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Abstract: We survey developments in the use of entropy maximization for applying the
Gibbs Canonical Ensemble to finite situations. Biological insights are invoked along with
physical considerations. In the game-theoretic approach to entropy maximization, the
interpretation of the two player roles as predator and prey provides a well-justified and
symmetric analysis. The main focus is placed on the Lagrange multiplier approach. Using
natural physical units with Planck’s constant set to unity, it is recognized that energy has the
dimensions of inverse time. Thus, the conjugate Lagrange multiplier, traditionally related
to absolute temperature, is now taken with time units and oriented to follow the Arrow
of Time. In quantum optics, where energy levels are bounded above and below, artificial
singularities involving negative temperatures are eliminated. In a biological model where
species compete in an environment with a fixed carrying capacity, use of the Canonical
Ensemble solves an instance of Eigen’s phenomenological rate equations. The Lagrange
multiplier emerges as a statistical measure of the ecological age. Adding a weak inequality
on an order parameter for the entropy maximization, the phase transition from initial
unconstrained growth to constrained growth at the carrying capacity is described, without
recourse to a thermodynamic limit for the finite system.

Keywords: entropy maximization; canonical ensemble; phenomenological rate equation;
negative temperature; carrying capacity; order parameter; thermodynamic limit; phase
transition; two-person game; predator–prey

1. Introduction
Jaynes popularized the entropy maximization technique as a powerful modeling

tool for working with finite systems, where results like the Central Limit Theorem or the
Stirling Approximation are neither necessary nor appropriate [1–3]. On the basis of Jaynes’
work, this survey is designed to highlight some selected aspects of the technique that have
appeared over the last thirty years, particularly driven by biological insights in parallel
with more traditional topics from physics. Our examples are chosen to be as simple as
possible, while still illustrating the key points we wish to convey. In particular, we avoid
any reprise of the dependence of entropy and randomness on computational complexity or
instrumental resolving power, as discussed in [4]. Further details may be found in the cited
references and their bibliographies, but there are many opportunities for interested readers
to continue the development and refinement of the topics that we raise.

In Section 2, we set the framework for most of the paper by revisiting the very well-
known Gibbs Canonical Ensemble. In particular, we draw attention to an important but
rarely mentioned subtlety, namely the strength of the inequality constraints in the procedure
of entropy maximization by the method of Lagrange multipliers (7). For perspective,
Section 3 takes a brief look at the alternative game-theoretic approach adopted by Topsøe
and his school (cf. e.g., [5–7]). We propose a biological interpretation for the game as
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ecological co-evolution between a pair of species: predator and prey. The prey’s interest in
randomizing the interactions with the predator, and the predator’s interest in regularizing
those interactions, exactly capture the roles of the two players in the abstract game. Thus,
the issue

“The sense in assuming that Player I has the opposite aim, namely to maximize
the cost function is more dubious”.

Ref. [5] (p. 198) is resolved by assigning the role of Player I to the prey and Player II
to the predator. In this interpretation, the cost function measures how long it will take the
predator to determine the prey’s strategy for escape from pursuit.

Section 4 reviews the standard interpretation of the entropy maximization approach
to the Canonical Ensemble within statistical mechanics, where macrostates 1, . . . , i, . . . , r
are identified by respective energies E1, . . . , Ei, . . . , Er. In preparation for the subsequent
application to a phase transition in an ecological system (Section 6), we go one step beyond
Baez’ advocacy of the Lagrange multiplier β as a “coolness” parameter [8] in preference to
the temperature T, arguing instead for τ, the negative of the coolness β, as the best choice.
Certainly, the temperature T is ill-suited to treatment of condensed matter situations where
energies of states are bounded both below and above (e.g., in quantum optics, cf. [9,10]).
The use of −β as a coordinate in condensed matter physics [9] (Figure 2) then naturally
leads to our preference for τ, whose increase is subsequently seen to concur with the Arrow
of Time. Compare (27) with (31), for example.

Section 5 uses the Canonical Ensemble for the analysis of an ecology, Lake Gibbs , where
species 1, . . . , i, . . . , r with respective natural growth rates

E1 < . . . < Ei < . . . < Er (1)

compete within an environment having a fixed carrying capacity of N individuals. This
system provides a macroscopic model of Eigen’s phenomenological rate equations [11].
While the equations may be solved using standard techniques for handling ordinary
differential equations (ODEs), starting from known initial conditions [12,13], the entropy
maximization technique offers a novel approach to the solution of the system of coupled
ODEs, without the need for initial conditions [14]. This feature of the entropy maximization
technique is especially relevant for biological applications, where one encounters existing
systems whose genesis is uncertain: the classic “chicken-and-egg” dilemma!

At first glance, use of the Canonical Ensemble in biology may appear to be unrelated
to the classical use case of statistical mechanics. However, following the lead of the particle
physicists in using natural units with Planck’s constant set to 1 [15] (§III.2), the energies Ei

that appear in the statistical mechanics applications of the Canonical Ensemble are seen
to have the dimensions of inverse time, exactly like the growth rates Ei that appear in
the ecological application. Thus, our preferred conjugate Lagrange multiplier τ becomes
directly identifiable as an emergent time parameter, sharing the statistical macroscopic
nature of temperature. As τ increases, the ecology of Lake Gibbs ages by moving from a
diverse mix of the species 1, . . . , r towards an unhealthy monoculture dominated by the
most prolific species r—compare (1). The ecology could be rejuvenated by restocking the
lake with a broad variety of species, thereby resetting the emergent system time τ back to a
lower value.

Section 6 extends the entropy maximization treatment of the Lake Gibbs ecology: not
only to cover the constrained phase analyzed in Section 5, but also the earlier unconstrained
phase where each species i (for 1 ≤ i ≤ r) is growing exponentially at its natural, unchecked
pace Ei, before the carrying capacity of the lake is reached [16]. Thus, entropy maximization
is shown to handle a phase transition, for a finite system, without resort to any infinite
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“thermodynamic limit”. This is achieved by moving beyond the strict inequalities for the
constraints on the optimization domain noted in Section 2. Along with positivity constraints
for parameters p1, . . . , pr tracking the respective species 1, . . . , r, an order parameter p0

subject to a weak non-negativity constraint is added (38). If the constraint is binding, i.e.,
p0 = 0, then the entropy maximization reduces to its previous form for the constrained
phase as described in Section 5. On the other hand, if the constraint is slack, i.e., p0 > 0,
then the entropy maximization returns the unconstrained phase where each species is
growing exponentially. As a proof of concept, this basic example suggests that future
research, working with richer constellations of strong and weak inequality constraints,
should provide finitary entropy maximization analyses of more elaborate, multidimensional
phase diagrams.

2. The Canonical Ensemble
Consider a finite, nonempty set or phase space (Figure 1) that comprises N equally

likely individual elements or microstates (dots in Figure 1) with a partition

Π = {C1, . . . , Cr } (2)

into the disjoint union of a family of r subsets or macrostates (boxes in Figure 1). Suppose
that the macrostate Ci comprises ni microstates, for 1 ≤ i ≤ r, so that

N = n1 + . . . + nr . (3)

The set Π of (2) may be considered as (invoking) an experiment: take a microstate and
determine the macrostate Ci to which it belongs.

rrr
rrr
r

rrr
rrr

rrr
rrr
r

rrr
rrr . . .

rrr
rrr
r

rrr
rrr . . .

rrr
rrr
r

rrr
rrr

rrr
rrr
r

rrr
rrr

rrr
rrr
rMacrostate C1 Macrostate Ci Macrostate Cr

Figure 1. A phase space of microstates, with a partition Π = {C1, . . . , Cr } into macrostates [17]
(Figure 2).

What information is gained by performing the experiment? Initially, a store of size
log N would be required to tag the microstates. Suppose that we perform the experiment
and obtain outcome Ci. In that case, knowing that the microstates are localized within Ci,
we now only require a store of size log ni. The information gain as a result of the experiment
is log N − log ni. However, there is only a probability

pi =
ni
N

(4)

of obtaining outcome Ci. The expected information gain from the experiment is the
weighted average

H(Π) =
r

∑
i=1

pi(log N − log ni) = −
r

∑
i=1

pi log pi (5)
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of the information gains from each of the possible outcomes. This quantity is described
as the (information-theoretic) entropy of the partition Π. It may be characterized as the
expected value of the logarithm of the odds, namely p−1

i to one, of obtaining a particular
macrostate Ci.

In practice, the specific partition of the phase space into macrostates is not known a
priori. However, suppose that a numerical value (typically representing a dimensioned
scientific quantity like an energy or a growth rate) is associated with each macrostate. A
particular macrostate Ci then consists of all those microstates that yield an observed nu-
merical value Ei when the experiment is performed. While the actual probabilities pi of the
individual macrostates may be unknown themselves, suppose that the expected outcome

E =
r

∑
i=1

piEi (6)

is known, say from a measurement performed on a sample of the microstates. In order to
construct a model, the probabilities pi have to be assigned. If the expected value (6) is the
only information available, then the truest model is the one that maximizes the entropy
H(Π) subject to the constraint (6). This model is known as Gibbs’ canonical ensemble.

The maximization problem is usually solved by the method of Lagrange multipli-
ers [18] (Th. 3.2.2). Here, we wish to draw attention to a subtle detail of the procedure,
which is rarely stated explicitly: the nonemptiness of the macrostates in the family (2)
means that the optimization is taken over the set

∆◦
r−1 = { (p1, . . . , pr) | p1 + . . . + pr = 1, 0 < p1, . . . , pr } (7)

of positive probabilities, the interior of the (r − 1)-dimensional simplex ∆r−1. Thus, in
maximization of the Lagrangrian

L(pi, κ, τ) = −
r

∑
i=1

pi log pi + σ

(
1 −

r

∑
i=1

pi

)
− τ

(
E −

r

∑
i=1

piEi

)
, (8)

the stationarity conditions
∂L
∂pi

= 0

for all 1 ≤ i ≤ r apply since the maximization is performed over ∆◦
r−1. They give

log pi = −(1 + σ) + τEi (9)

or
pi = exp(τEi)

/
exp(1 + σ) .

Substitution in the completeness constraint from (3) yields

1 =
r

∑
i=1

pi =
r

∑
i=1

exp(τEi)
/

exp(1 + σ)

or

exp(1 + σ) =
r

∑
i=1

exp(τEi) . (10)

Defining the partition function (or “Zustandsumme”)

Z(τ) =
r

∑
i=1

exp(τEi) (11)
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of τ, we have

pi =
exp(τEi)

Z(τ)
(12)

in Gibbs’ canonical ensemble. The entropy (5) may be written as

H(Π) = −τE + log Z(τ) (13)

in terms of the variable τ. As another point worthy of special attention, we emphasize that
the units for the multiplier τ are inverse to those for the numerical values Ei.

3. The Game Theoretic Approach
While the entropy maximization procedure outlined in the previous section has a

number of advantages, most notably the identification of the Lagrange multiplier τ as a
conjugate to the numerical values Ei assigned to the macrostates, it is not the only approach.
The Danish school (cf. [5–7], for example) have strongly advocated for an approach that
involves a game between two players. In their version,

Player I chooses a consistent distribution, and Player II chooses a general code.
. . . [T]he objective of Player II appears well motivated. [A] cost function can
be interpreted as mean representation time, . . . and it is natural for Player II to
attempt to minimize this quantity. The sense in assuming that Player I has the
opposite aim, namely to maximize the cost function, is more dubious. [5] (p.198).

Here, in our simplified setting, which is chosen to avoid detailed topological and
analytical concerns, we present a brief and introductory alternative account that is founded
upon a more adequate, symmetrical notation and a representative interpretation of the
two respective Players I and II as prey and predator in an ecological context. A parallel
interpretation in a political science context might identify “people” and “government”
as the two players. A relationship of this kind is implied, for example, in the work of
J.C. Scott [19,20]. We refer to our description as the Predator–Prey Representation.

The ecological principle underlying the Predator–Prey Representation is that predators
must seek to regularize their relationships with their prey, while the prey seek to randomize
those relationships. To catch their prey, predators need encoded hunting strategies. But to
evade their predators, the prey need unpredictable escape strategies.

In the model, the prey may draw from a set P ⊆ ∆◦
r−1 of so-called consistent probability

distributions Π on a set of evasive actions that includes no more than a finite number r
of elements. Thus, a consistent distribution gives a specific option for an escape strategy.
Figure 2 shows a toy model strategy where the prey is aiming to distract its predator
when being pursued from behind, by swinging its tail in a pendulum-like motion. In
Figure 2b, the particular consistent distribution Π exhibited is related to (and identified
with) a macrostate partition Π = {C1, C2, C3 } of the type of phase space displayed in
Figure 1. Furthermore, the phase space in this particular example may be overlaid on the
classical phase space of a linear harmonic oscillator (such as a pendulum) with position
variable q and momentum variable p. Thus, a microstate (such as m that appears in the
macrostate C1) may be considered to describe a brief video clip of a specific tail motion.

Table 1 identifies the macrostates with specific tail motion features that would be
perceived by the predator in their encoding of the prey’s behavior, using the binary prefix
code κ displayed in Figure 2a.
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(a) q < 0 ? 1 //

0
��

C1 (b) p

p > 0 ? 1 //

0
��

C2

OO

C3 m
�����

C2

C1

>
>
>
>
> // q

C3

Figure 2. Matching codes to consistent distributions. (a): A binary prefix code κ, with 1 as “yes” and
0 as “no” in response to the boxed questions at the internal nodes of the tree. The triple of respective
code lengths for C1 = 1, C2 = 01 and C3 = 00 is (1, 2, 2). (b) A phase space where the partition
Π = {C1, C2, C3 } witnesses a consistent distribution, also written as Π = (2−1, 2−2, 2−2) or 2−⟨1,2,2⟩

in an array notation, that matches the code κ. The particular microstate m inside the macrostate C1

would have the tail of the prey positioned halfway out to the left, with an intermediate value for its
leftward momentum.

Table 1. Predator’s interpretation of prey’s tail motion. The prey’s strategy is determined by its
random choice of macrostate from the consistent distribution Π shown in Figure 2b.

Macrostate Positions in the Macrostate Momenta in the Macrostate

C1 Left side Any
C2 Right side Rightwards
C3 Right side Leftwards

When applying the code κ during the chase in its attempt to learn what the prey is
doing, the predator first checks if the prey’s tail is on the left side (q < 0). If the answer is
“yes” or 1, the predator has taken just 1 step to correctly identify that the prey has selected
macrostate C1. This event occurs with probability 2−1 within the prey’s strategy Π. On the
other hand, if the answer is “no” or 0, so the tail is on the right, the predator then checks if
the prey’s tail is swinging to the right (p > 0). If the answer to this question is “yes” or 1,
the predator has taken 2 steps to correctly identify that the prey has selected macrostate C2,
an event that occurs with probability 2−2 within the strategy Π. Finally, if the answer to
the latter question is “no” or 0, the predator has taken 2 steps to correctly identify that the
prey has selected macrostate C3, an event that, again, occurs with probability 2−2 within
strategy Π. Thus, with the code κ, the expected number of steps that the predator takes to
recognize the prey’s strategy Π is

⟨Π|κ⟩ = 1
2
· 1 +

1
4
· 2 +

1
4
· 2 =

3
2

, (14)
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matching the entropy

H(Π) = −
3

∑
i=1

pi log2 pi

of the consistent distribution Π in bits.
In the “bra-ket” notation that appears on the left of (14), we switch the sides relative

to [5] (p.196) and [7] (8) so that the distribution Π belonging to Player I (the prey) appears
first, while the code κ belonging to Player II (the predator) appears second. In general,
for a code κ with respective code lengths κ1, . . . , κr and a consistent distribution Π with
respective probabilities p1, . . . , pr, the cost function

⟨Π|κ⟩ = −
r

∑
i=1

piκi (15)

is defined. As seen on the basis of the illustrative example from Figure 2, the cost function
represents the expected time (number of questions asked and answered) taken for Player
II using a binary prefix code κ to recognize which macrostate has been chosen from the
canonical distribution Π adopted by Player I. The abstract information-theoretic game
between Player I and Player II, as envisaged by the Danish school, is instantiated by the
concrete ecological games that take place over multiple generations as prey and predator
population pairs co-evolve. In particular, the problem raised in the earlier quotation from [5]
(p. 198),

“The sense in assuming that Player I has the opposite aim, namely to maximize
the cost function is more dubious”,

is clearly solved by the prey’s interest in extending the time it takes its predators to identify
an escape strategy.

The full set of escape strategies Π available to the prey is identified as the set P of
consistent distributions. Now, consider a particular code κ available to the predator as a
hunting strategy. The risk [5] (3.11)

R(P|κ) = sup
Π∈P

⟨Π|κ⟩ (16)

associated with that hunting strategy expresses the maximum length of time it might take
the predator to identify the prey’s behavior using κ—a measure of the predator’s risk of
starvation if it were to stubbornly rely on κ as its hunting strategy. Successful predators
deploy multiple hunting strategies, assembled in a set K of codes κ. Their risk of starvation
is reduced to their minimum risk value [5] (3.12)

Rmin(P|K) = inf
κ∈K

R(P|κ) (17)

if they are able to draw on any one of these strategies.
Dually, we begin by noting that the full set of hunting strategies κ available to the

predator has been identified as the set K of codes. We may now consider a particular
consistent distribution Π that is available to the prey as an escape strategy. The coded entropy

H(Π|K) = inf
κ∈K

⟨Π|κ⟩ (18)

(cf. [5] (3.9)) associated with that escape strategy expresses the minimum length of time it
might take a predator to identify the strategy—a measure of the prey’s risk of capture or
randomization success—if it were to stubbornly rely on Π as its escape strategy. Successful
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prey species deploy multiple escape strategies, assembled in their repertoire P . Their time
of freedom when pursued is maximized to the maximum coded entropy

Hmax(P|K) = sup
Π∈P

H(Π|K) (19)

if they are able to draw on any one of these strategies (cf. [5] (3.10)).
Taking infima over K on each side of the quantified statement

∀ (P, λ) ∈ P ×K , ⟨P|λ⟩ ≤ sup
Π∈P

⟨Π|λ⟩

gives ∀ P ∈ P , infκ∈K ⟨P|κ⟩ ≤ infκ∈K supΠ∈P ⟨Π|κ⟩. The inequality

sup
Π∈P

inf
κ∈K

⟨Π|κ⟩ ≤ inf
κ∈K

sup
Π∈P

⟨Π|κ⟩ (20)

then follows on taking the supremum over P . It provides the final link in the full chain

inf
κ∈K

⟨Π|κ⟩ (18)
= H(Π|κ) ≤ sup

Π∈P
H(Π|K)

(19)
= Hmax(P|K) (21)

(20)
≤ Rmin(P|K)

(17)
= inf

κ∈K
R(P|κ) ≤ R(P|κ) (16)

= sup
Π∈P

⟨Π|κ⟩

of inequalities that summarizes the relationships between the behaviors of the prey and
the predator. Reference [5] continues with a general abstract analysis of when equality
is obtained. In the ecological setting, equality is to be expected for stable predator–prey
population pairs that have co-evolved over multiple generation times.

4. Statistical Mechanics
After the brief excursion into the game-theoretic approach, we return to a consideration

of the Lagrangian approach as presented in Section 2. In the classical applications of the
canonical ensemble, one may consider the microstates as particles having a certain energy.
Thus, the numerical value Ei associated with macrostate Ci is an energy (say in joules). The
conjugate variable τ, which was carefully chosen to match the non-classical applications in
the subsequent sections, is connected to the temperature T (say in degrees Kelvin) by

(kT)τ + 1 = 0 (22)

using Boltzmann’s constant k. Baez [8] (p. 30) refers to the traditional conjugate variable
β = −τ = 1/kT as the coolness: the lower the (non-negative) temperature T, the higher
the value of β. The problem with such traditional conventions, even within statistical
mechanics, is that they are ill-adapted to handling negative temperatures, which are readily
observed in condensed matter situations where energy levels are bounded both below and
above [9,10]. In particular, the use of −β (i.e., our τ!) as an abscissa coordinate in the first
figure of [9] should be noted. If T = 0 and τ = 0 are avoided, (22) shows that an increase
in τ conveniently corresponds to an increase in T, and vice versa.

The relation (22) gives some insight into the nature of the quantity τ in the canonical
ensemble: Just like the temperature, it is a statistical property of collections of microstates.
The thermodynamic entropy is

S = kH

in joules per Kelvin degree. The thermodynamic potential is the dimensionless quantity

Ψ = log Z(τ) ,
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while the Helmholtz free energy is

F = −kTΨ = Ψ/τ

in joules. The relation (13) takes the form

F = E − TS .

The Equation (12) becomes

pi = e−Ei/kT
/

e−F/kT , (23)

a well-known formula of kinetic theory (compare [21]). For example, it may be used to
describe the distribution of atmospheric particles at different heights, according to their
potential energy in the Earth’s gravitational field [21] (§40-1,2), [3] (§6.1.2(a)).

When considering physical applications of the canonical ensemble, it may prove useful
to use natural units or Planck units with Planck’s constant set to 1 [15] (§III.2). Then, the
energies that appear in the statistical mechanics applications of the Gibbs ensemble are
seen to have the dimension (time)−1. For example, the energy of a photon of light is given
as the product of Planck’s constant with the frequency of the corresponding wave.

5. Time Emergence
In the statistical mechanical applications of the canonical ensemble discussed in

Section 4, the coolness β = 1/kT, a Lagrange conjugate of energy, emerges as a statis-
tical property of a collection of microstates. On the other hand, using natural units, such
Lagrange conjugates of energy as β or our preferred τ should appear with the units of time.
Now, following [14], we examine a model where τ does indeed represent an emergent
intrinsic age of a biological system. It provides a conceptually instructive model of competi-
tion between r different species, labeled 1, . . . , r, as described by Eigen’s phenomenological
rate equations [11]. Suppose that species i has an unconstrained growth rate of Ei (say
in per annum units). This means that a population of ni individuals of species i growing
without constraint has a rate of change

ṅi = niEi (24)

(using Newton’s dot notation for the derivative). At a Newtonian time t in an interval [s, u]
from a start time s to an ultimate time u, the population ni(t) is given as

ni(t) = ni(s) exp(tEi) (25)

—exponential growth. Competition (as modeled by Eigen’s equations) arises when the
individuals of the r species form a joint population maintained at a constant total count N.
The birth of one individual is compensated for by the death of another.

Figure 3 visualizes the individuals as fish in a lake, where the food requirements
of each individual fish are the same, and the food supply sustains the constant total
number N. Figure 3 may also be viewed as a slightly less abstract version of Figure 1. The
individual fish correspond to the microstates, which share a macrostate if they belong to
the same species.
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Figure 3. Lake Gibbs: a fixed total population N of fish in species 1, . . . , i, . . . , r competing in an
environment with a constant influx of nutrients. Compare [17] (Figure 16), [16] (Figure 1).

The traditional treatment to determine the population ni(t) of species i at given
Newtonian times t in an interval [s, u] (cf. [12,13] or [16] (§4)) involves solving the coupled
quasilinear system

ṅi(t) =
(
Ei − E(t)

)
ni(t) = Eini(t)−

r

∑
j=1

ni(t)
Ej

N
nj(t) (26)

of ordinary differential equations. Although (26) may be seen as a special case of [3]
(20 Eqn.(80)), the treatment in that reference, concerned as it is with equilibrium or long-
term values, does not relate to our analysis, the coupling being introduced through the
final, quadratic or two-point interaction term of (26). Based on an Ansatz to translate to a
linear system [16] (26), the classical solutions

ni(t) = ni(s) exp(tEi)

/
exp

( ∫ t

s
E(t′)dt′

)
(27)

are valid over the Newtonian time interval [s, u]. Here, the initial conditions that are
required to solve the system of ordinary differential equations record the population count
ni(s) at t = s.

The function E(t) appearing in the middle part of (26), whose specification fol-
lows from

0 =
d
dt

r

∑
i=1

ni(t) =
r

∑
i=1

ṅi(t) =
r

∑
i=1

(
Ei − E(t)

)
ni(t) =

r

∑
i=1

Eini(t)− NE(t) ,

represents the instantaneous cull rate

E(t) =
r

∑
i=1

ni(t)
N

Ei (28)

required to hold the total population constant at the carrying capacity N. The argument

∫ t

s
E(t′)dt′

of the exponential in the denominator of the right hand side of (27) is then recognized as
counting the total number of starvation victims registered over the time interval [s, t].
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In the approach through the canonical ensemble, we imagine going to the lake and
catching a moderately sized group of fish in a net. The relative frequency fi of each species
i in the catch is taken as a good approximation to the overall probability pi of catching a
member of that species. In other words, we take

fi =
ni
N

(29)

for 1 ≤ i ≤ r at any given time. Knowing these relative frequencies fi, together with the
unconstrained growth rates Ei of each species, we obtain the expected average value (6)
that is the premise for the canonical ensemble. The relationship (28), fundamental to our
approach, equates the cull rate E to the average

r

∑
i=1

fiEi (30)

or gross growth rate (GGR) of the population. Equation (12) yields

ni(τ) = N exp(τEi)

/ r

∑
j=1

exp(τEj) , (31)

in particular with

ni(s) = N exp(sEi)

/ r

∑
j=1

exp(sEj) (32)

as an initial condition that does not need to be specified separately in our approach.
When the species are labeled by increasing unconstrained birth rates (assuming non-
degeneracy), say

0 < E1 < E2 < · · · < Er (33)

with 1 < r, then the most prolific species r will ultimately dominate.
The intrinsic time τ that appears in (31) is an emergent statistical property of the

complex system. As the system ages, the proportion of the dominant species r increases,
leading to a lack of biodiversity. Restocking the lake with a good mix of the various species
would rejuvenate the ecosystem, resetting the system time τ independently of the relentless
forward progress of the Newtonian time t.

In conjunction with the emergence of the system time τ, the canonical ensemble
treatment of the ecosystem with the fixed carrying capacity N has an additional feature,
which will be exploited more in the following section. For this discussion, assume the start
time s is set to t = 0, with a uniform distribution at that time in which each species i has
a population

ni(0) =
N
r

. (34)

Then, the solutions (25) of the unconstrained Equation (24) for a negative time t take
the form

ni(t) =
N
r

exp(tEi) . (35)

Let M denote the total fish population at any given time. Thus, M = N for t > 0, while
Equation (35) gives

M =
N
r

r

∑
i=1

exp(tEi) (36)
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for t < 0. As a consequence, the equations

fi = exp(tEi)
/ r

∑
j=1

exp(tEj) (37)

for the relative frequencies, obtained for a positive time t from (12) making use of the
canonical ensemble description of the constrained ecology, are equally valid during the
unconstrained population growth at negative times. It is indeed remarkable that the
relative frequencies extrapolate backwards from the canonical ensemble, even though the
assumptions leading to the canonical ensemble do not apply in this unconstrained regime.

6. A Phase Transition
In the classical entropy-maximization treatment of the canonical ensemble (Section 2),

the optimization is taken over the open set

∆◦
r−1 = { (p1, . . . , pr) | p1 + . . . + pr = 1, 0 < p1, . . . , pr }

(7) of positive probabilities, the interior of the (r − 1)-dimensional simplex ∆r−1. In the
competition model presented in Section 5, pi represents the probability of catching a fish
of species i, for 1 ≤ i ≤ r, although we often prefer to use the relative frequency fi of (29)
as a proxy. In this section, following [16], we now consider an additional variable p0 and
the subset

∆∗
r = { (p0, p1, . . . , pr) | p0 + p1 + . . . + pr = 1, 0 ≤ p0 , 0 < p1, . . . , pr } (38)

of the r-dimensional simplex ∆r, maximizing the parametric entropy

−
r

∑
i=0

pi log pi (39)

over the non-open set ∆∗
r . This procedure leads to a more complete description of the

ecology depicted in Figure 3 that also applies to the unconstrained phase where the total
fish population M is below the carrying capacity N. In this broadened context, the regime
analyzed in Section 5 is called the constrained phase. For simplicity of exposition, the phase
transition is assumed to take place at system time τ = 0 with a uniform distribution of
all the species at that time, as in (34) above. Following the analogy between time and
temperature, one might regard setting the time of the phase transition to zero as analogous
to the (pre-1948) Celsius scale setting of zero for a phase transition of water.

Given the various kinds of phase transition that physicists might recognize, we invoke
Penrose’s general definition [22] (§28.1),

“A phenomenon of this nature, where a reduction in the ambient temperature
induces an abrupt gross overall change in the nature of the stable equilibrium
state of the material, is called a phase transition”,

to justify our current terminology. In the ecological setting, a “reduction in the ambient
temperature” T is interpreted as an increase in the system time τ in accordance with the
relation (22). Co-opting common physical terminology, we describe the variable p0 in (38)
as the order parameter [23]. Since the variables p1, . . . , pr no longer function directly as naive
catch probabilities during the unconstrained phase, the way they do during the constrained
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phase, we refer to them as (additional) parameters in the complete history of the ecosystem,
thereby leading to the terminology of (39) for the corresponding entropy. We then define

H = −
r

∑
i=1

fi log fi (40)

as the population entropy (Figure 4) to contrast with the parametric entropy of (39).

-

6H

τ0
y y

Figure 4. The population entropy (40) over a time range extending from low negative to high
positive values, embracing the phase transition at τ = 0. At low negative times, the small value
of the population entropy is due to the predominance of the least fecund species, required for the
population to evolve to the uniform distribution at the phase transition where the carrying capacity is
reached. At high positive times, the small value of the population entropy is due to the predominance
of the most fecund species. Compare [16] (Figure 3), and also the first figure of [9]. The discs indicate
characteristic times for the involution, marking points of inflection for the population entropy. These
times do not appear in the first figure of [9], where the entropy curve is concave.

Since the population counts of the various fish species do not undergo a discontinuous
change at the phase transition, one may wonder where the “abrupt gross overall change
in the nature of the stable equilibrium state” comes in. Mathematically, it is seen in the
change from the exponential growth solution (25) to the modified version (27), where the
denominator with the exponentiated integral suddenly appears. For the individual fish, it
means the drastic arrival of the possibility of death by starvation, where previously they
were always able to live out their natural lifespans. It is also worth noting the emergence
of the “long-range correlations” indicated by the addition of the final term of (26) to the
original unconstrained growth Equation (24).

Heuristically, if not too literally, the order parameter p0 may be associated with a ghost
species 0 having a natural unconstrained growth rate E0 = 0. Consider maximization of the
parametric entropy (39) over the non-open set ∆∗

r of (38) subject to the equality constraint

D =
r

∑
i=0

piEi (41)
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on the parameters. The quantity D appearing in (41)—obviously motivated as a version
of (6) that has been extended to include the ghosts—is discussed at the end of this section
using (51). We take the Lagrangian

L(pi, σ, τ) = −
r

∑
i=0

pi log pi + σ

(
1 −

r

∑
i=0

pi

)
− τ

(
D −

r

∑
i=0

piEi

)
(42)

in terms of the parameters p0, p1, . . . , pr. When the weak inequality constraint on p0 from
the definition (38) of ∆∗

r is binding or “active” [18] (p 221), i.e., p0 = 0 and p0 log p0 = 0
(either by convention or as the result of the limiting procedure limp0→0+), we have

L(p0, p1, . . . pr, σ, τ) = L(p1, . . . pr, σ, τ)

in terms of the original Lagrangian (8). Thus, in the situation where the order parameter
p0 is zero and the remaining parameters pi, . . . , pr are recognized as the corresponding
relative frequencies, the extended description reduces to the original description. In
particular, when p0 = 0 (i.e., there are no ghosts), the parametric entropy reduces to the
population entropy.

When p0 > 0, the weak inequality constraint on p0 from the definition (38) of ∆∗
r is

slack or “inactive” [18] (p. 221); the analysis of the Lagrangian (42) for the parametric
entropy proceeds in similar fashion to the analysis of the original Lagrangian (8) in Section 2.
The stationarity conditions ∂L/∂pi = 0 for 0 ≤ i ≤ r reduce to log pi = −(1 + σ) + τEi or
pi = exp(τEi)

/
exp(1 + σ). A substitution in the completeness constraint yields

1 =
r

∑
i=0

pi =
r

∑
i=0

exp(τEi)
/

exp(1 + σ)

or

exp(1 + σ) =
r

∑
i=0

exp(τEi) = 1 +
r

∑
i=1

exp(τEi) = 1 + Z(τ)

using (11) for the latter term, yielding the expressions

pi = exp(τEi)

/ r

∑
j=0

exp(τEj) =
exp(τEi)

1 + Z(τ)
(43)

for the parameters p0, p1, . . . , pr.
For i = 0, the expression (43) determines the order parameter as

p0 =

(
1 +

r

∑
j=1

exp(τEj)

)−1

=
1

1 + Z(τ)
. (44)

Taking Equation (43) for 0 < i ≤ r, the remaining parameters may be rewritten in the form

pi = p0 exp(τEi) . (45)

For 1 ≤ i ≤ r, a substitution of this expression into (35) yields

ni =
Npi
rp0

, (46)
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whence (36) may be rewritten as

M =
r

∑
j=1

nj =
N(1 − p0)

rp0
(47)

to determine the total population in the unconstrained phase in terms of the order parameter.
The assignment p0 7→ M represented by (47) may also be inverted to yield

p0 =
N

N + rM
(48)

as an equivalent expression of p0 in terms of M. It is clear that the expressions (46) and (47),
valid for negative times, will not continue to hold in the constrained regime where p0 = 0.

In the unconstrained phase, an experiment may be conducted to determine the total
population (47) and, thus, the order parameter as given by (48). A fisherman trawls a fixed
volume of water and counts the number M′ of fish caught in the trawl. The number of fish
N′ that would be caught in the trawl at the carrying capacity N is presumed to be known,
so the total population M is obtained as M′N/N′. This refinement of the catch protocol is
described as the trawl. Using the relation (45) that holds for p0 > 0, the relative frequency
of species i in the trawl is

fi =
exp(Eiτ)

∑r
j=1 exp(Ejτ)

=
pi

∑r
j=1 pj

= pi(1 − p0)
−1 (49)

recalling (37) for the first equality. The outer fragment

fi = pi(1 − p0)
−1 or equivalently pi = fi(1 − p0) (50)

of (49) is then seen to hold for the entire history, extending the previous identification
fi = pi which only holds in the constrained regime p0 = 0. The factor (1− p0) appearing in
(50) is described as the modifier for any p0 within the range {0} ∪

(
(1 + r)−1, 1

)
, and, thus,

the parameters p1, . . . , pr are recognized as modified relative frequencies.
The quantity D that appears in the constraint (41) may now be examined. We have

D =
r

∑
i=0

piEi = (1 − p0)
r

∑
i=1

fiEi = (1 − p0)E (51)

using the second equation of (50). Since D is given as the product of the modifier with the
gross growth rate (30), it is described as the modified gross growth rate. In particular, once
the order parameter is known from the trawl, then the modified GGR is obtained from the
unmodified GGR, which is also determined from the trawl.

In summary, the extended Lagrangian L given in (42) represents a maximization of
the parametric entropy, subject to the completeness constraint on the parameters and the
knowledge of the modified gross growth rate D that is obtained from the trawl. When
L is maximized over the constraint set ∆∗

r that includes a weak inequality for the order
parameter p0 along with the usual strong inequalities for the remaining parameters, it
enables one to use entropy maximization for the modeling of a phase transition in a finite
situation without recourse to any infinitary “thermodynamic limit”.
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