Symmetry and topology of rare-earth magnetic materials

<u>Durga Paudyal</u>

Critical Materials Institute

Creating Materials & Energy Solutions U.S. DEPARTMENT OF ENERGY

IOWA STATE UNIVERSITY

Research Focus

≓ EFRC Proposal

Quantum Information Science

Permanent Magnetism

CMI Project

Rare Earth Magnetism Materials Predictions

AMES LABORATORY

Energy Conversion Materials

Early Career Proposal

ASCR Proposal 🛹

IOWA STATE UNIVERSITY

Topology of Atomic Orbitals

Rare Earths

	Electron Configurations in the Perodic Table																
1 H																	2 He
1 s			R ³⁺ =	→ [>	(e] 4f						1 s						
3	4				•		5	6	7	8	9	10					
$\frac{1}{2s}$	Be →		R ²⁺ =	<u> </u>	(e] 4f	^{X+1} 6s	⊢ ←	С		p p	F	Ne					
11	12						13	14	15	16	17	18					
Na	Mg		Х	(= 1 t	o 14		Al	Si	P 2	S	Cl	Ar					
19	20	21 22 23 24 25 26 27 28 29 30										31	32	33	P 34	35	\rightarrow 36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
<mark>4s</mark>	\rightarrow	+				3	d				>	\		4	<mark>р</mark>		\rightarrow
37 Dh	38 Sr	39 V	40 7 r	41 Nb	42 Mo	43 Te	44 Du	45 Dh	46 Pd	47	48 Cd	49 In	50 Sn	51 Sh	52 T o	53	54 V o
		· +	$\begin{array}{c c c c c c c c c c c c c c c c c c c $								· · · · · · · · · · · · · · · · · · ·	511		p	1	\rightarrow	
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113	114				→
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
<mark>7s</mark> –	\rightarrow	←				6	d				\rightarrow						
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				<							4f				1.01		→
				90 Th	91 Da	92 1	93 Nn	94 P u	95 Am	96 Cm	97 Rk	98 Cf	99 Fe	100 Fm	101 Md	102 No	103 Lr
				· · · ·	1 4	U	тър	Iu	Am		5f		ES	1 111	IVIU	110	\rightarrow
							L		CTAT		N/DD	TTV			σ υ.	.S. DEPAR	MENT OF
	AM	ES L	ABO	RATO	DRY		N OI	JWA	DIAL	E UN	LOGY	STTY				ENE	RGY

OF SCIENCE AND TECHNOLOGY

Anisotropic Rare Earth Ions

Short Range Ferromagnetism

Effective magnetic surface potentials calculated from density functional theory (DFT)

(Pr,Er)Al₂

Density Functional Theory & Beyond

- The external potential (and hence the total energy), is a unique functional of the electron density
- The functional that delivers the ground state energy of the system gives the lowest energy if and only if the input density is the true ground state density
- □ Full potential to go beyond atomic sphere approximation
- Onsite electron correlation, excited state, and dynamical mean field models for more accurate description of occupied and unoccupied 4f states
- Spin orbit coupling to calculate direction dependent magnetic moments and magneto-crystalline anisotropy energy

Density Functional Theory & Beyond

Spin orbit coupling

$$\frac{1}{2m^2c^2r}\frac{dv}{dr}\mathbf{s}\cdot\mathbf{l}.$$

Crystal Field

$$v_{\rm cf}(\mathbf{r}) = -\int \frac{e\rho(\mathbf{R})}{|\mathbf{r} - \mathbf{R}|} \, d\mathbf{R}$$

$$v_{\rm cf}({\bf r}) = \sum_{lm} A_l^m r^l Y_{lm}({\bf \hat r})$$

Crystal field makes a contribution to the potential energy of a 4*f* electron

Density Functional Theory & Beyond

Magneto-crystalline anisotropy energy

Magnetocrystalline anisotropy energy (MAE) as the total energy difference with magnetic moment aligned along the planar and c-axis directions $[E_{hkl} - E_{001}]$

Anisotropic energy density relation

PRB 2017

$$\frac{E_a}{V} \approx \frac{\kappa_2}{2} (3\cos^2\theta - 1) + \frac{\kappa_4}{8} (35\cos^4\theta - 30\cos^2\theta + 3)$$

 κ_2 (second-order) and κ_4 (fourth-order) coefficients are products of the corresponding quadrupolar/octupolar moments and crystal-field parameters

Energy Conversion Materials: Magnetocaloric Effect in Gd₅Si₂Ge₂

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

AMES LABORATORY

Magnetic exchange interactions and Curie temperature

Heisenberg Hamiltonian with zero magnetic field

$$H = \sum_{i} \sum_{\delta} J_{i,i+\delta} \vec{S}_{i} \vec{S}_{i+\delta}$$

Curie temperature in the mean field approximation

$$T_{C} = ZJ \frac{S(S+1)}{3k_{B}} = \frac{2}{3} \frac{E_{AFM} - E_{FM}}{k_{B}} = \frac{2}{3} \frac{J_{O}}{K_{B}}$$

Magnetic entropy change, magnetic free energy and magnetostructural transition in Gd₅Si₂Ge₂

Permanent Magnetism

With Post-Doc Renu Choudhary

Motivation

Prediction of new disruptive permanent magnetic materials that have high uniaxial magneto-crystalline anisotropy and magnetic moment with reduced critical elements

Goals and Objectives

Identify and employ novel methods to exploit 4f-elements for use in various novel rare earth element (REE) magnets

Theoretical assessment of optimal structural geometries to help accelerate the development of new materials with large magnetic anisotropies, moments, and magnetic transition temperatures

Anisotropy and quenched orbital moment in Sm-Co magnets

Using electronic structure modeling, strong quenching of orbital magnetic moment was identified as the prime cause of unusually high magnetic anisotropy in $SmCo_5$

Significance and impact

- Demonstration of validated theory and modeling techniques to resolve unsolved key permanent magnet parameters such as magnetic anisotropy and orbital moment emerging from rare-earths
- Sm-Co magnets offer relatively high energy-product at high-temperature suitable for technological applications from electric vehicles to wind turbines

Details and next steps

- Electronic structure of the Sm atoms violates Hund's rules and the orbital moment is strongly quenched providing strong anisotropy and net 4f moment
- Rationalizing the orbital-moment quenching in terms of the dependence of the 4f charge distribution, a long-run future research will be necessary to reconcile experiment, sub-lattice model, and ab-initio theory

B. Das, R. Choudhary, R. Skomski, B. Balasubramanian, A. K. Pathak, D. Paudyal, and D. J. Sellmyer, Anisotropy and Orbital Moment in Sm-Co Permanent Magnets, Phys. Rev. B **100**, 024419 (2019).

AMES LABORATORY

Crystal structure of hexagonal SmCo₅. Sm-1a, Co-2c, and Co-3g are three non-equivalent sites.

(a) and (b) charge distribution and rare-earth moment in the easy and hard directions, (c) and
(d) effect of crystal field on the charge distribution for the easy and hard directions

The charge density calculated employing density functional theory calculations

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

Complex band at the G (Γ) point and in the GX (Γ X) high-symmetry direction

Wave vector $(0 \ 0 \ \frac{1}{2})$ nests large portions of parallel FS sheets, driving AFM correlations A distinct topological transition – a hot spot formed around wave vector $(\frac{1}{2} \frac{1}{2} 0)$ when Mg is replaced by Cd, thereby suppressing the AFM and developing FM correlations

Quantum Information Science

 $|\psi\rangle = \cos{(\theta/2)}|0\rangle + e^{i\phi}\sin{(\theta/2)}|1\rangle$

Quantum Information Science

Interactions and partial energy-level scheme for Pr^{3+} (I = 5/2). The degeneracy of the hyperfine levels is lifted by an external magnetic field

Conclusion

Understanding of symmetry and topology will help build a foundation to discover quantum materials for current and future energy applications such as energy conversion, permanent magnet, and quantum information

