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DIFFERENTIAL GROUPOIDS

1. Introduction

A differential grouypoid (G,*) is a set G equipped with a binary operaton - called

multiplication satisfying the following identities:

XX =X (idermpotence)
(1.1) [ (x-y)-(z-)=(x-2)-(y-t) (entropicity)
x(y-z)=x-y (reduction) .

Apart from left-zero semigroups {where the multiplication (x,y) P x-y=x is just pro-
jection onto the left factor), the first examples of differential groupoids appearing in the
literature were Ptonka's "cyclic groupoids™ CP1][P2]. Differential groupoids in general
were studied in [RoJLRR1ILRR2]. In [RR1, Prop. 1.11 it was shown that differential
groupoids could be characterised by satisfaction of the identity
(1.2) (x-y)z=(xz)y
of left normality (familiar from semigroup theory) along with idempotence and reduction.
For this reason differential groupoids were described acronymically in [RoJ [RR11 [RR2] as
"LIR-groupoids™. The purpose of the current paper is to point out some connections be-
tween differential groupoids, differentials, and differentiation (whence the terminology).
Some of the theory of differential groupoids developed in [Rol is recapitulated in new
form in the second section. Each differential groupoid has projections onto left zero
semigroups such that the fibres are also left zero semigroups. The kernel congruence of
such a projection is said to be a /left zero decomposition of the differential groupoid. The
two most important left zero decompositions of a differential groupoid (G,-) are the
kernel v of the right multiplication mapping (2.1) and the kernel B of the projection of
(G,") onto its left zero semigroup replica, the largest left zero semigroup that is a
quotient of (G,-). These decompositions are described in the second section.

The third section examines the linearisation of differential groupoids, the variety of
differential groupoids that are reducts of affine spaces. The main result, Theorem 3.6,
identifies these differential groupoids as affine spaces over the dual numbers. They are

“differential groups™ in the terminology used by Mac Lane [ML, 11.1] in his direct approach
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to homolegy groups. The general left zero decompositions B and ¥ reduce to difference by
boundaries and cycles respectively in this context (Proposition 3.10).

The last two sections are concerned with differentiation. Theorem 4.4 shows how
tangent line approximations to differentiable real functions may be described by a simple
functional equation in the differential groupoid on the real dual numbers. This functional
equation is then abstracted in the fifth section to give a general theory of differentiation
in differential groupoids. The basic idea is that derivations of a differentiable function
"repair the failure of the function to be a groupoid hormomorphism®. The left zero replica
congruence B gives a corresponding notion of continuity. The final result, Theorem 5.8,
describes how continuity is necessary for differentiability.

As idempotent and entropic algebras, differential groupoids are modes in the sense
of the book [RS11, which may serve as a reference for the universal algebraic concepts
used here, such as replicas and tensor product varieties. The subtitle of [RS1] described
modal theory as a [universal] “algebraic approach to order, geometry, and convexity."
"Geometry” there predominantly meant affine geometry. Later [RS2J, a modal theoretic
approach to projective geometry was given. The present paper is intended to initiate a

modal theoretic approach to differential geometry.

2. Cocyclic and cobordic elements

Left normality (1.2) is a consequence of the defining identities (1.1) via (x-y).-z =
x ) (z-z)={x-2}-(y-z)=(x-2)-y. For each element y of a differential groupoid (G,-),
consider the right multiplication
2.1 ‘ Ry): G=>G; x> x-y
by y. The set GR={R{(y)| y€ G} of right multiplications generates a submonoid R(G) of the
endomorphism monoid End{(G, -} of the differential groupoid. This submonoid R(G) is called
the right mapping monoid of the differential groupoid. By left normality, it is a commutative
monoid. Its elements are referred to as right mappings of (G,-). The endomorphism
monoid (End(G,),-) with multiplication defined by map composition also supports an
addition operation + with

(2.2) x(B+e) = (x9)-(xe)
for x in G and endomorphisms 9, ¢. The map
(2.3) R: (G, ) > (End(G,),+); x & R(x)

is a groupoid homomorphism. Its image is a left zero semigroup (GR,+), since
x(RON+R(Z)) = Gy (xz) = (xx)-(y-2) = x-(y-z) = x -y=xR{y) by (1.1). The kernel of R
is a congruence Y on (G,-}. Elements of G related by v are said to be cocyclic. If x
and y are cocyclic, then x-y=xR(y)=xR(x)=x-x=x. Thus the fibres of R are left zero

semigroups, and altogether v furnishes a left zero decomposition of (G,).



For an element x of G, the set
(2.4) xR(G) = {x9| e R(G))

is called the orbit of x in G. Two elements x and y of G are said to be cobordic, or in

the relation B, if their orbits intersect:
(2.5) xBy & 3zexR(G) N yR(G).

The significance of cobordism is given by the following.

Theorem 2.6 [Ro, 2.5-61.
(i) The relation B of {(2.5) is a congruence relation on (G,-).

(i) The quotient (GB,-) is the left zero replica of (G,-).

Proof. By (2.5), B is reflexive and symmetric. Suppose xByBz, say 39,9,y 0eR(G).
x¥=ye and yy=z¢. Then x8y=yox =yye==zde, so that xBz and B is transitive.
Now for tin G, (x-0)8 = xR(t)8 = x8R(t) = yeR(1), so that (x-t)By. Thus for any uin G,
and in particular for tBu, one has (x t)ByB xPBly -u), whence (x-t)B(y -u) by the tran-
sitivity, so that B is a congruence on (G, ). Moreover x® 8= (X't)B:yB:XB, so that
(GP) is a left zero semigroup. Finally, suppose that (G%-) is a left zero semigroup.
Set 8=R(g) ... R(g,,) and e=FA) .. R(h,). Then x*=x*R(g) ... R(g%) =(x8)*=
ye)*=y*Rh{) ... R(hT) = y*, whence B <a. 0

Since (G7,-) is a left zero semigroup, an immediate corollary of Theorem 2.6 (i) is
B <. In other words, cobordic elements are cocyclic. For each element x of G, the set
2.7} xVnatB={yB| yyx}
is called the homology set of (G,") at x. It is a left zero semigroup under the multiplica-
tion it inherits from (G,-). The differential groupoid (G,-) is said to have trivial homology
if its homology sets are all singletons, i. e. if each pair of cocyclic elements is cobordic.
The opposite extreme is represented by a left zero semigroup, which consists of a single

homology set.

3. Linearisation of differential groupoids

For a commutative ring 7 (with a unit element), affine spaces over R are defined
algebraically as idempotent reducts of unital R-modules. Affine spaces over R form a
variety R [RS1, 2551, A Mal'cev operation is a ternary operation P on an algebra A
satisfying the identities
(3.1) (. y P =x ={y,y,x)P.

Then the variety Z of affine spaces over the integers may be realised as the variety of
algebras of type {(P,3)} for which P is an entropic Mal cev operation, i.e. for which
P (AP)> (AP) s a homomorphism. The variety £ may be realised as a variety of

aigebras of type (Rx{2}) U {(P,3)}. The action of P on an affine space A is as the
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entropic Mal'cev operation
(3.2) (x,y,2)P = x~y+z,
while the action of an element r of Fis as
(3.3) xyr = (=rix+ry.
Given varieties B, of type t; : (); > N, for /=1,2, the tensor product By ® B, is the variety
of algebras A of type Ufﬂ(tf(n) wt3'(n) x {n} satisfying the identities that (A,Q) be a
By-algebra, that (4,0,) be a By-algebra, and that each operation w of Q, is a homo-
morphism (A“™,0,) > (4,0,) [RS1, 232]. There are reductions w; : B;® B, B, by
means of which B, ® B,-algebras may be considered just as B;-algebras. For a variety
B, the linearisation is defined to be the variety Z ® B®. Note that Z®R=FR for a com-
mutative ring A, so that varieties of affine spaces are their own linearisations.

For a commutative ring R, the ring R[d] of dual numbers over R is the abelian
group R®dR=1{r+ds|r,seR} with multiplication
(3.4) (r+ds)(t+adu) =rt+d{st+ru).
The element d with d?=0 is called the differential. Elernents of the ideal dR are some-
times described as infinitesimal, while the projection
(3.5) n: R[d]I> R, r+ds > r
is described as taking the finite part r of r+ds. The linearisation of the variety oF of
differential groupoids may then be identified as the variety of affine spaces over the dual
numbers Z[d]:

Theorem 3.6. Z®ar = Z[d].

Proof. Let A be an affine space over Z[d]. Then the multiplication

(3.7 Xy =x-dxtdy

given by (3.3) with r=d makes A a differential groupoid. Conversely, consider the variety
Z®9. Since it is a variety of Mal'cev modes, it is the variety of affine spaces over
some ring [RS1, 2541. Further, this ring is a quotient of the polynomial ring Z[ X1, where
the indeterminate X furnishes the differential groupoid multiplication as

(3.8) xy = (1=-X)x+Xy.

By the reduction law (1.1), x:(y-z) = (1"X)X+X(1—X)y+/\’22 ={1-X)x+Xy = x -y. Equating
coefficients of z, one sees that XZ annihilates affine space elements, so that the affine
spaces are over a quotient ring Z[,X’]/<X2> =ZLd]. This quotient cannot be proper, since

affine spaces over the dual numbers are already in Z ® 9. d

In Mac Lane's terminology [ML, 11.1], Z[dJ-modules are differential groups. Under
the operation (3.7), differential groups are differential groupoids. Let (K,+) be a differ-
ential group, with the abelian group endomorphism or “boundary operator”

(3.9) d: (K+)=> (K+); x b dx

satisfying d?=0. Elements of Kerd are called cycles, and elements of Imd are called
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boundaries. The homology group H(K) of (K,+,d) is defined as the quotient Kerd/Imd.
These constructions for differential groups illuminate the general constructions for

differential groupoids given in the previous section as follows:

Proposition 3.10. Let (K,+,d) be a differential group, with corresponding differential
groupoid (K,-) defined by (3.7).

() Elements of K are cocyclic iff they differ by a cycle.

(i) Elements of K are cobordic iff they differ by a boundary.

Proof. Let x,y,u be elements of K.
() xvy e R(x)=R(y)
S VzeK, z-dz+dx=z-dz+dy
& dx=dy & x-y€Kerd.
(i) x-(x+u)=x+du. Thus xR(K)=x+Imd.
Then xBy & IzexRK)NyR(K)
& Jdzelx+imdin(y+imd)
& x-yelmd. O

The homology sets of elements of K may then all be identified with the underlying

set of the homology group H(K).

4. Differential calculus

The dual numbers RLd] over the reals form a differential groupoid under the
multiplication
(4.1) Xy =x-dx+dy
(cf. (3.7)). This differential groupoid provides a convenient framework for certain aspects
of real differential calculus. Consider an everywhere-differentiable function £ : R R. At
each point a of R, f has the tangent line approximation £,: R=> R with
(4.2) flat+x)=fla)+ xf'(a).
These tangent line approximations may be used to extend the function f : R>R to a
function 7 : RLd]=> Rld] by means of the formula
(4.3) fla+dx) = fla) + f(a)dx
for real x, which may be interpreted to mean that the tangent line approximation (4.2)
is exact for points a+dx infinitesimally close to a (cf. (3.5)). In general, the extended
functions f: R[d] = R[&] are not homomorphisms of the differential groupoid structure
on R[], although affine functions such as extensions of (4.2) to R[d/] are. The following
theorem expresses the relationship of a differentiable function to its tangent line
approximation by saying that these approximations "repair the failure of the function to

be a differential groupoid homomorphism”. The “finite part" map x B x7 is as in (3.5).
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Theorem 4.4. Let f : R=>R be an everywhere~differentiable function. Extend it to f :
Rld1-> Rld]; x = Axm)+f (xm)x-xm). Then for all dual numbers x and y,
(4.5) fxy) = Fx) £ e ().
Furthermore, for each real a, any function g : RLd]1->Rld] satisfying the functional
equation
(4.8) fla-x) = fla) gl{x)
for all dual numbers x is infinitesimally close to the tangent line approximation f,.
Proof. Let x,y€R[d]. By (4.2),

femeWW) = Fonlym) + (£ (ym)(y - ym)
Asxm)+ (ym=xm)f (xmt)+ £ (xmly ~ ym)

i

flxm) + £ lxm)ly - ym),
where £, . R>R is extended to 7 : RLd]~> RLd] by (4.2). Then
) o) = [Fxm) + Fem) (= xm)]-[Flem) + A ey - xm)]
flxm) + £ xm)x - xm) - dflxm) - F(x)d(x - xm)
+df(xm)+ Fxm)(y - xm)

i1

fxm) + £ xm)(x ~xmt - dx + dy)

= flx—dx+dy) = flx-y),
verifying (4.5). Finally, if (4.6) holds, then for all z in RLd] one has f'(a)dz = fla+dz) -
fla)=fla-(a+2)) - fla) = fla)-gla+ z) - fla) = dgla+ z) - dfla), whence gla+ z) is cocyclic

with fla) + xf'(a) = f,(a+z). In other words, g and £, are infinitesimally close. O

5. Abstract differentiation

The connections between differentiation of real functions and functional equations
in the differential groupoid of real dual numbers given by Theorem 4.4 motivate a general
theory of differentiation in differential groupoids. It is convenient to revert to postfix

notation for functions. The basic definition is as follows.

Definition 5.1. Let (G,-) be a differential groupoid. Then a function f: G = G is said to be
differentiable at an element x of G if there is an endomorphism £, of (G,*), called a
derivative of f at x, such that

(5.2) (x )Ff = xf-yf,

for all yin G. The function f is differentiable (everywhere) if it is differentiable at each

element x of G.

Endomorphisms of (G, ) are of course differentiable, and may be taken as their

own derivatives. One immediate consequence of the definition is:

Proposition 5.3 (Chain Rule). /f f : G = G is differentiable at x€G, and g : G > G is

differentiable at xf, then the composite fg is differentiable at x, with



(5.4) (g =fgur.
Froof. For all y in G, one has (x-y)fg = (xf yf,)g = xfg -y, s Since f,g.ris an endo-

morphism of (G,), the composite fg is differentiable at x, with this endomorphism as

a derivative. O

Along with the concept of differentiability given by Definition 5.1, there is a cor-

responding concept of continuity for functions on differential groupoids.

Definition 5.5. Let (G,) be a differential groupoid, with cobordism relation 8. Then a
function f: G - G is said to be continuous at an element x of G if

(5.6) xBy = xf B yf.

The function fis said to be continuous (everywhere) if it is continuous at each element
of G.

Note that a continuous function : RLd] - R[d] on the differential groupoid of real
dual numbers yields a well-defined real function f® such that the diagram

R[] —— R[d]

(5.7) Tcl lﬂ:

[R——B“—HR
f

commutes. Continuity of such a function f may be interpreted as saying that it maps
infinitesimally close elements to infinitesimally close elements. Since cobordism on a left
zero semigroup is equality, all functions of left zero semigroups are continuous.

The following theorem gives some connections between differentiability and con-

tinuity.

Theorem 5.8. Let (G,-) be a differential groupoid, with a function f : G - G.
(i) If £ is differentiable at each element of the cobordism class of an element
x of G, then f is continuous at x.

(i) If F is differentiable, then it is continuous.

Proof. Clearly, (ii) is a direct consequence of (i). Suppose that x€G and that f is dif-
ferentiable at each element of xB. Let y€xB. 1t will be shown that for all § in R(G),
(5.9) 39, €R(G). y9F=yr9),.

Once this is proved, (i) follows: Suppose xBy, say 3§, €R(G). x$=ye. Then by (5.9),
xf, = XQ)f:ymf:yfcp)'/, whence xf B yf as required. Now (5.9), as a property of an ele-
ment & of the monoid R(G) generated by GR, may be proved by induction on the minimal
length of & as a word in the alphabet GR. For the empty word 1, (5.9) is true with 1;,= 1.
Suppose (5.9) holds for some 8 € R(G). Note that fis differentiable at ¥y9,since y9 B yB x
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implies y9 8 x by the transitivity of B. Then for z in G one has y8R(z)f=y8fR(zf,g)=
yF8 R(zf,5), which shows that one can take #,R(zf,g) for [8#R(2)],. This verifies that

(5.9) holds for 9R(z). O
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