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Abstract

The Gibbs canonical ensemble of statistical mechanics is used to describe the prob-
ability distribution of the age classes of mothers of new-borns in an age-structured
population. The Malthusian parameter emerges as a Lagrange multiplier corresponding
to a generation time constraint, while a new perturbation parameter appears as the
Lagrange multiplier corresponding to a maternity constraint. Classical Lotka stability
reduces to the unperturbed case of the more general canonical ensemble model. The
model is used in a case study of the female (peninsular) Malaysian population of 1970.
The Malthusian parameter and perturbation are calculated easily by linear regression.
Use of the model identifies an anomaly in the population due to the effects of World
War II.  © 1998 Elsevier Science Inc. All rights reserved.

1. Introduction

The Gibbs canonical ensemble model from statistical mechanics assigns a
probability to each of a set of states of a system, subject precisely to knowledge
of the expected value of one or more numerical parameters associated to each
state ([1] and p. 151 in [2]). In equilibrium thermodynamics, the parameter is
the energy of a state. The canonical ensemble describes the probability distri-
bution of the states when the system is in equilibrium with its surroundings at a
given temperature. The (inverse) temperature appears in the model as the
Lagrange multiplier associated with the constraint of known expected energy,
imposed as a condition on the maximization of the entropy of the distribution.
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In a previous paper [3], the canonical ensemble model was applied to the
dynamics of a non-equilibrium situation in biology, namely Eigen’s phenom-
enological rate equations describing the evolution of competing species in the
presence of fixed resources. Here each species represented a state, and the
numerical parameter associated with each state was the natural growth rate of
the species in the presence of unlimited resources. In this application, the La-
grange multiplier corresponding to the constraint turned out to be the intrinsic
age of the system.

The current paper applies the canonical ensemble model to the study of an
age-structured population. The states are the various age classes of the mothers
of new-borns. Two numerical parameters are associated with each state: its age,
and the negated logarithm of the corresponding value of the net maternity
function. Since two constraints are placed on the maximization of the entropy,
there are two Lagrange multipliers appearing. The first is identified as the
Malthusian parameter, while the second is identified as a perturbation from
Lotka stability. In fact, Lotka stability (or Lotka equilibrium) appears in
context as a special case of the canonical ensemble model, namely the case of
equal age differences between successive age classes and vanishing of the per-
turbation parameter.

Details of the classical projection-matrix approach to the modelling of age-
structured populations are summarized in Section 2. Constancy of the pro-
jection matrix elements is assumed. The notation has been adapted to the
context of this paper (e.g. preparing for the subsequent focus on the repro-
ductive age classes). Successive age classes are not assumed to have constant
age differences. Although such an assumption underlies the classical eigenvalue
method, it is not needed for the canonical ensemble model. One minor differ-
ence from many treatments is to work with row vectors, matrices then multi-
plying on the right. Besides the obvious typographic advantages of row vectors
over column vectors, this also enables one to identify the projection matrix
directly as the incidence matrix of the weighted directed graph (Fig. 1) de-
scribing the development of the population. (Transposition of matrices and
reversal of the order of their multiplication recovers the opposite convention.)
Section 2 concludes with specialization to the Lotka-stable case, recalling the
logarithm of the dominant eigenvalue of the projection matrix as the Lotka
growth rate r; (Eq. (7)).

Section 3 applies the canonical ensemble model, assigning a probability
(Eq. (14)) for the mother of a randomly chosen new-born to belong to a given
reproductive age class. The assignment assumes that one’s knowledge about
the population amounts precisely to knowledge of the generation time (Eq. (9))
and (negated) logarithmic maternity (Eq. (10)), nothing else being known. The
Malthusian parameter r is the Lagrange multiplier corresponding to the gen-
eration time constraint, while the perturbation s is the Lagrange multiplier
corresponding to the maternity constraint.
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Fig. 1. The clock of ages.

A comparison with the case of Lotka stability is made in Section 4. It is
shown that the canonical ensemble model reduces to Lotka stability on setting
its Malthusian parameter r to equal the Lotka growth rate r|, and on letting its
perturbation s vanish. Of course, for classical Lotka stability, one also needs to
assume a constant difference between successive demographically active age
classes.

Section 5 presents a canonical ensemble analysis of a specific age-structured
population, namely (peninsular) Malaysian females in 1970. It uses data from
[4], summarized in Table 1. For this population, one obtains »=0.03402 and
s =-0.02591, contrasting with the Lotka growth rate r; =0.02697. As a pre-
dictor of growth, the Malthusian parameter r here does about as well as the
Lotka growth rate r;. However, the Malthusian parameter r is obtained easily
by linear regression, while the Lotka growth rate has to be extracted as a root
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Table 1
Malaysia 1970 ([4], pp. 380-381)

Age class Age group Female pop. Female pop. Births by Estimated Net maternity

1970 1975 mother’s age births function

a 10-14 611 164 672 984 270 280 0.0010
a 15-19 513 404 594 032 27 778 25 600 0.1229
as 20-24 392 904 493 447 88 673 86 200 0.5092
ay 25-29 286 722 386 734 76 088 84 400 0.5935
as 30-34 275 611 284 690 60 386 58 500 0.4847
as 35-39 219 704 272 234 30 679 31 400 0.3048
a; 40-44 190 613 212 909 10 746 10 800 0.1209
as 45-49 161 671 186 893 2075 2090 0.0268
ay 50-54 141 504 152 740 470 457 0.0067
Total 2793 297 3256 663 297 165

of a high-order algebraic equation. Comparing the probability distribution for
the age structure of the mothers of new-borns given by the canonical ensemble
model with that actually arising from the data, a notable discrepancy arises
amongst the cohort of mothers born in the early 1940s. This may shed light on
disruptive effects of the occupation of (then) Malaya during World War II,
effects that were not built in to the canonical ensemble model. A similar ca-
nonical ensemble analysis of other populations may turn out to be an ex-
tremely useful tool for the detection of such anomalies.

2. Projection matrices and Lotka stability

Consider a population with age classes a_,...,a0,a1,---,@n, Auily-- - Aniis
arranged in order of increasing ages. An individual of age a; has a constant
positive probability b; of surviving to the next age a;,1. No individual of age
class a,,; survives to a later age class. The only reproductive age classes are
ap,...,a,. During their sojourn in each such reproductive age class «;, indi-
viduals give birth to a positive average number m; of new-borns falling into age
class a_j. In breakdowns of female human populations such as [4], one might
have k = 1,n =9,1 =7, with a_; the 04 year age class, ...,a; the 10-14 year
olds, ..., a;s the 80-84 year olds, and a;¢ those aged 85 or more.

The process is represented by the directed weighted graph or directed net-
work of Fig. 1, the ‘clock of ages’. Demographic significance resides in the
subnetwork obtained by deleting the post-reproductive vertices a,.1,. .., @ni;
and the edges incident with them. The adjacency matrix of this subnetwork is
the (transposed) Leslie or projection matrix
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0 by .. 0 0 | 0 0 ... 0 0
0 0 00 | 0 0 0 0
0 0 0 b : 0 0 0 0
0 0 0 0 ' b 0 0 0
A= | . (1)
m 0 o o | o » 0 0
my 0 0 0 : 0 0 0 0
m,,; O 0o o | o o 0 b,
om0 0 0 | 0 0 0 0
For n > 1, the clock of ages has cycles a_ja_ ;1 ...a1@ 4, ...,a 4@ _j11 ... Aa_y

of coprime lengths, so that the matrix 4 is primitive [5-7]. The Perron-Fro-
benius Theorem ([8], Theorem XVI.5; [9], Section 13.2) then implies that the
non-negative matrix 4 has a real, positive, dominant simple eigenvalue A with a
positive (row) eigenvector u. Simplicity of 4 means that its eigenspace just
consists of scalar multiples of u. Dominance of A means that 1 exceeds the
absolute value of any other eigenvalue of 4.

For an explicit determination of Z and u, it is convenient to introduce some
notation. For i <n, define

L=1]b (2)
j<i

the probability that a new-born survives to age a,. The characteristic equation
of A may then be written in the form

)»kJrl = Ziiilimi (3)
i=1

([10], Section 3), and the components of the eigenvector u =
[u_g...u_y up uy...u,) may be taken as

u; = /Abill,' (4)

for —k <i<n (section 6 in [10]).

Now suppose that there is a constant time difference z between the successive
non-post-reproductive age classes a_g,...,a,. If the components of the row
vector x = [x', ...x{ x{ ...x}] record the number of individuals in each such
age class at time ¢, the projection matrix (Eq. (1)) may be used to describe the

development of the population over time via
X =x4. (5)

The population is said to exhibit Lotka stability at time ¢ if x' lies in the
eigenspace of A. One then has x!** = Ax! for —k <i < n, so that
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logx!™ =z log A+ log x!. (6)
The logarithmic increase
r=z"log /. (7)

over unit time is called the Lotka growth rate.

3. The canonical ensemble

The canonical ensemble model starts with an age-structured population as
described in the previous section, but without the assumptions of Lotka sta-
bility or constant difference z between the non-post-reproductive age classes.
Consider the experiment of choosing a new-born at random, and determining
the age class of her mother. Suppose that the mother lies in age class a; with
probability ¢;, for 1 <i<n. One thus has

i‘]i =1 (8)

Define the generation time

T = Zqiai (9)
i=1
as the expected age of the mother. Define the (logarithmic) maternity

M= — qi 10g lim,‘ (10)

=1
as the expected value of the negated logarithm of the net maternity function
I;m;. Note that the quotient M /T is the reproductive potential ([11], ref. 9).
Suppose that the numerical values of the generation time and maternity (or
generation time and reproductive potential) are known, but that one has no
further information about the probability distribution [g; ¢;...¢,]. As dis-
cussed in [3], the appropriate probability distribution for this model is the one
that maximizes the entropy

H=-) g;loggq; (11)

i=1
subject to the constraints (8)—(10). (Briefly, the validity of a different distri-
bution would amount to different knowledge of details of the experiment from
that summarized by specification of the generation time and logarithmic ma-
ternity.)

Determination of the probability distribution is achieved using the La-
grangean function
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L(g:, 2, 1,5) th log g: + Ot(l - Zn:%)
i—1
( Z%a,) (I+3s) <M+ Zq, log lm) (12)
i=1

The stationarity conditions 0L/0¢; = 0 for 1 <i< n lead to
log g;=—(14 o) —ra; + (1 + s)log I;m; (13)

or q;=e"(I;m)"" /exp(l + «). Substituting into Eq. (8), noting that o is

independent of i, one obtains
qi = Z(r,s) e (Lm;)" ™ (14)

with the partition function or Zustandsumme

S) _ ie—rai(limi)lh'. (15)

The Lagrange multiplier » corresponding to the generation time constraint (9)
is called the Malthusian parameter. The (shifted) Lagrange multiplier s corre-
sponding to the maternity constraint (10) is called the perturbation.

4. Comparison with Lotka-stable populations

In order to understand the probability distribution (14) given by the ca-
nonical ensemble, and the interpretation of the Lagrange multipliers, it is
useful to consider the case of a Lotka-stable population with a constant time
difference z between successive non-post-reproductive age classes. In this case,
Eq. (4) yields the probability

g =2""m;) > 3 m; (16)
j=1

for the mother of a randomly chosen new-born to lie in a reproductive age class
a;, namely 1 <i<n. Note that

a,=ap+iz (17)
for 1 <i<n. By Eq. (7), one then has

I = niE = gnig i, (18)

The Lotka-stable probability Eq. (16) may thus be written in the form
g = Z(r1,0)"'e "% Lim, (19)
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with
Z(r1,0) =Y e " Lm;. (20)
i=1

Comparing Egs. (19) and (20) with Egs. (14) and (15), it emerges that the
Lotka-stable distribution is just the special case of the canonical ensemble
distribution with zero perturbation, the Lotka growth rate being the Malthu-
sian parameter of the canonical ensemble model. One may thus characterize
Lotka stability within the canonical ensemble model as the freedom from
perturbation.

5. A case study: Malaysia 1970

To illustrate the application of the canonical ensemble model, a case study
of the 1970 female population of (peninsular) Malaysia will be undertaken,
based on [4], pp. 380 ff. This choice is motivated by the availability of good
data, and by the relative stability (in the non-technical sense) of the population
at that time. The immediate post-independence ‘insurgency’ had abated, while
the subsequent rapid industrialization had not yet taken hold. The key data are
summarized in Table 1, except for the Lotka growth rate | = 0.02697. (Note
that the ‘estimated births’ column of Table 1 does not come from [4]: its origin
will be clarified below.)

In the absence of information about the variation of the male/female birth
ratio with the age of the mother, this ratio will be assumed to be constant.
Dividing the entries of column 5 by the total at the bottom thus gives a list of
nine relative frequencies yielding an approximation [p; ps...ps] to the prob-
ability distribution [q; g2 ...q9]. Negating Eq. (13) and using these relative
frequencies p; in place of g; yields a system of linear equations

1.(1 4+ o) + a;r — (log I;m;)(1 +s) = —log p;, (21)
1 <i<9. The ages a; are taken to be central in each corresponding class, i.e.
ay = 12,612 = 17,(13 = 22,...709 = 52.
For a number of reasons, not the least being that the canonical ensemble
model is only a model, the system (21) is inconsistent. Its least squares solution
yields

log Z = —0.1681 (22)
for the ‘thermodynamic potential’ (1 + o) ([3], (3.10)),
r = 0.03402 (23)

for the Malthusian parameter, and

s = —0.02591 (24)
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for the perturbation. Reinstating these values into the left-hand side of
Eq. (21), and normalizing to the total number of births from the bottom of the
‘birth’s by mother’s age’ column of Table 1, one obtains the ‘estimated births’
listed in the adjacent column of Table 1. One may view these as the best es-
timate of the age distribution of this total number of births, assuming that the
canonical ensemble model were exact. The most striking discrepancy is the
model’s 10% overestimate of the births to the 25-29 year old mothers. Note
that these mothers were born during the occupation of World War II. Com-
paring the relative sizes of the age classes for 1970 and 1975, it is apparent that
the cohort aged 25-29 in 1970 was anomalously small. The canonical ensemble
model only incorporated Egs. (9) and (10), not additional knowledge about
World War II.

The value r = 0.03402 of Eq. (23) for the Malthusian parameter may be
contrasted with the value r; = 0.02697 for the Lotka growth rate. Com-
parison of the total 10-54 year old female populations in 1970 and 1975,
from the bottom of the columns of Table 1, suggests a value of
11og (3256 663/2793297) = 0.03070 for the true growth rate. The Lotka
growth rate underestimates this by 12%, while the Malthusian parameter of the
canonical ensemble model overestimates by 11%. It should be noted that cal-
culation of the Malthusian parameter by the least squares solution to the linear
system (21) is mathematically simpler than extraction of the Lotka growth rate
as a logarithm of a root of the high-degree algebraic Eq. (3).

6. Discussion

There have been previous applications of the canonical ensemble model to
demography, most notably by Demetrius et al., [11-15]. Demetrius’ approach
is quite different from that presented above. Except for what physicists describe
as ‘toy models’ in the much harder density-dependent case (Section 5 in [11]),
his approach focusses on the density-independent case, with a constant pro-
jection matrix (Eq. (1)). Taking a phase space Q consisting of all infinite paths
through the clock of ages, and a shift operation t corresponding to the passage
of one time unit, it considers the invariant measure x on £ given by the Lotka-
stable probability Eq. (16). It then uses results from ergodic theory concerning
the dynamical system (€, u,t), for example ([12,(6.3)] [13,(2.16)] [14.(5.6)]
[11,[10]]) obtaining the relationship

n o= (H—M)/T (25)

between Eq. (7) and Egs. (9) and (10) “by invoking the thermodynamic for-
malism described in [16]” ([11], p. 3494).

The mathematical basis for the current paper — merely linear algebra and
Lagrange multipliers — is far simpler than the deep ergodic theory used in
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Demetrius’ approach. For example, taking the negative of the expected value
of each side of Eq. (13) in the Lotka-stable case » = r}, s = 0 of Section 4 yields

HZIOgZ(F1,0)+F1T+M. (26)

However, with ay = (k + 1)z, the characteristic Egs. (3) and (20) show that the
partition function Z(ry,0) reduces to unity in this case. Thus Eq. (26) yields
Demetrius’ relationship Eq. (25) in completely elementary fashion, without
reliance on the elaborate machinery of ergodic theory. Incidentally, it should
be noted that Eq. (25) may still give good approximations to the Lotka growth
rate in populations that do not exhibit Lotka stability. In the 1970 Malaysia
population of Section 5, Eq. (25) yields r; ~ 0.02722, a 1% overestimate.

Charlesworth ([17], p. 180) offered the following critique of Demetrius’ use
of entropy in [13]:

Demetrius has argued that a measure of entropy of the life-history is a use-
ful predictor of gene-frequency change. While this may be true under some
special circumstances, the result is derived from the properties of the in-
trinsic rate of increase, and therefore offers no new insights into the dy-
namics of selection.

Demetrius [18] pointed out, however, that a uniform rescaling of the net ma-
ternity function values /;m; in the Lotka stable case will change the Lotka
growth rate, while the entropy remains invariant. The general case of non-
negative perturbation s presented in this paper gives further evidence that the
entropy has significance independently of the Lotka growth rate. Indeed, in the
present context, the entropy Eq. (11) and the partition function Eq. (15) de-
termine each other as mutual Legendre transforms [19,20], while the partition
function acts as the moment generating function for the distribution g;. In this
way the entropy function may be said to determine all the relevant macroscopic
quantities.
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