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Evans defined quasigroups equationally, and proved a Normal Form Theorem solving
the word problem for free extensions of partial Latin squares. In this paper, quasigroups
are redefined as algebras with six basic operations related by triality, manifested as
coupled right and left regular actions of the symmetric group on three symbols. Triality
leads to considerable simplifications in the proof of Evans’ Normal Form Theorem, and
makes it directly applicable to each of the six major varieties of quasigroups defined by
subgroups of the symmetric group. Normal form theorems for the corresponding varieties
of idempotent quasigroups are obtained as immediate corollaries.
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1. Introduction

Quasigroups were originally defined as algebras (Q, ·) equipped with a single binary
operation · of multiplication, such that in the equation

x1 · x2 = x3 , (1)

knowledge of any two of the arguments x1, x2, x3 specifies the third uniquely.
It is convenient to speak of combinatorial quasigroups in this context. Evans [5]
redefined quasigroups as equational quasigroups, algebras (Q, ·, /, \) equipped with
three binary operations, including a right division / and left division \, such that
the identities

(IL) y\(y · x) = x , (IR) x = (x · y)/y ,

(SL) y · (y\x) = x , (SR) x = (x/y) · y (2)

are satisfied. These identities yield

(DL) y/(x\y) = x , (DR) x = (y/x)\y (3)

as immediate consequences. The symmetry of the theory of equational quasigroups
is duality: reversing products, interchanging left and right divisions, and switching
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the identities (XL), (XR) for X = I, S, D. Working in the language of equational
quasigroups, Evans proved his Normal Form Theorem [6] solving the word problem
for free extensions of partial Latin squares. Beyond its fundamental importance
within the theory of quasigroups, the theorem was remarkable for being one of
the first instances of a confluent rewriting system. Evans’ proof used the duality of
equational quasigroups, but still had to consider dozens of separate cases, sometimes
implicitly.

The aim of the current paper is to take Evans’ program one step further. We now
redefine equational quasigroups as so-called hyperquasigroups, algebras equipped
with six basic binary operations subject to a stronger symmetry known as trial-
ity (Sec. 2). This symmetry consists of two coupled left and right actions of the
symmetric group S3 on three symbols. The left action, syntactic triality, governs
the behavior of the quasigroup operations in identities. The right action, semantic
triality, determines six major varieties of quasigroups, the varieties of H-symmetric
quasigroups for each subgroup H of S3 (Sec. 3). The correspondingly symmetric par-
tial Latin squares (X, U) on a set X are described in Sec. 4. (This group-theoretical
treatment contrasts with the approach of [10] using partial satisfaction of identi-
ties.) In Sec. 5, the full triality symmetry allows Evans’ Normal Form Theorem to
be stated explicitly in a single version that immediately covers all six H-symmetric
varieties (Theorem 13), at the same time allowing for a considerable simplification
of the proof. Two reduction rules (13), (14) suffice in place of the nine used by
Evans [6, Sec. 1.3(ii)/Sec. 2.1(vii), Sec. 2.1 (iva)–(vib)]. The number of external
cases to be considered in the proof of the Diamond Lemma is cut by a factor of
three (Sec. 6). With minor changes — one extra reduction rule (24) and three fur-
ther cases in the proof of the Diamond Lemma — Evans’ Normal Form Theorem
applies explicitly to each of the six corresponding varieties of idempotent quasi-
groups (Sec. 8). In particular, idempotent S3-symmetric quasigroups are Steiner
triple systems, so Evans’ Normal Form Theorem in that case subsumes known
results about free extensions of partial Steiner triple systems (compare [19, Sec. 4],
for example).

Some additional remarks are in order. It should first be recalled that the origi-
nal statement of the Normal Form Theorem was explicitly given for loops, although
Evans pointed out that his proof “can easily be adapted to apply to quasigroups”
[6, Sec. 2.4] — in fact just by deleting all the relations and reductions involv-
ing the identity element and its consequences. In [2, pp. 14–15], Evans discussed
the adaptation of his Normal Form Theorem to “commutative quasigroups[,] . . .
totally symmetric quasigroups[,] . . . Steiner quasigroups . . . and many other related
varieties” using equivalence classes of words along the lines followed below.
From that standpoint, the current paper has little to add. Rather, its three key
features are:

(1) Introduction of the new language of hyperquasigroups, endowed with the full
triality symmetry.
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(2) Use of the hyperquasigroup language to produce a single Normal Form Theorem
covering all six H-symmetric cases directly, with a slight adaptation for all the
six idempotent cases.

(3) Elimination of redundancy in the analysis.

In connection with the third point, Evans merely said that the various cases “can
be systematically listed” when summarizing the proof of the Diamond Lemma in
[2, Lemma I.3.1].

Semantic triality (in more or less explicit form) is well known within the theory
of quasigroups — compare [17, (II.9)], for example. Note that the theory of loops
does not satisfy triality symmetry: if (Q, ·) is a loop, the conjugate (Q, /) does
not generally possess an identity element. Within the theory of inverse property
loops, however, and more especially for Moufang loops, there is a slightly different
version of semantic triality, related to triality in the group Spin8 [3, Chaps. 7, 8]. Full
triality as presented in Sec. 2 below, with the coupling of the syntactic and semantic
triality, appears to be new. It amounts to an action of the multiplication group
MltS3

∼= S3 × S3 of S3. Just as triality has simplified the proof of Evans’ Normal
Form Theorem, one might well expect it to streamline algorithms for automated
reasoning about quasigroups used in work such as [18].

2. Triality

Writing σ and τ for the respective transpositions (12) and (23), the symmetric
group S3 on the three-element set {1, 2, 3} is presented as

〈σ, τ | σ2 = τ2 = (στ)3 = 1〉 .

The Cayley diagram of the presentation becomes

1 ⇐⇒ τ ←→ τσ

� 	
σ ⇐⇒ στ ←→ στσ

(4)

using ↔ for right multiplication by σ and ⇔ for right multiplication by τ . Note
that the third transposition (13) or στσ is also equal to the product τστ . Write

x ◦ y = y · x , x//y = y/x , x\\y = y\x
for the respective opposites of the basic equational quasigroup operations. Members
of the set

{·, \, //, /, \\, ◦} (5)

of binary operations are variously known as conjugate, “parastrophic” [17, p. 43;
20] or “derived” [9] quasigroup operations. It is convenient to use postfix notation
for binary operations, setting x · y = xy µ and rewriting (1) in the form

x1x2 µ = x3 . (6)
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Fig. 1. Triality symmetry of the quasigroup operations.

The set (5) will now be construed as the homogeneous space

µS3 = {µg | g ∈ S3} (7)

for a regular right permutation action of the symmetric group S3, such that (6) is
equivalent to

x1gx2gµg = x3g (8)

for each g in S3. Figure 1 displays the six binary operations in their positions
corresponding to the Cayley diagram (4).

The opposite of each operation µg in Fig. 1 is given by µσg. Thus passage to the
opposite operation corresponds to left multiplication by the transposition σ. The
pairs of opposite operations lie in the three respective columns of Fig. 1.

Left multiplication by τ also has a simple interpretation. Let M be the full set
of derived binary operations on a quasigroup. Formally, this set may be considered
as the free algebra on two generators x, y in the variety Q of quasigroups. Define
a multiplication ∗ on M by

xy(α ∗ β) = xxyα β . (9)

Define the binary operation ε as the right projection xyε = y.

Lemma 1. The set M of all derived binary quasigroup operations forms a monoid
(M, ∗, ε) under the multiplication (9), with identity element ε.

Proof. First note that

(α ∗ ε) = xxyα ε = xyα

and

xy(ε ∗ α) = xxyε α = xyα

for α in M , so that ε is an identity element. Now consider α, β, γ in M . Then

xy
(
(α ∗ β) ∗ γ

)
= xxy(α ∗ β) γ

= xxxyαβγ

= xxyα(β ∗ γ) = xy
(
α ∗ (β ∗ γ)

)
,

verifying the associativity of the multiplication (9).
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The significance of the left multiplication by τ then follows.

Proposition 2. For each element g of S3, the binary operation µg is an invertible
element of the monoid M, with inverse µτg. Thus the quasigroup operations generate
a subgroup of M .

Proof. The identity (IL), namely x\(x·y) = y, becomes xxyµ µτ = y or µ∗µτ = ε.
Similarly (SL), namely x · (x\y) = y, becomes xxyµτ µ = x or µτ ∗ µ = ε. Thus µ

and µτ are mutual inverses.
The identity (IR), namely (y · x)/x = y, is x//(x ◦ y) = y. This becomes

xxyµσ µτσ = y or µτ ∗ µτσ = ε. Similarly (SR), namely (y/x) · x = y, may be
written as x ◦ (x//y) = y. This becomes xxyµτσ µσ = y or µτσ ∗ µτ = ε. Thus µσ

and µτσ are mutual inverses.
The identity (DR), namely (x/y)\x = y, is x\\(x/y) = y. This becomes

xxyµτστ µστ = y or µτστ ∗ µστ = ε. Finally (DL), namely x/(y\x) = y, is
x/(x\\y) = y. This becomes xxyµστ µτστ = y or µστ ∗ µτστ = ε. Thus µστ and
µτστ are mutual inverses.

Remark 3. A general result of Movsisyan [15, Proposition 1.1] implies that the
various quasigroup operations generate a subgroup of the monoid M . However, this
result does not address the specific description of the inverses given by Proposition 2
in terms of the syntactic action.

Corollary 4. A quasigroup may be defined as an algebra Q equipped with a binary
operation µg for each element g of the group S3, such that the hypercommutative
law

xy µg = yxµσg

and the hypercancellation law

xxyµg µτg = y

are satisfied for each element g of S3.

Definition 5. An algebra (Q, µS3) with a set (7) of binary operations, satisfy-
ing the hypercommutative and hypercancellation laws, is formally described as a
hyperquasigroup.

3. Symmetric Quasigroups

Let H be a subgroup of S3. A quasigroup is said to be H-symmetric if it satisfies
the identity

xy µg = xy µgh (10)

for each g in S3 and h in H . In considering H-symmetry, the following lemma is
very useful.
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Lemma 6. A sufficient condition for the H-symmetry of a quasigroup Q is the
existence of a single element g of S3 such that Q satisfies the identity (10) for each
h in H.

Proof. Suppose that Q satisfies the identity (10) for each h in H and for each
element g of a subset K of S3. It will be shown that the identity (10) also holds for
each h in H and for each element g of the subsets σK and τK of S3. Since S3 is
generated by σ and τ , the required statement follows.

The identity (10) implies yxµg = yxµgh or xy µσg = xy µσgh, so that (10) holds
for each h in H and for each element g of the subset σK of S3. Moreover, for each
g in K and h in H , one has

xxy µτg µg = y = xxy µτgh µgh = xxy µτgh µg

by hypercancellativity and (10). Since (Q, µg) is a (combinatorial) quasigroup, it
follows that xy µτg = xy µτgh. Thus (10) holds for each h in H and for each element
g of the subset τK of S3.

Example 7. For H = S3, H-symmetry is just total symmetry, the equality of all
six conjugate operations. In particular, an idempotent totally symmetric quasigroup
Q is equivalent to a Steiner triple system structure on Q, with

{{x, y, xy} ∣∣ x �= y ∈ Q
}

as the set of blocks [19].

Example 8. Commutativity is 〈σ〉-symmetry, since the commutative law xy = yx

becomes xy µ = xy µσ.

Example 9. Semisymmetry is 〈στ〉-symmetry, the equality of x/y, yx, and x\y.
Semisymmetric quasigroups have also been described as “3-cyclic”. They have been
studied by various authors, including Osborn [16], Sade [21–24], Mendelsohn [12,
13], Grätzer and Padmanabhan [7], Mitschke and Werner [14], DiPaola and Nemeth
[4], and Lindner [10]. There is a construction known as semisymmetrization which
associates a semisymmetric quasigroup Q∆ with each quasigroup Q. Then two
quasigroups are isotopic if and only if their semisymmetrizations are isomorphic [25].

The remaining nontrivial cases are covered by the following proposition.

Proposition 10. Let Q be a quasigroup.

(a) The following are equivalent:

(i) Q is 〈τ〉-symmetric;
(ii) (Q, /) is commutative;
(iii) (Q, ·) satisfies the left symmetric identity

x · (x · y) = y . (11)
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(b) The following are equivalent:

(i) Q is 〈στσ〉-symmetric;
(ii) (Q, \) is commutative;
(iii) (Q, ·) satisfies the right symmetric identity

(y · x) · x = y . (12)

Proof. Part (a) will be proved: Part (b) is similar. Statement (ii) means that
x/y = x//y, so xy µτστ = xy µτσ. By Lemma 6, this is equivalent to (i). Statement
(iii) means that x · y = x\y, so xy µ = xy µτ . By Lemma 6 again, this is also
equivalent to (i).

Together, (11) and (12) are known as symmetric identities. With a parity that
depends on the conventions used for mappings, they appear — along with the
two identities of idempotence and (self-)distributivity — in Loos’ axiomatization of
symmetric spaces [11].

4. Partial Latin Squares

A ternary relation U ⊆ X3 on a set X is said to have the Latin square property
when

∣
∣{1 ≤ i ≤ 3 | xi = yi}

∣
∣ �= 2

for any two elements (xi, x2, x3), (y1, y2, y3) of U . A quasigroup Q determines a
ternary relation T or

T (Q) = {(x1, x2, x3) ∈ Q3 | x1 · x2 = x3}
known as the (ternary) multiplication table of Q. By the combinatorial property (1)
defining quasigroup multiplications, the ternary multiplication table has the Latin
square property. Now let X be a set. A partial Latin square (X, U) on X consists
of a ternary relation U on X that has the Latin square property.

When considering H-symmetric quasigroups for a subgroup H of S3, it becomes
necessary to specify the corresponding partial Latin squares. For each subgroup H

of S3, define a partial Latin square (X, U) to be H-symmetric if

(x1, x2, x3) ∈ U ⇒ (x1h, x2h, x3h) ∈ U

for all h in H . Before relating H-symmetry of quasigroups to ternary multiplication
tables, it is helpful to reformulate the equivalence of (6) and (8).

Lemma 11. Let x1, x2, x3 be elements of a quasigroup Q, and let g, h be elements
of S3.

(a) x1x2 µg−1
= x3 implies x1g−1hgx2g−1hg µg−1h = x3g−1hg.

(b) x1gx2g µ = x3g implies x1hgx2hg µh = x3hg.
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Proof. Set yi = xig for 1 ≤ i ≤ 3, so that xi = yig−1 .
(a): The hypothesis of (a) becomes y1g−1y2g−1 µg−1

= y3g−1 . As an instance
of (8), this is equivalent to (6) as y1y2 µ = y3. The latter yields (8) in the
form y1g−1hy2g−1h µg−1h = y3g−1h. Rewriting in terms of the xi, this becomes
x1g−1hgx2g−1hg µg−1h = x3g−1hg as required.
(b): The hypothesis of (b) becomes y1y2 µ = y3, so y1hy2h µh = y3h. The result
follows on rewriting in terms of the xi.

Proposition 12. Let H be a subgroup of S3. Then a quasigroup Q is H-symmetric
if and only if its ternary multiplication table T (Q) is H-symmetric.

Proof. First suppose that Q is H-symmetric. Then (x1, x2, x3) ∈ T (Q) implies
x1x2 µ = x3. Since Q is H-symmetric, one has x1x2 µh−1

= x3 for each h in H .
Lemma 11(a) with g = h yields x1hx2h µ = x3h, whence (x1h, x2h, x3h) ∈ T (Q) as
required.

Conversely, suppose that T (Q) is H-symmetric. If x1x2 µ = x3,
then (x1, x2, x3) ∈ T (Q). For h in H , the symmetry of T (Q) implies
(x1h−1 , x2h−1 , x3h−1) ∈ T (Q). This means that x1h−1x2h−1 µ = x3h−1 . Lemma 11(b)
with g = h−1 yields x1x2µ

h = x3 = x1x2 µ. Lemma 6 then gives the H-symmetry
of Q.

5. Normal Forms

Let H be a subgroup of S3. Let (X, U) be an H-symmetric partial Latin square.
An H-symmetric quasigroup Q is said to extend (X, U) if X is a subset of Q and
U is a subset of T (Q). Such an extension Q is said to be free if the embedding of X

in any H-symmetric extension Q′ extends to a unique quasigroup homomorphism
from Q to Q′. Evans’ Normal Form Theorem shows that (X, U) possesses a free
H-symmetric extension QH

(X,U), and gives an explicit description of the extension.
Consider the free monoid (X + µS3)∗, the set of words with letters taken from

the disjoint union X + µS3 of X with the set (7). The set (7) — or more precisely
its image in the disjoint union — acts as a set of binary operations on (X + µS3)∗,
with

µg : (w, w′) �→ ww′µg

for w, w′ in (X + µS3)∗ and g in S3. Let WX or W be the subalgebra of
(
(X + µS3)∗, µS3

)

generated by X . An equivalence relation V will be defined on the set W of words,
such that the set WV of equivalence classes will carry the structure of the free
extension QH

(X,U). Each V -equivalence class will be represented by a unique word,
of minimal length among all the words in the class. This representative is the normal
form of the words in the class. Formally, Evans’ Normal Form Theorem may be
stated as follows.
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Theorem 13. Let H be a subgroup of the symmetric group S3. Let (X, U) be an
H-symmetric partial Latin square. Then QH

(X,U), the free H-symmetric extension
of (X, U), is obtained as the quotient WV . There is an algorithm to determine the
normal form w of each word w from W . Two words w1, w2 from W are related by
V if and only if their normal forms w1, w2 coincide.

Given a word w in W , its normal form is obtained by the iterative process of
rewriting. The steps in the process are the rewriting rules. First, each instance of
uvµg in w with u, v in W may be replaced by vuµσg, to obtain a new word w′, of
the same length as w. Two words are said to be σ-equivalent if they are related by
a (possibly empty) sequence of such replacements. Second, each instance of uvµg

in w with u, v in W may be replaced by uvµgh for any h in H , to obtain a new
word w′, of the same length as w. Two words are said to be H-equivalent if they are
related by a (possibly empty) sequence of such replacements. Two words w, w′ are
said to be (σ, H)-equivalent if they are related by a concatenation of σ-equivalence
and H-equivalence.

Lemma 14. Let H be a subgroup of S3, of order l. Let w be an element of W

containing r letters from µS3 .

(a) The relations of σ-equivalence and H-equivalence commute.
(b) The word w has 2r σ-equivalent forms.
(c) The word w has lr H-equivalent forms.
(d) The word w has (2l)r (σ, H)-equivalent forms.

A word w from W is said to be basic if it does not include the letters µσ,
µτσ, or µστ (i.e. the opposites of the respective basic quasigroup operations ·, /,
\). Each of the σ-equivalence classes has a unique basic representative, which is
a word in the alphabet X + {µ, µτστ , µτ}. Now order the set of basic operations
as {µ < µτστ < µτ} or {· < / < \}. A basic word is said to be primary if its
H-equivalence class does not contain a word using lesser basic operations in any
location. For example, the primary words for commutative quasigroups will only
involve the basic operations of multiplication and right division (+ and − in additive
notation), while primary words for right symmetric quasigroups will only involve
the multiplication and left division. The normal form is chosen as the primary
representative of its (σ, H)-equivalence class.

The remaining rewriting rules are of two kinds, each reducing the length of
words. They are the so-called reduction rules. The first kind of reduction rule will
implement hypercancellation. If some (σ, H)-equivalent of w contains an instance
of u uvµg µτg with u, v in W , the subword u uvµg µτg may be replaced by v to
yield an equivalent but shorter word w′. A rewriting step of this kind is denoted by
w → w′, or more explicitly by

w
g−→ w′ . (13)
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In practice, rather than potentially searching the (σ, H)-equivalence class of w, for
instances, of u uvµg µτg at each step, it is better to regard (13) as representative of
4 · |H |2 different reductions.

The second reduction rule depends on an element x = (x1, x2, x3) of the partial
Latin square U . Note that such a triple represents an equation

x1gx2gµ
g = x3g

for each element g of S3. Now if a word w involves x1gx2gµ
g as a subword, this

subword may be replaced by x3g to yield an equivalent but shorter word w′. A
rewriting step of this kind is denoted by w → w′, or more explicitly by

w
xg−→ w′ . (14)

The equivalence relation V is defined as the smallest equivalence relation on W that
contains the set of pairs (w, w′) for which either w and w′ are (σ, H)-equivalent, or
for which one of (13) or (14) holds.

6. The Diamond Lemma

A given word w of W initiates a maximal chain

w → w1 → w2 → · · · → w (15)

of reductions of types (13) or (14), with implicit (σ, H)-equivalences at the tail of
each arrow. The final node w, representing the normal form of w, is taken to be in
primary form. Note that w and w are related by V . There is a unique normal form
w terminating a reduction chain starting at the given word w.

Lemma 15 (Diamond Lemma). Let w be a word in W . If w has two maximal
reduction chains of type (15), namely

w → w1 → w2 → · · · → wk (16)

and

w → w′
1 → w′

2 → · · · → w′
l , (17)

then wk = w′
l, so that w reduces to a unique normal form w.

Proof. The proof proceeds by induction on the length of the word w in the alphabet
X+µS3 . If the length is 1, then w is just an element x of the set X . Now assume that
the normal forms are unique for all words shorter than w. If w cannot be reduced
further, then the normal form w is taken as the chosen representative within the
(σ, H)-equivalence class of w. If w1 and w′

1 are (σ, H)-equivalent, then w = w1 = w′
1

by the induction hypothesis, since w1 is shorter than w. For example, if

w = u u utµg µτg µg (18)

for words t, u in W , then w → w1 may take the form

w = u u (utµg)µτg µg τg−→ utµg ,
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with w → w′
1 as

w = u (u utµg µτg)µg g−→ utµg .

Otherwise, w1 and w′
1 are (σ, H)-inequivalent, and the reduction chains (16), (17)

begin as

w1

↗
w

↘
w′

1

(19)

with diverging paths. It will be shown that one of the following occurs:

Triangle. There is a chain of reductions from one of w1, w′
1 to the other, without

loss of generality from w′
1 to w1:

w′
1 → · · · → w1 .

In this case w = w1.
Diamond. There is a word w0 in W that lies on reduction chains

w1 → · · · → w0

from w1 and

w′
1 → · · · → w0

from w′
1. In this case w = w0.

Suppose that w = uvµg for words u, v in W . A reduction w → w1 is said to be
internal if it is of the form uvµg → u1vµg for a reduction u → u1 of u, or else of
the form uvµg → uv1µ

g for a reduction v → v1 of v. There are two possible cases
for (19): internal and external.

Internal case. Here the initial reductions w → w1 and w → w′
1 are both internal.

If (19) takes the form

u1vµg

↗
w = uvµg

↘
u′

1vµg

with reduction chains u → u1 → · · · and u → u′
1 → · · · for u, then the diamond

pattern occurs with w0 = uvµg. Similarly, if (19) takes the form

uv1µ
g

↗
w = uvµg

↘
uv′1µ

g
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with reduction chains v → v1 → · · · and v → v′1 → · · · for v, the diamond pattern
occurs with w0 = uv µg. Finally, if (19) takes the form of the left-hand side of the
diagram

u1vµg

↗ ↘
w = uvµg u1v1µ

g ,

↘ ↗
uv1µ

g

then the diamond pattern occurs once again, as illustrated by the full diagram.

External case. Here at least one of the initial reductions w → w1 and w → w′
1 is

not internal. If (19) takes the form of the left-hand side of the diagram

t

g ↗ �
g

w = u utµg µτg u1 u1tµ
g µτg

↘ �


u1 utµg µτg

for some word t in W , then the triangle pattern occurs, as illustrated by the full
diagram.

Similarly, if (19) takes the form of the left-hand side of the diagram

t

g ↗ �
g

w = u utµg µτg u1 u1tµ
g µτg

↘ �


u u1tµ
g µτg

then the triangle pattern occurs again, as illustrated by the full diagram.
If (19) takes the form of the left-hand side of

t

g ↗ ↘
w = u utµg µτg t1 .

↘ ↗ g

u ut1µ
g µτg
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with a reduction t → t1 for t, then the diamond pattern occurs as given by the full
diagram.

If (19) takes the form of the left-hand side of

s

g ↗
stµτσg stµτσg sµg µτg

�

 στσg

‖
stµτσg s stµτσg µσg µτg t tsµστσg µστg

τσg ↘ ‖
stµτσg tµτg

(20)

for words s, t in W , then the triangle pattern occurs, as presented by the full
diagram. Note the use of the σ-equivalences denoted by ‖. Finally, suppose that
x = (x1, x2, x3) is an element of the partial Latin square U . If (19) takes the form
of the left-hand side of

x2g

g ↗ �xτg

w = x1g x1gx2gµ
g µτg x1τgx2τgµ

τg

xg ↘ ‖
x1gx3gµ

τg

(21)

then the triangle pattern occurs again, as given by the full diagram. This time ‖
denotes true equality.

Remark 16. The presentation has been chosen to follow Evans’ original [6] as
closely as possible. Using the modern language of term rewriting systems, it may
be noted that the critical pairs correspond to (18), (20), and (21) [1, Sec. 6.2]
[8, Sec. 3.2].

7. The Normal Form Theorem

Following the proof of the Diamond Lemma 15, this section completes the proof of
the Normal Form Theorem 13.

Proposition 17. Two words u and v of W are related by V if and only if the
normal forms u and v coincide.
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Proof. The “if” statement is immediate, since (u, u) and (v, v) both lie in the
transitive relation V . Conversely, suppose that u and v are related by V . Then
there is a chain

u = w0 ∼ w1 ∼ · · · ∼ wn−1 ∼ wn = v (22)

of some finite length n such that successive elements wi, wi+1 of W (for 0 ≤ i < n)
are either (σ, H)-equivalent, or else related by a reduction wi → wi+1 or wi+1 → wi.
The desired equality of the normal forms will be proved by induction on n. If n = 1,
then the equality is immediate if u and v are (σ, H)-equivalent. Otherwise, suppose
without loss of generality that there is a reduction u → v. Suppose that u and v

reduce to their normal forms by respective chains

u → u1 → · · · → u (23)

and

v → v1 → · · · → v.

Applying the Diamond Lemma 15 to the reduction chains (23) and

u → v → v1 → · · · → v

for u then shows that u = v.
Now suppose that the desired equality holds for all pairs u′, v′ of words con-

nected by chains of length less than n. Consider the chain (22). Then u = w1 and
w1 = v by induction, so u = v as required.

The free H-symmetric extension QH
(X,U) of (X, U) is now obtained abstractly as

the quotient (WV
X , µS3). More concretely, it is realized as the quasigroup

W = {w | w ∈ W}
of normal forms, with

u v µg = u v µg

for u, v in W and g in S3. In particular, the free H-symmetric quasigroup generated
by a set X is the free extension QH

(X,∅) of the empty partial Latin square (X, ∅)
on the set X .

8. Idempotent Quasigroups

A partial Latin square (X, U) is said to be idempotent if (x, x, x) ∈ U for all x in
X . Of course, a quasigroup Q is idempotent if and only if its ternary multiplication
table is idempotent as a partial Latin square.

Let H be a subgroup of S3. Let (X, U) be an H-symmetric, idempotent partial
Latin square. An H-symmetric idempotent quasigroup Q is said to extend (X, U)
if X is a subset of Q and U is a subset of T (Q). Such an extension Q is free if the
embedding of X in any H-symmetric idempotent extension Q′ extends to a unique
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quasigroup homomorphism from Q to Q′. Evans’ Normal Form Theorem adapts to
show that (X, U) possesses a free H-symmetric idempotent extension QH,I

(X,U), again
giving an explicit description of the extension.

One additional reduction is needed for the Diamond Lemma 15. If a word w

from W contains an instance of uuµg for a word u from W , the subword uuµg is
replaced by u. The new reduction rule w → w′ is written explicitly as

w
Ig−→ w′ . (24)

There are three additional external cases in the proof of the Diamond Lemma 15.
For the instance of (19) given by the left-hand side of the diagram

u

Ig ↗ ↘
w = uu µg u1

↘ ↑ Ig

u1uµg → u1u1µ
g

for some word u in W , a diamond pattern is obtained as shown by the full diagram.
The second case has the reduction w = uuµg −→ uu1µ

g down its southwest side,
but the diagram is identical otherwise. Finally, if (19) takes the form of the left-hand
side of the diagram

u

g ↗
w = u uuµg µτg

�




Iτg

Ig ↘
uuµτg

for some word u in W , then the triangle pattern occurs, as illustrated by the full
diagram.
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