12) (xyp = xzp)→ (y = z)

for p and q in I◦ [8], [14, 269]. Note that C forms a quasivariety of modes. It does not
form a variety. The smallest variety B containing C is called the variety of barycentric

algebras. It is characterized as the class of I◦-algebras satisfying the identities (1.9)–(1.11)
[8], [14, 214]. Note that a semilattice (H, ·) is also a barycentric algebra, with

xyp = x · y
for all x and y in H and p in I◦. �
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2. Subreducts of affine spaces.

An Ω-reduct of an affine space (A,R, P ) over a ring R is an algebra (A,Ω) with a subset
Ω of derived operations of (A,R, P ) as the set of basic operations. An Ω-subreduct of
(A,R, P ) is a subalgebra of an Ω-reduct (A,Ω). Ω-subreducts of affine spaces over R are
characterized by certain separability conditions [15], and form a quasivariety [6].

For any variety V of Ω-modes, its subquasivariety of Ω-subreducts of affine spaces may
be described as the class of Ω-subreducts of affine spaces in the affiinization of V . The
affinization of V is the tensor product Z ⊗ V of the varieties Z of integral affine spaces
and V . This is the variety of modes (A,Ω

⋃
· P ) with the reducts (A,Ω) in V and the

Mal’cev operation P . It is equivalent to the variety R(V ) of affine spaces over a certain

ring R(V ) [15]. The Ω-reducts of R(V )-algebras are often very useful and informative

models of V -algebras.

Example 2.1 [15]. Let Mτ denote the variety of all modes of given plural type τ : Ω →
(Z+,≤) (cf. [14, p.32]). Recall that for a function f : D → (E,≤) with ordered codomain,
the hypograph is the set

(2.1) hyp f = {(d, e) ∈ D × E|df ≥ e}

[18, (7.6)]. Consider the integral polynomial ring Z[hyp τ ] over the hypograph

(2.2) {(ω, i) ∈ Ω× Z+|1 ≤ i ≤ ωτ}

of the type τ . Then R(Mτ) is the quotient

(2.3) R(Mτ) = Z[hyp τ ]/〈1−
ωτ∑
i=1

(ω, i)|ω ∈ Ω〉

of the polynomial ring Z[hyp τ ] by the ideal obtained by setting each sum
ωτ∑
i=1

(ω, i) to be

1. For ω in Ω, the corresponding operation in an affine space over R(Mτ) is given by the
formula

(2.4) x1 . . . xωτω =
ωτ∑
i=1

xi(ω, i).

In this and similar formulas, one does not always distinguish between elements of Z[hyp τ ]
and their corresponding images in R(Mτ). �

Example 2.2 [15]. Consider again the variety B of barycentric algebras over a subfield F
of R as in Example 1.3. The affinization R(B) of B is the variety F of affine spaces over

F . The class of I◦-subreducts of R(B)-algebras is precisely the class C of convex subsets
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of affine F -spaces. The convex sets are characterized among barycentric algebras over F
as those satisfying the cancellation laws (1.12). �

Note however that not all Ω-subreducts of affine spaces over a given commutative ring are
necessarily cancellative.

3. Embedding cancellative modes into affine spaces.

Let (A,Ω) be a non-empty τ -mode, and let e be any element of A. For each ω in Ω,
and for 1 ≤ i ≤ ωτ , define the i-th translation by e as the mapping

(3.1) ei(ω) : A→ A; x 7→ e . . . exe . . . eω

with x as the i-th argument of ω. By entropicity and Proposition 1.1, one obtains:

Lemma 3.1. Let (A,Ω) be a non-empty τ -mode and let e be any element of A. Then all
the translations ei(ω) are pairwise commuting endomorphisms of (A,Ω). �

Now extend the type τ : Ω → N of the algebra (A,Ω) by taking e as the element
selected by a nullary operation, and by taking ei(ω) for ω in Ω and 1 ≤ i ≤ ωτ as
unary operations. In this way, one obtains the algebra (A,Ω′) of type τ ′ : Ω′ → N with
τ ′ = τ

⋃
· ({ei(ω)|ω ∈ Ω, 1 ≤ i ≤ ωτ} × {1})

⋃
· {(e, 0)}. Let K be the class of algebras of

type τ ′ on which each ei(ω) is an injective endomorphism.

Proposition 3.2 [4, Proposition 1.1.1]. For each K-algebra (A,Ω′) there is an algebra

(A,Ω′) containing a subalgebra isomorphic with (A,Ω′) such that the operations ei(ω) are
automorphisms of (A,Ω′), and such that (A,Ω′) satisfies all the identities satisfied by
(A,Ω′). �

The following is a corollary to Theorem 7 of [1].

Theorem 3.3. Let (B,Ω) be a non-empty, plural τ -mode and let e be any element of B.
If all the translations ei(ω) are bijective, then the following hold:

(a) There is a commutative monoid (B,+, e) with addition defined by

(3.2) x+ y = xe1(ω)−1ye2(ω)−1e . . . eω

for any ω in Ω;
(b) The translations ei(ω) are pairwise commuting monoid and Ω-automorphisms;
(c) for each ω in Ω and x1, . . . , xωτ in B one has

(3.3) x1 . . . xωτω = x1e1(ω) + · · ·+ xωτeωτ (ω). �

If the τ -mode (A,Ω) is cancellative, then cancellativity and Lemma 3.1 imply that all the
translations ei(ω) are injective endomorphisms. By Proposition 3.2, the algebra (A,Ω′) is
isomorphic to a subalgebra of an algebra (A,Ω′) on which the ei(ω) are automophisms. In
what follows we will identify (A,Ω) with this subalgebra of (A,Ω′). Then the assumptions
of Theorem 3.3 are satisfied by (A,Ω) with e in A, and one is led to the following result.
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Corollary 3.4. If (A,Ω) is a cancellative τ -mode, then there is a cancellative commutative
monoid (A,+, e) on the set A and pairwise commuting automorphisms ei(ω) for all ω in
Ω and i = 1, . . . , ωτ such that

(3.4) x1 . . . xωτω = x1e1(ω) + · · ·+ xωτeωτ (ω).

Moreover, under the operations (3.4), the algebra (A,Ω) is a cancellative τ -mode.

Proof. The cancellativity of (A,+, e) remains to be verified. Now in the context of Propo-
sition 3.2, the algebra (A,Ω′) is obtained as a union of subalgebras isomorphic with (A,Ω′).
Since (A,Ω′) is cancellative, it follows that (A,Ω′) is cancellative. The cancellativity of
(A,Ω) then implies cancellativity of the monoid (A,+, e) with addition given by (3.2) using
automophisms e1(ω) and e2(ω). �

There is a very well-known standard construction, like the localization of a ring, that
allows one to embed each cancellative commutative monoid C into an abelian group. One
takes the direct power C × C of the set C, and defines the relation ρ on C × C by

(3.5) ((a, b), (c, d)) ∈ ρ :⇔ a+ d = b+ c.

It is immediate that ρ is a congruence of the commutative monoid (C × C,+), and that
G = (C×C,+)ρ is an abelian group. The identity of G is the diagonal (x, x)ρ = {(x, x)|x ∈
C}. The inverse of (a, b)ρ is (b, a)ρ. The mapping

(3.6) ∆ : C → (C × C)ρ;x 7→ (x+ x, x)ρ

embeds the monoid (C,+, e) into the monoid (G,+, 0) with 0 = (x, x)ρ. In what follows,
we will identify elements x of C with (x + x, x)ρ and consider (C,+, e) as a submonoid
of the monoid (G,+, 0). Note that the group G has the following universality property.
Let H be any abelian group and let f : (C,+, e)→ (H,+, e) be a monoid homomorphism.
Then there is a unique group homomorphism f : (G,+,−, 0) → (H,+,−, 0) such that
∆f = f , i.e. the following diagram is commutative:

(3.7)

C
∆−−−−→ G = (C × C)ρ∥∥∥ yf

C
f−−−−→ H

.

The mapping f is defined by

(3.8) f : G→ H; (a, b)ρ 7→ af − bf.
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Theorem 3.5. Each cancellative mode (A,Ω) of a fixed type τ : Ω → Z+ embeds as an
Ω-subreduct into an affine space.

Proof. Using Corollary 3.4, first embed (A,Ω) into the commutative monoid (A,+, e)
equipped with Ω-operations (3.4). Then consider the abelian group G = (A × A)ρ from
above as a Z-module. We will extend the ring Z to a commutative ring R that will make
G an R-module, and then show that the mode (A,Ω) embeds (as a subreduct) into the
affine space (G,R, P ).

The first aim is to define the ring R. Consider the translations ei(ω) with i = 1, . . . , ωτ
for all ω in Ω. The translations ei(ω) are automorphisms of the monoid (A,+, e). The
universality property for G allows one to extend these automorphisms to automorphisms
of the group (G,+,−, 0) as shown on the following diagram:

(3.9)

A
∆−−−−→ G

ei(ω)

y yei(ω):=ei(ω)∆

A
∆−−−−→ G

.

The group homomorphisms ei(ω) are defined by

(3.10)

(a, b)ρei(ω) = aei(ω)∆− bei(ω)∆

= (aei(ω) + aei(ω), aei(ω))ρ

+ (bei(ω), bei(ω) + bei(ω))ρ

= (aei(ω), e)ρ + (e, bei(ω))ρ = (aei(ω), bei(ω))ρ,

and are obviously automorphisms, since the ei(ω) are. Define the ring R to be the subring,
generated by all the ei(ω), of the ring End(G,+) of group endomorphisms. Consider the
R-module (G,+, R) and the corresponding affine space (G,R, P ). For each ω in Ω, define
the operation ω on G as follows:

(3.11) (a1, b1)ρ . . . (aωτ , bωτ )ρω := (a1, b1)ρe1(ω) + · · ·+ (aωτ , bωτ )ρeωτ (ω).

Now the elements a1, . . . , aωτ in A are identified under ∆ with (a1 + a1, a1)ρ, . . . ,
(aωτ + aωτ , aωτ )ρ. Hence

(a1∆) . . . (an∆)ω = (a1 + a1, a1)ρ . . . (aωτ + aωτ , aωτ )ρω

= (a1 + a1, a1)ρe1(ω) + · · ·+ (aωτ + aωτ , aωτ )ρeωτ (ω)

= (a1e1(ω) + a1e1(ω), a1e1(ω))ρ + · · ·+ (aωτeωτ (ω) + aωτeωτ (ω), aωτeωτ (ω))ρ

= a1e1(ω)∆ + · · ·+ aωτeωτ (ω)∆.

It follows that for elements of A, the definition (3.11) of ω on G coincides with that given
on A by (3.3). Hence (A,Ω) embeds as a subreduct of the affine space (G,R, P ). �

The affine space of Theorem 3.5 was defined over a ring depending on the particular
cancellative mode (A,Ω). However, one may also embed cancellative τ -modes into affine
spaces over the ring R(Mτ) of (2.3), a ring that is independent of the particular τ -mode
being embedded.
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Corollary 3.6. Let τ : Ω → Z+ be a plural type. Then each cancellative τ -mode (A,Ω)
embeds as a Ω-subreduct of an affine space (G,R(Mτ), P ) over the ring R(Mτ) of (2.3),

the Ω-operations on G being defined by (2.4).

Proof. For x in A and ω in Ω, the equation (3.4) and the idempotence of (A,Ω) yield

(3.12) x

ωτ∑
i=1

ei(ω) = x.

Consider an element g = (a, b)ρ of G. By (3.10) and (3.12), one has

g
ωτ∑
i=1

ei(ω) = (a, b)ρ
ωτ∑
i=1

ei(ω)

=

(
a

ωτ∑
i=1

ei(ω), b

ωτ∑
i=1

ei(ω)

)ρ
= (a, b)ρ = g,

so that
ωτ∑
i=1

ei(ω) = 1 in R. It follows that the unique commutative ring homomorphism

Z[hypτ ] → R defined by (ω, i) 7→ ei(ω) for each (ω, i) in hypτ induces a unique ring
homomorphism

(3.13) R(Mτ)→ R.

The composite R(Mτ)→ R→ End (G,+) then makes G into an affine space over R(Mτ),
and the Ω-operations on (G,R(Mτ), P ) defined by (2.4) coincide with those on (G,R, P )

defined by (3.11). �

4. Sums of algebras.

Let τ be the variety of τ -algebras (A,Ω) of a fixed type τ : Ω → Z+. Let (I,Ω) be a
τ -algebra. The binary relation � defined on I by

{(i, j)|∃x1 . . . xnt ∈ XΩ and i1, . . . , ik−1, ik+1, . . . , in ∈ I with j = i1 . . . ik−1iik+1 . . . int},

where XΩ is the free τ -algebra over X, is a quasi-order. As a quasi-ordered set (I,�) is
a (small) category, where the elements of I are its objects and there is a morphism i→ j
precisely when i � j. The relation � is called the algebraic quasi-order of (I,Ω). The
algebra (I,Ω) is called naturally quasi-ordered, if for each ω in Ω and each i = 1, . . . , ωτ ,
if ai � bi then a1 . . . aωτω � b1 . . . bωτω.

Let I be the class of idempotent naturally quasi-ordered τ -algebras. Let (I,Ω) be an
I-algebra with the algebraic quasi-order �. For each i in I, let a τ -algebra (Ai,Ω) and
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an extension (Ei,Ω) be given. For i � j in (I,�), let ϕi,j : (Ai,Ω) → (Ej ,Ω) be an
Ω-homomorphism such that:

(L1) for each (n-ary) ω in Ω and i1, . . . , in in I with i1 . . . inω = i, one has

(Ai1ϕi1,i) . . . (Ainϕin,i)ω ⊆ Ai;

(L2) for each i1 . . . inω = i � j in (I,�) one has

ai1ϕi1,i . . . ainϕin,iωϕi,j = ai1ϕi1,j . . . ainϕin,jω,

where aik ∈ Aik for k = 1, . . . n;
(L3) aiϕi,i = a;
(L4) Ej = {aiϕi,j |i � j}.

Moreover, (Ej ,Ω) is an envelope of (Aj ,Ω), i.e. equality is the only congruence θ on (Ej ,Ω)
having nat θ|Aj injective. Then the disjoint union A =

⋃
· (Ai|i ∈ I) equipped with the

operations

(4.1) ω : Ai1 × · · · ×Ain → Ai; (ai1 , . . . , ain) 7→ ai1ϕi1,i . . . ainϕin,iω

for all ω in Ω, all (i1, . . . , in) ∈ In and i = i1 . . . inω, is called the Lallement sum of the
algebras (Ai,Ω) over the algebra (I,Ω) by the mappings ϕi,j or briefly a Lallement sum of
the Ai. (This concept was in fact developed in [13], [14], [16] and called a “Lallement sum”
in honor of Lallement who introduced this type of construction in the case of semigroups
[5].)

Theorem 4.1 [16]. Let (A,Ω) be a τ -algebra having a homomorphism onto an I-algebra,
with corresponding fibres (Ai,Ω) for i ∈ I. Then (A,Ω) is a Lallement sum of (Ai,Ω) over
(I,Ω). �

Let Q and R be subquasivarieties of a quasivariety S of τ -algebras, with R contained in I.
Then the Mal’cev product (Q◦R)∩S consists of those S-algebras (A,Ω) having a quotient

in R and corresponding congruence classes in Q. This Mal’cev product is known to be a

quasivariety [7].

Theorem 4.2 [16]. Each ((Q ◦R) ∩ S)-algebra is a Lallement sum of Q-algebras over an

R-algebra. �

A Lallement sum (A,Ω) is called a functorial (or an “Agassiz”) sum if it satisfies the
functoriality condition

(f) aiϕi,jϕj,k = aiϕi,k

for each i in I and ai in Ai and i � j � k. The condition (f) implies the conditions (L1),
(L2) and (L4). Moreover, the envelopes Ei coincide with Ai. In the case where the algebra
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(I,Ω) is an (Ω-) semilattice, the quasi-order � coincides with the semilattice order �, and
the functorial sum is called a P lonka sum. (See e.g. [10].) In the case of a functorial sum,
the conditions (L3) and (f) together mean that there is a functor Φ : I → τ acting on
morphisms as follows:

(4.2)
j jF = (Aj ,Ω)
↑ 7→ ↑ ϕij
i iF = (Ai,Ω)

.

We also say that (A,Ω) is the functorial sum of the functor Φ.
Now let us return to modes. Let KMτ be the class of cancellative τ -modes, and let Q

be a quasivariety of naturally quasi-ordered τ -modes.

Theorem 4.3 [16]. Let (A,Ω) be a τ -mode in the quasi-variety (KMτ ◦ Q) ∩Mτ of τ -

modes with a projection π onto a Q-algebra (I,Ω) and corresponding KMτ -fibres (Ai,Ω).

Then (A,Ω) embeds into a functorial sum of cancellative envelopes (Ei,Ω) of (Ai,Ω) over
(I,Ω) by a functor Φ. �

5. Embedding sums of cancellative modes into functorial sums of affine spaces.

Consider the quasivariety KMτ of cancellative τ -modes, and any quasivariety Q of

naturally quasi-ordered τ -modes. By Theorem 4.2, a KMτ ◦Q-mode (B,Ω) is a Lallement

sum of KMτ -modes (Bi,Ω) over a Q-mode (I,Ω). By Theorem 4.3, the mode (B,Ω)

embeds into a functorial sum of cancellative envelopes (Ei,Ω) of (Bi,Ω) over (I,Ω) by
a functor Φ. Corollary 3.6 showed that a single cancellative τ -mode embedded into the
Ω-reduct of an affine space over the ring R = R(Mτ) of (2.4). The main result of this final
section shows that (B,Ω) embeds into a functorial sum of Ω-reducts of affine spaces over
R.

Theorem 5.1. Each KMτ ◦ Q-mode (B,Ω) embeds into a functorial sum (A,Ω) of Ω-

reducts (Ai,Ω) of affine R-spaces over a Q-algebra (I,Ω).

Proof. Consider the functor U : R → Mτ that maps on affine R-space (A,R, P ) to its
Ω-reduct (A,Ω) with operations given by (2.4). This functor preserves underlying sets.
By [19, Cor. IV 3.4.8], it thus has a left adjoint F : Mτ → R. For each i in I, define
the affine R-space Ai to be the image Ai = EiF of the cancellative envelope Ei under
the functor F . Now by Corollary 3.6, there is an embedding zi : Ei → GiU of (Ei,Ω)
into the Ω-reduct GiU = (Gi,Ω) of an affine R-space (Gi, R, P ). Consider the component
ηi : Ei → AiU at Ei of the unit η of the adjunction between U : R→Mτ and F : Mτ → R.
Since ηi is initial in the comma category (Ei, U) [19, Theorem III 3.1.4], there is an R-

homomorphism θ : Ai → Gi such that ηiθ
U = Zi. It follows that ηi : Ei → AiU embeds

Ei as an Ω-subreduct of the affine space (Ai, R, P ).
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Now consider the composite functor ΦF : I → R, and the corresponding functorial
sum A =

⋃
·

i∈I
Ai. The functorial sum E =

⋃
·

i∈I
Ei of Φ embeds into A via the disjoint

union η =
⋃
·

i∈I
ηi. Then for each ω in Ω and elements eij of Eij for i ≤ ij ≤ ωτ , one has

ei1 . . . eiωτωηi1...iωτω

= ei1ϕi1,i1...iωτω . . . eiωτϕiωτ ,i1...iωτωωηi1...iωτω

= ei1ϕi1,i1...iωτωηi1...iωτω . . . eiωτϕiωτ ,i1...iωτωηi1...iωτωω

= ei1ηi1ϕ
FU
i1,i1...iωτω . . . eiωτ ηiωτϕ

FU
iωτ ,i1...iωτωω

= ei1ηi1 . . . eiωτ ηiωτω,

so that the embedding η : E → A is an Ω-homomorphism, as required. �

Example 5.2. Let τ : I◦ → {2} be the type of barycentric algebras. Let Q be the variety

of I◦-semilattices. Then Theorem 5.1 generalizes the embedding of barycentric algebras
into P lonka sums of real affine spaces [15, Ex. 5.1]. �

Example 5.3. Let τ = {(2, 2)} be the type of groupoids. Let Q be the variety of semi-

lattices. Then Theorem 5.1 generalizes the embedding of commutative binary modes into
P lonka sums of affine spaces over the ring Z[X]/〈1 − 2X〉 of dyadic rationals [15, Ex.
5.3]. �
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